首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We present new in situ observations of systematic asymmetry in the pattern of damage expressed by fault zone rocks along sections of the San Andreas, San Jacinto, and Punchbowl faults in southern California. The observed structural asymmetry has consistent manifestations at a fault core scale of millimeters to meters, a fault zone scale of meters to tens of meters and related geomorphologic features. The observed asymmetric signals are in agreement with other geological and geophysical observations of structural asymmetry in a damage zone scale of tens to hundreds of meters. In all of those scales, more damage is found on the side of the fault with faster seismic velocities at seismogenic depths. The observed correlation between the damage asymmetry and local seismic velocity structure is compatible with theoretical predictions associated with preferred propagation direction of earthquake ruptures along faults that separate different crustal blocks. The data are consistent with a preferred northwestward propagation direction for ruptures on all three faults. If our results are supported by additional observations, asymmetry of structural properties determined in field studies can be utilized to infer preferred propagation direction of large earthquake ruptures along a given fault section. The property of a preferred rupture direction can explain anomalous behavior of historic rupture events, and may have profound implications for many aspects of earthquake physics on large faults.  相似文献   

2.
The Chi‐Chi earthquake (MW = 7.6) took place in central western Taiwan in 1999. The earthquake caused reactivation of the Chelungpu Fault and resulted in 100‐km‐long surface ruptures. The fault strikes mostly north–south to NNE–SSW; however, the northern tip of the southern segment of the surface ruptures rotates clockwise to define an east–west trend, then jumps to a shorter NNW‐trending rupture. The largest vertical displacement is recorded in the Shihkang area of the Shihkang–Shangchi Fault Zone, where vertical slips are up to 8–10 m. The Shihkang–Shangchi Fault Zone displays a complex fault pattern as a linkage damage zone between two fault segments with the greatest concentration of faults and fractures. Our new interpretation, based on recent published geometric, kinematic, and geophysical studies on the Chi‐Chi earthquake fault, suggests that the Shihkang–Shangchi Fault Zone is not a simple termination zone, but may be an ‘overstep zone’ or a ‘transfer zone’. Slip analysis along the surface ruptures indicates that they are composed of three fault segments and the amount of slip partly depends on the intersection angle between slip direction and fault strike. Our numerical modeling for the area indicates that Coulomb stress changes are mainly concentrated on tips and bends of the surface ruptures. Slip patterns indicate that the fault propagates toward the northeast. Therefore, this study suggests high potential for future earthquake activity along the unruptured Shangchi segment. Hence, future geohazard studies should focus on the Shangchi segment to evaluate potential earthquakes, determine recurrence intervals, and reduce future earthquake hazards.  相似文献   

3.
On March 1993 an earthquake of magnitude Ms = 5·5 shook Pyrgos, a town in Western Peloponnissos, one of the most seismic prone areas in Greece. The damage induced to modern reinforced concrete buildings was rather light in contrast to the damage induced to historic and traditional buildings of adobe, stone or brick masonry which was severe. In order to study the causes of structural damage, detailed data are collected from a rather large statistical sample of 1023 masonry buildings and 22 reinforced concrete framed buildings with visible damage. For each building the number of storeys, the material of construction, as well as the type and the degree of damage are recorded. In addition, consideration is given to the site of the building within the town and the corresponding soil conditions. For reinforced concrete buildings, damage occured mostly in areas with relatively high estimated spectral accelerations and fundamental soil periods of vibration close to those of the buildings. Nevertheless, further analysis is required to explain the selective damage of a very small number of buildings. For masonry houses, the effect of soil conditions is more systematic. Moreover, the effects of the number of storeys as well as the age and material of construction appear to be dominant.  相似文献   

4.
An earthquake of magnitude ML=5.9 occurred in Dinar, a town located at the edge of an alluvial basin in Southeast Anatolia, Turkey. Inflicted structural damage throughout the town was highly concentrated in a region located on the alluvium and adjacent to the rock outcrop bounding the eastern side of the town. As an attempt to explain this discrepancy, possible effects of the edge of basin on which the town is located were investigated through 1D and 2D response analyses. Response spectra, computed at distinct locations of the town were contrasted to the building damage statistics of the three zones identified in the town. It is found that the 1D analyses considerably underpredict the spectral response in the heavily damaged area. Differences between the spectral responses obtained from the two approaches diminish with increasing distance from the rock outcrop. These results, which indicate that the 2D amplification was significant over a distance from the edge of the basin, provide a meaningful explanation for the observed distribution of damage throughout the town.  相似文献   

5.
During the Mw=6.9 January 1, 1980 earthquake in the Azores, the damage distribution in the town of Angra do Heroísmo, in Terceira Island, had a non-homogeneous spatial character. In order to understand the observed pattern of damage a microtremor survey was carried out, using ambient vibrations, and the data were analysed with the J-Sesame software, following the H/V Nakamura methodology. The results are in good agreement with the surface geology and they show a good correlation with the observed damages. Two building surveys were performed, in 1980 on damage evaluation and in 2000 on characterization of few building parameters. With all these elements (surface geology type, soil peak frequency, building type, number of stories and damage level) for 2111 buildings it was possible to perform several interparameter analysis, which enabled the identification of indicators that could be used to improve the damage estimation for future events.  相似文献   

6.
归纳总结了2012年甘肃金塔Ms5.4地震的基本参数,烈度分布、震害特征和发震构造背景等基本特征。此次地震发生在甘肃北山地区,新构造活动不明显,属构造稳定的地区。地貌上为戈壁丘陵区,震区无居民点,没有造成明显破坏。通过野外地质调查,发现了许多基岩崩塌现象,有些作为路标或导航用的石堆被震倒,其排列方向为NW向。利用震源机制解、余震分布方向和断层活动性调查资料综合分析,认为2012年金塔5.4级地震,是马山南东断层和神螺山一野马井断层共同作用的结果,其发震断层可能为神螺山-野马井断层。  相似文献   

7.
《Geofísica Internacional》2014,53(4):425-434
Geophysical techniques can be employed to understand the physical characteristics of the subsurface in highly populated areas, where urban settlements present structural problems. An interesting example is presented in this investigation, where three-dimensional Electric Resistivity Tomography (ERT-3D) is applied employing alternative arrays that allow investigating the subsoil beneath the affected constructions.A small neighborhood comprised by a block of houses within the town of San Antonio Tecómitl is studied. The area is found towards the outskirts of the Chichinautzin range, in the southern limit of the Mexican Basin. This settlement suffers of strong damage in their structures due to fractures and subsidence within the subsoil. ERT-3D was carried out to characterize the subsoil beneath this urban complex. A special resistivity array (‘horse-shoe’ geometry) employing a combination of ‘L’, equatorial-dipole and minimum-coupling methods was carried out to fully ‘illuminate’ the subsoil beneath the block of houses. Computed resistivity models depicted a high resistivity pattern that coincides with the affected houses. Such pattern seems to extend beyond the limits of the surveyed areas, and is probably part of a more complex fracture system. It is very likely that fractures have been produced due to the poorly consolidated soil, which is part of a transition zone; the intense water extraction, that form ‘voids’ in the subsoil causing subsidence effects and finally the existence of regional faults to greater extent that might control these shallow features.  相似文献   

8.
The damage distribution in Adra town (south‐eastern Spain) during the 1993 and 1994 Adra earthquakes (5.0 magnitude), that reached a maximum intensity degree of VII (European Macroseismic Scale (EMS scale)), was concentrated mainly in the south‐east zone of the town and the most relevant damage occurred in reinforced concrete (RC) buildings with four or five storeys. In order to evaluate the influence of ground condition on RC building behaviour, geological, geomorphological and geophysical surveys were carried out, and a detailed map of ground surface structure was obtained. Short‐period microtremor observations were performed in 160 sites on a 100m × 100m dimension grid and Nakamura's method was applied in order to determine a distribution map of soil predominant periods. Shorter predominant periods (0.1–0.3 s) were found in mountainous and neighbouring zones and larger periods (greater than 0.5 s) in thicker Holocene alluvial fans. A relationship T = (0.049 ± 0.001)N, where T is the natural period of swaying motion and N is the number of storeys, has been empirically obtained by using microtremor measurements at the top of 38 RC buildings (ranging from 2 to 9 storeys). 1‐D simulation of strong motion on different soil conditions and for several typical RC buildings were computed, using the acceleration record in Adra town of the 1993 earthquake. It is noteworthy that all the aforementioned results show the influence of site effects in the degree and distribution of observed building damage. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
利用Sentinel-1A卫星升降轨道数据和D-InSAR技术获得青海门源2022年1月8日MS6.9地震的同震形变场,并基于弹性半空间位错模型反演其震源参数,利用分布滑动模型确定断层面上的滑动分布。结果表明,2022年1月8日青海门源地震的同震形变场沿NWW-SEE方向分布;断裂带南缘升轨影像和降轨影像最大视距分别为61 cm和62 cm,断裂带北缘升轨影像和降轨影像最大视距地表形变量分别为43 cm和56 cm。InSAR同震形变场断裂尺度模型断层长30 km,宽18 km,最大滑移量3.5 m;断层滑动分布模型表明该地震为左旋走滑地震。结合冷龙岭断裂的运动特征和几何特征,初步确定此次MS6.9地震的发震断裂为冷龙岭断裂  相似文献   

10.
On 11 May 2011, a M w ?=?5.1 earthquake shook the town of Lorca (SE Spain) causing a disproportionately large damage for its magnitude. In order to contribute to knowledge of the behavior of the active faults present in the region and define the parameters which control their motion, we made a detailed study of the rupture process of this earthquake from inversion of body waves at regional and teleseismic distances. Ground motion displacements obtained in this way are in agreement with near-field strong motion data and GPS observations recorded in Lorca. We have obtained a partly bilateral rupture propagating to WSW (238°, 54°, 59°) with 27 cm of maximum slip and shallow focus (4 km). The fault plane orientation corresponds to that of the Cejo de los Enamorados Fault located NE of the Lorca town and parallel to the Alhama de Murcia Fault. The distribution of slip on the fault plane can explain the lack of any observed surface rupture as we found that the rupture started at 4-km depth along a plane dipping at 54°, with motion propagating upward to stop at 1.5 km below the surface. The strong motion and GPS data recorded near the epicenter are in agreement with the maximum slip on the fault. Directivity effects and the extreme shallowness of the rupture could explain the considerable damage that the earthquake caused in the town of Lorca.  相似文献   

11.
孙冬军  刘芳  毕波 《中国地震》2022,38(1):112-119
本文选取2013年芦山地震和2017年九寨沟地震波形,重新量取垂直向振幅,计算宽频带面波震级MS(BB),分析各台站实测震级出现方向性差异的原因。其中,通过572个宽频带台站实测芦山地震震级MS(BB)7.1,通过603个宽频带台站实测九寨沟地震震级MS(BB)6.9。芦山地震实测震级大于MS(BB)7.3的台站呈现WN-ES向分布,与断层倾向一致;实测震级小于MS(BB)7.0的台站呈现NE-WS向分布,与其所在断层走向一致。九寨沟地震实测震级大于MS(BB)7.0的台站分布呈现NE向分布,与断层倾向一致;实测震级小于MS(BB)6.8的台站总体分布较为离散,大体呈现NW-SE向分布,与树正断裂走向一致。实测震级偏大的台站方向性分布与多普勒效应和P波辐射花样联系不明显。对比分析芦山地震和九寨沟地震,去除场地响应和仪器自身影响,台站实测震级差异性仍然存在,因此,台站实测震级差异性是由于受到了多普勒效应、辐射花样、仪器和场地响应之外的因素影响。综合考虑地震震级涉及的影响因素,芦山地震和九寨沟地震的台站实测震级差异性可能与地震波的传播路径有关。  相似文献   

12.
Microtremor Measurements for the Microzonation of Dinar   总被引:3,自引:0,他引:3  
v--vThe geotechnical site conditions in Dinar town located in western Turkey were investigated after the 1995 Dinar earthquake based on borings, in situ penetration tests, seismic wave velocity measurements, and microtremor records. The variation of damage distribution within the town was evaluated with respect to 23 district damage ratios calculated, based on the detailed damage survey conducted by the General Directorate of Disaster Affairs. Site amplifications were estimated from microtremor spectral ratios and microzonation was performed using a GIS methodology. The results of in situ penetration tests and seismic wave velocity measurements as well as the damage distribution were compared with the amplification zonation obtained from microtremor records. The results indicate the applicability of microtremor spectral ratios for assessing the local site conditions and site amplifications.  相似文献   

13.
In order to investigate the response of structures to near‐fault seismic excitations, the ground motion input should be properly characterized and parameterized in terms of simple, yet accurate and reliable, mathematical models whose input parameters have a clear physical interpretation and scale, to the extent possible, with earthquake magnitude. Such a mathematical model for the representation of the coherent (long‐period) ground motion components has been proposed by the authors in a previous study and is being exploited in this article for the investigation of the elastic and inelastic response of the single‐degree‐of‐freedom (SDOF) system to near‐fault seismic excitations. A parametric analysis of the dynamic response of the SDOF system as a function of the input parameters of the mathematical model is performed to gain insight regarding the near‐fault ground motion characteristics that significantly affect the elastic and inelastic structural performance. A parameter of the mathematical representation of near‐fault motions, referred to as ‘pulse duration’ (TP), emerges as a key parameter of the problem under investigation. Specifically, TP is employed to normalize the elastic and inelastic response spectra of actual near‐fault strong ground motion records. Such normalization makes feasible the specification of design spectra and reduction factors appropriate for near‐fault ground motions. The ‘pulse duration’ (TP) is related to an important parameter of the rupture process referred to as ‘rise time’ (τ) which is controlled by the dimension of the sub‐events that compose the mainshock. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
The Greek coastal town of Egion on 15 June 1995 was shaken by a strong, small epicentral distance, earthquake that caused heavy damages to buildings and loss of life. The damages were concentrated in the central elevated part of the town whereas the flat coastal region remained almost intact. This non-uniform distribution of damage is studied in this article in terms of surface topography effects by conducting seismic response analyses of a simplified 2-D profile of the town. A dynamic finite element code implementing the equivalent-linear soil behavior (FLUSHPLUS) was used for the analyses and it was found that the step-like topography amplified greatly the intensity of motion without affecting its frequency content. The analyses showed that the motion recorded by an accelerograph installed at the center of the town is in agreement with the computed values; they also indicated a particularly intense amplification close to the crest of the steep slope, where a multi-story RC residential building partially collapsed. In contrast, the level of motion was found to be low at the flat coastal zone of the town where the earthquake damages were insignificant. It is concluded that the characteristic surface topography of the town played an important role in modifying the intensity of base motion.  相似文献   

15.
The 1985 Michoacan earthquake (M=8·1) caused very severe damage to mid-rise buildings in the lakebed zone of Mexico City, which is approximately 400 km from the epicentre in the Pacific Ocean. In the present study, we perform a three-dimensional (3-D) non-linear soil–building interaction analysis for several types of low- to high-rise buildings during the hypothetical Guerrero earthquake, and try to understand the real cause of heavy damage to mid-rise buildings in the lakebed zone during the 1985 Michoacan earthquake. We make a reasonable estimation of the input earthquake motions and the local site effects. The non-linear soil-building interaction analysis explains the damage pattern observed during the 1985 earthquake, although other analyses do not. We realize that all the factors from the earthquake source to the building superstructure must be taken into account adequately. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
2021年5月22日青海省果洛州玛多县发生M_S7.4地震。为探究本次地震的发震构造及余震分布特征,选取2021年5月1日—6月3日青海测震台网观测到的33°~36°N,97°~99.5°E空间范围内的地震观测报告,利用双差精定位方法进行双差精定位处理。重定位后整体残差平均减小了0.23,深度在5~25 km间随机分布。根据地震迁移方向和震区地质构造,认为本次地震的发震构造为昆仑山口—江错断裂,玛多—甘德东段受主震触发影响爆发一系列小震,两条断裂之间可能因为本次地震产生一定联系。本次地震产生新的断裂,突破了两条断裂之前的空区,连接到玛多—甘德断层,使两条断层交叉相连,形成新的断层构造。  相似文献   

17.
18.
An earthquake of M S=7.4 occurred in Mani, Xizang (Tibet), China on November 8, 1997. The moment tensor of this earthquake was inverted using the long period body waveform data from China Digital Seismograph Network (CDSN). The apparent source time functions (ASTFs) were retrieved from P and S waves, respectively, using the deconvolution technique in frequency domain, and the tempo-spatial rupture process on the fault plane was imaged by inverting the azimuth dependent ASTFs from different stations. The result of the moment tensor inversion indicates that the P and T axes of earthquake-generating stress field were nearly horizontal, with the P axis in the NNE direction (29°), the T axis in the SEE direction (122°) and that the NEE-SWW striking nodal plane and NNW-SSE striking nodal plane are mainly left-lateral and right-lateral strike-slip, respectively; that this earthquake had a scalar seismic moment of 3.4×1020 N·m, and a moment magnitude of M W=7.6. Taking the aftershock distribution into account, we proposed that the earthquake rupture occurred in the fault plane with the strike of 250°, the dip of 88° and the rake of 19°. On the basis of the result of the moment tensor inversion, the theoretical seismograms were synthesized, and then the ASTFs were retrieved by deconvoving the synthetic seismograms from the observed seismograms. The ASTFs retrieved from the P and S waves of different stations identically suggested that this earthquake was of a simple time history, whose ASTF can be approximated with a sine function with the half period of about 10 s. Inverting the azimuth dependent ASTFs from P and S waveforms led to the image showing the tempo-spatial distribution of the rupture on the fault plane. From the "remembering" snap-shots, the rupture initiated at the western end of the fault, and then propagated eastward and downward, indicating an overall unilateral rupture. However, the slip distribution is non-uniform, being made up of three sub-areas, one in the western end, about 10 km deep ("western area"); another about 55 km away from the western end and about 35 km deep ("eastern area"); the third about 30 km away from the western end and around 40 km deep ("central area"). The total rupture area was around 70 km long and 60 km wide. From the "forgetting" snap-shots, the rupturing appeared quite complex, with the slip occurring in different position at different time, and the earthquake being of the characteristics of "healing pulse". Another point we have to stress is that the locations in which the rupture initiated and terminated were not where the main rupture took place. Eventually, the static slip distribution was calculated, and the largest slip values of the three sub-areas were 956 cm, 743 cm and 1 060 cm, for the western, eastern and central areas, respectively. From the slip distribution, the rupture mainly distributed in the fault about 70 km eastern to the epicenter; from the aftershock distribution, however, the aftershocks were very sparse in the west to the epicenter while densely clustered in the east to the epicenter. It indicated that the Mani M S=7.9 earthquake was resulted from the nearly eastward extension of the NEE-SWW to nearly E-W striking fault in the northwestern Tibetan plateau. Contribution No. 99FE2016, Institute of Geophysics, China Seismological Bureau. This work is supported by SSTCC Climb Project 95-S-05 and NSFDYS 49725410.  相似文献   

19.
2022年1月8日,青海省海北藏族自治州门源县发生MS6.9地震,震中位于青藏高原东北缘地区祁连—海原断裂带的冷龙岭断裂和托勒山断裂构造转换区域(37.77°N,101.26°E)。震后野外现场考察结果表明,此次地震形成的同震地表破裂带总长度约为26 km,整体走向NWW向,破裂性质以左旋走滑局部逆冲为主。断层错动造成的破坏形式以雁列式组合的张裂隙、张剪裂隙、挤压鼓包、断层陡坎等为主。其中,道河至硫磺沟段地表破裂最为强烈,规模大且连续性好,造成的震害最为显著,地表破裂规模向东、西两端逐渐衰减。破裂带穿过区域内多条河流,造成显著的冰面破裂变形,并沿河岸形成一系列的边坡崩塌、滚石等地质灾害。综合破裂带及震害规模分析,宏观震中位于道河至硫磺沟地区。  相似文献   

20.
The 28 March 1996 earthquake (Mw=5.7) produced extensive damage in Pujili, a small town located in the central part of the Inter-Andean valley of Ecuador. Variations in the damage rate of adobe constructions throughout the city let us suppose a ground motion amplification related to site effects. A site effect study using the H/V spectral ratio confirmed the good agreement with geological formations and showed that a second peak in some soil response appears at sites that are located over a zone of alluvial deposits, in the most damaged area of the city. This second peak is in the frequency range 5–7 Hz, close to the natural response of adobe building frequency. Thus, the second peak seems to increase the damage rate of adobe buildings and may be related to superficial alluvial deposits of a river, acting independently of the rest of the soil column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号