首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have performed normalization of Hamiltonian in the generalized photogravitational restricted three body problem with Poynting–Robertson drag. In this problem we have taken bigger primary as source of radiation and smaller primary as an oblate spheroid. Whittaker’s method is used to transform the second order part of the Hamiltonian into the normal form.   相似文献   

2.
A restricted three-body problem for a dust particle, in presence of a spherical cometary nucleus in an eccentric (elliptic, parabolic or hyperbolic) orbit about the Sun, is considered. The force of radiation pressure and the Poynting– Robertson effect are taken into account. The differential equations of the particle’s non-inertial spatial motion are investigated both analytically and numerically. With the help of a complex representation, a new single equation of the motion is obtained. Conversion of the equations of motion system into a single equation allows the derivation of simple expressions similar to the integral of energy and integrals of areas. The derived expressions are named quasiintegrals. Relative values of terms of the energy quasiintegral for a smallest, largest, and a mean comet are calculated. We have found that in a number of cases the quasiintegrals are related to the regular integrals of motion, and discuss how the quasiintegrals may be applied to find some significant constraints on the motion of a body of infinitesimal mass.  相似文献   

3.
The orbital distributions of dust particles in interplanetary space are revised in the ESA meteoroid model to incorporate more observational data and to comply with the constraints due to the long-term particle dynamics under the planetary gravity and Poynting–Robertson effect. Infrared observations of the zodiacal cloud by the COBE Earth-bound observatory, flux measurements by the dust detectors on board Galileo and Ulysses spacecraft, and the crater size distributions on lunar rock samples retrieved by the Apollo missions are fused into a single model. Within the model, the orbital distributions are expanded into a sum of contributions due to a number of known sources, including the asteroid belt with the emphasis on the prominent families Themis, Koronis, Eos and Veritas, as well as comets on Jupiter-encountering orbits. An attempt to incorporate the meteor orbit database acquired by the Advanced Meteor Orbit Radar at Christchurch is also discussed. Work was done during D. Galligan’s stay at the University of Canterbury.  相似文献   

4.
We analyze the process of resonance trapping due to Poynting–Robertson drag and Stokes drag in the frame of the restricted 3-body problem and in the case of external mean motion resonances. The numerical simulations presented are computed by using the 3-dimensional extended Schubart averaging (ESA) integrator developed by Moons (1994) for all mean motion resonances. We complete it by adding the contributions of the dissipative forces. To follow the philosophy of the initial integrator, we average the drag terms, but we do not make any expansion in series of eccentricity or inclination. We show our results, especially capture around asymmetric equilibria, and compare them to those found by Beaué and Ferraz-Mello (1993, 1994) and Liou et al. (1979).  相似文献   

5.
Effect of stellar electromagnetic radiation on the motion of spherical dust particle in mean motion orbital resonances with a planet is investigated. Planar circular restricted three-body problem with the Poynting–Robertson (P–R) effect yields monotonic secular evolution of eccentricity when the particle is trapped in the resonance. Planar elliptic restricted three-body problem with the P–R effect enables nonmonotonous secular evolution of eccentricity and the evolution of eccentricity is qualitatively consistent with the published results for the complicated case of interaction of electromagnetic radiation with nonspherical dust grain. Thus, it is sufficient to allow either nonzero eccentricity of the planet or nonsphericity of the grain and the orbital evolutions in the resonances are qualitatively equal for the two cases. This holds both for exterior and interior mean motion orbital resonances. Evolutions of argument of perihelion in the planar circular and elliptical restricted three-body problems are shown. Numerical integrations show that an analytic expression for the secular time derivative of the particle’s argument of perihelion does not exist, if only dependence on semimajor axis, eccentricity and argument of perihelion is admitted. Connection between the shift of perihelion and oscillations in secular eccentricity is presented for the planar elliptic restricted three-body problem with the P–R effect. Period of the oscillations corresponds to the period of one revolution of perihelion. Change of optical properties of the spherical grain with the heliocentric distance is also considered. The change of the optical properties: (i) does not have any significant influence on the secular evolution of eccentricity, (ii) causes that the shift of perihelion is mainly in the same direction/orientation as the particle motion around the Sun. The statements hold both for circular and noncircular planetary orbits.  相似文献   

6.
We deal with the problem of a zero mass body oscillating perpendicular to a plane in which two heavy bodies of equal mass orbit each other on Keplerian ellipses. The zero mass body intersects the primaries plane at the systems barycenter. This problem is commonly known as theSitnikov Problem. In this work we are looking for a first integral related to the oscillatory motion of the zero mass body. This is done by first expressing the equation of motion by a second order polynomial differential equation using a Chebyshev approximation techniques. Next we search for an autonomous mapping of the canonical variables over one period of the primaries. For that we discretize the time dependent coefficient functions in a certain number of Dirac Delta Functions and we concatenate the elementary mappings related to the single Delta Function Pulses. Finally for the so obtained polynomial mapping we look for an integral also in polynomial form. The invariant curves in the two dimensional phase space of the canonical variables are investigated as function of the primaries eccentricity and their initial phase. In addition we present a detailed analysis of the linearized Sitnikov Problem which is valid for infinitesimally small oscillation amplitudes of the zero mass body. All computations are performed automatically by the FORTRAN program SALOME which has been designed for stability considerations in high energy particle accelerators.  相似文献   

7.
The restricted gravitational 2 + 2 body problem, is a particular case of the N body problem and it may be used to approximate the dynamical behaviour of binary asteroids or dual sattelites moving in the gravitational field of two primaries Pi, i = 1,2. By considering oblate primaries, five parameters are needed to describe the model, namely the reduced mass μ of the primary P2, the reduced masses μ1 and μ2 of the minor bodies and the oblatenesses Ii, i = 1,2 of the primaries. This work deals with the effect of those parameters on the location of the stationary solutions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
We applied the method of the short time Lyapunov indicators to the planar circular and to the planar elliptic restricted three-body problem in order to study the structure of the phase space in some selected regions. In the circular case we computed the short-time averages of the stretching numbers to distinguish between regular and chaotic domains of the phase space. The results obtained in this way are in good agreement with the corresponding Poincaré's surface of sections. Using the short time Lyapunov indicators we determined the detailed structure of the phase space in the semi-major axis-eccentricity plane of the test particle both in the circular and in the elliptic restricted problem (in the latter case for some values of the eccentricities of the primaries) and we studied the main features of the phase space.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

9.
We study a symmetric collinear restricted 3-body problem, where the equal mass primaries perform elliptic collisions, while a third massless body moves in the line between the primaries, during the time between two consecutive elliptic collisions. After desingularizing binary and triple collisions, we prove the existence of a transversal heteroclinic orbit beginning and ending in triple collision. This orbit is the unique homothetic orbit that the problem possess. Finally, we describe the topology of the compact extended phase space. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
In this paper, we prove the existence of special type of motions in the restricted planar parabolic three-body problem, of the type exchange, emission–capture, and emission–escape with close passages to collinear and equilateral triangle configuration, among others. The proof is based on a gradient-like property of the Jacobian function when equations of motion are written in a rotating–pulsating reference frame, and the extended phase space is compactified in the time direction. Thus a phase space diffeomorphic to -coordinates (θ, ζ, ζ′) is obtained with the boundary manifolds θ = ± π/2 corresponding to escapes of the binaries when time tends to ± ∞. It is shown there exists exactly five critical points on each boundary, corresponding to classic homographic solutions. The connections of the invariant manifolds associated to the collinear configurations, and stable/unstable sets associated to binary collision on the boundary manifolds, are obtained for arbitrary masses of the primaries. For equal masses extra connections are obtained, which include equilateral configurations. Based on the gradient-like property, a geometric criterion for capture is proposed and is compared with a criterion introduced by Merman (1953b) in the fifties, and an example studied numerically by Kocina (1954).  相似文献   

11.
The rectilinear elliptic restricted three-body problem (TBP) is the limiting case of the elliptic restricted TBP when the motion of the primaries is described by a Keplerian ellipse with eccentricity \(e'=1\), but the collision of the primaries is assumed to be a non-singular point. The rectilinear model has been proposed as a starting model for studying the dynamics of motion around highly eccentric binary systems. Broucke (AIAA J 7:1003–1009, 1969) explored the rectilinear problem and obtained isolated periodic orbits for mass parameter \(\mu =0.5\) (equal masses of the primaries). We found that all orbits obtained by Broucke are linearly unstable. We extend Broucke’s computations by using a finer search for symmetric periodic orbits and computing their linear stability. We found a large number of periodic orbits, but only eight of them were found to be linearly stable and are associated with particular mean motion resonances. These stable orbits are used as generating orbits for continuation with respect to \(\mu \) and \(e'<1\). Also, continuation of periodic solutions with respect to the mass of the small body can be applied by using the general TBP. FLI maps of dynamical stability show that stable periodic orbits are surrounded in phase space with regions of regular orbits indicating that systems of very highly eccentric orbits can be found in stable resonant configurations. As an application we present a stability study for the planetary system HD7449.  相似文献   

12.
The existence and linear stability of the planar equilibrium points for photogravitational elliptical restricted three body problem is investigated in this paper. Assuming that the primaries, one of which is radiating are rotating in an elliptical orbit around their common center of mass. The effect of the radiation pressure, forces due to stellar wind and Poynting–Robertson drag on the dust particles are considered. The location of the five equilibrium points are found using analytical methods. It is observed that the collinear equilibrium points L1, L2 and L3 do not lie on the line joining the primaries but are shifted along the y-coordinate. The instability of the libration points due to the presence of the drag forces is demonstrated by Lyapunov’s first method of stability.  相似文献   

13.
The dynamics of a pair of satellites similar to Enceladus–Dione is investigated with a two-degrees-of-freedom model written in the domain of the planar general three-body problem. Using surfaces of section and spectral analysis methods, we study the phase space of the system in terms of several parameters, including the most recent data. A detailed study of the main possible regimes of motion is presented, and in particular we show that, besides the two separated resonances, the phase space is replete of secondary resonances.  相似文献   

14.
The problem on the motion of a dust particle in the Solar system when the perturbations from a single planet, the light pressure, and the Poynting–Robertson effect are simultaneously taken into account is solved by qualitative methods in terms of the restricted plane circular three-body problem. Only two cases of dynamical behavior of the particle have been found to be possible when it falls into the 1 : 1 resonance region. Either the particle is captured into the sphere of action of the planet and eventually falls to the latter or it passes through the resonance zone into a region closer to the Sun. For a random scatter of particle positions, the probability of the former outcome is comparatively low, of the order of the ratio of the radius of the planet's sphere of action to its orbital radius.  相似文献   

15.
The isosceles rectilinear restricted three-body problem can be considered as the Sitnikov's problem with eccentricity one or, as the isosceles problem when the central mass is zero and the primaries move having consecutive elliptic collisions. We compactify the phase space and analyze the flow on their boundary. This allows us to separate the phase space into different regions depending on the kind of orbits. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The spatial restricted rhomboidal five-body problem, or shortly, SRRFBP, is a five body problem in which four positive masses, called the primaries, move two by two in coplanar circular motions with the center of mass fixed at the origin such that their configuration is always a rhombus, the fifth mass being negligible and not influencing the motion of the four primaries. The Hamiltonian function that governs the motion of the fifth mass is derived and has three degrees of freedom depending periodically on time. Using a synodical system of coordinates, we fix the primaries in order to eliminate the time dependence. With the help of the Hamiltonian structure, we characterize the regions of possible motion. The vertical $z$ axis is invariant and we study what we call the rhomboidal Sitnikov problem. Unlike the classical Sitnikov problem, no chaos exists and the behavior of the fifth mass is quite predictable, periodic solutions of arbitrary long periods are shown to exist and we study numerically their linear horizontal stability.  相似文献   

17.
We consider the perturbations on near-earth asteroid orbits due to various forces stemming from solar radiation. We find that the existence of precise radar astrometric observations at multiple apparitions, spanning periods on the order of 10 years, allows the detection of such forces on bodies as large as kilometer across. Indeed, the perturbations are so substantial that certain of the forces can be essential to fit an orbit to the observations. In particular, we show that the recoil force of thermal radiation from the asteroid, known as the Yarkovsky effect, is the most important of these unmodeled perturbations. We also show that the effect of reflected light can be important if even moderate albedo variations are present, while moderate changes in oblateness appear to have a far smaller effect. An unexpected result is that the Poynting–Robertson effect, typically only considered for submillimeter dust particles, could be observable on smaller asteroids with high eccentricity, such as 1566 Icarus. Finally, we also study the possibility of improving the orbit uncertainty through well-timed optical observations which might help in better detection of these nongravitational perturbations.  相似文献   

18.
The nonlinear stability zones of the triangular Lagrangian points are determined numerically and the effect of radiation of primaries is considered, in addition to the known effect of mass distribution, using the photogravitational restricted threebody problem model. It is found that radiation also has a considerable effect reducing the stability zones. In cases of resonances, these zones are reduced to negligible size for some parameter values within the linear stability regions.  相似文献   

19.
The cometary meteoroid ejection model of Jones and Brown [Physics, Chemistry, and Dynamics of Interplanetary Dust, ASP Conference Series 104 (1996b) 137] was used to simulate ejection from comets 55P/Tempel-Tuttle during the last 12 revolutions, and the last 9 apparitions of 109P/Swift-Tuttle. Using cometary ephemerides generated by the Jet Propulsion Laboratory’s (JPL) HORIZONS Solar System Data and Ephemeris Computation Service, two independent ejection schemes were simulated. In the first case, ejection was simulated in 1 h time steps along the comet’s orbit while it was within 2.5 AU of the Sun. In the second case, ejection was simulated to occur at the hour the comet reached perihelion. A 4th order variable step-size Runge–Kutta integrator was then used to integrate meteoroid position and velocity forward in time, accounting for the effects of radiation pressure, Poynting–Robertson drag, and the gravitational forces of the planets, which were computed using JPL’s DE406 planetary ephemerides. An impact parameter (IP) was computed for each particle approaching the Earth to create a flux profile, and the results compared to observations of the 1998 and 1999 Leonid showers, and the 1993 and 2004 Perseids.  相似文献   

20.
We study the scattering motion of the planar restricted three‐body problem for small mass parameters μ. We consider the symmetric periodic orbits of this system with μ = 0 that collide with the singularity together with the circular and parabolic solutions of the Kepler problem. These divide the parameter space in a natural way and characterize the main features of the scattering problem for small non‐vanishing μ. Indeed, continuation of these orbits yields the primitive periodic orbits of the system for small μ. For different regions of the parameter space, we present scattering functions and discuss the structure of the chaotic saddle. We show that for μ < μc and any Jacobi integral there exist departures from hyperbolicity due to regions of stable motion in phase space. Numerical bounds for μc are given. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号