首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present results about the stability of vertical motion and its bifurcations into families of 3-dimensional (3D) periodic orbits in the Sitnikov restricted N-body problem. In particular, we consider ν = N ? 1 equal mass primary bodies which rotate on a circle, while the Nth body (of negligible mass) moves perpendicularly to the plane of the primaries. Thus, we extend previous work on the 4-body Sitnikov problem to the N-body case, with N = 5, 9, 15, 25 and beyond. We find, for all cases we have considered with N ≥ 4, that the Sitnikov family has only one stability interval (on the z-axis), unlike the N = 3 case where there is an infinity of such intervals. We also show that for N = 5, 9, 15, 25 there are, respectively, 14, 16, 18, 20 critical Sitnikov periodic orbits from which 3D families (no longer rectilinear) bifurcate. We have also studied the physically interesting question of the extent of bounded dynamics away from the z-axis, taking initial conditions on x, y planes, at constant z(0) = z 0 values, where z 0 lies within the interval of stable rectilinear motions. We performed a similar study of the dynamics near some members of 3D families of periodic solutions and found, on suitably chosen Poincaré surfaces of section, “islands” of ordered motion, while away from them most orbits become chaotic and eventually escape to infinity. Finally, we solve the equations of motion of a small mass in the presence of a uniform rotating ring. Studying the stability of the vertical orbits in that case, we again discover a single stability interval, which, as N grows, tends to coincide with the stability interval of the N-body problem, when the values of the density and radius of the ring equal those of the corresponding system of N ? 1 primary masses.  相似文献   

2.
In this paper we deal with the circular Sitnikov problem as a subsystem of the three-dimensional circular restricted three-body problem. It has a first analytical part where by using elliptic functions we give the analytical expressions for the solutions of the circular Sitnikov problem and for the period function of its family of periodic orbits. We also analyze the qualitative and quantitative behavior of the period function. In the second numerical part, we study the linear stability of the family of periodic orbits of the Sitnikov problem, and of the families of periodic orbits of the three-dimensional circular restricted three-body problem which bifurcate from them; and we follow these bifurcated families until they end in families of periodic orbits of the planar circular restricted three-body problem. We compare our results with the previous ones of other authors on this problem. Finally, the characteristic curves of some bifurcated families obtained for the mass parameter close to 1/2 are also described.  相似文献   

3.
A mapping which reflects the properties of the Sitnikov problem is derived. We study the mapping instead of the original differential equations and discover that there exists a hyperbolic invariant set. The theoretical prediction of the disorder region agrees remarkably with numerical results. We also discuss the LCEs and KS-entropy of the dynamical system.This project is supported by the National Science Foundation of China.  相似文献   

4.
A family of straight line periodic motions, known as the Sitnikov motions and existing in the case of equal primaries of the three body problem, is studied with respect to stability and bifurcations. Continuation of the bifurcations into the case of unequal primaries is also discussed and some of the bifurcating families of three-dimensional periodic motions are computed.  相似文献   

5.
In this paper, we show the important role of chaotic transients in Celestial Mechanics through the Sitnikov problem. We compare the two kinds of chaos, permanent and transient, and provide the chaotic saddle of the Sitnikov problem giving also some important quantitative properties of this fractal set. Additionally, we present a link between the stickiness effect of tori and chaotic scattering.  相似文献   

6.
7.
The model of extended Sitnikov Problem contains two equally heavy bodies of mass m moving on two symmetrical orbits w.r.t the centre of gravity. A third body of equal mass m moves along a line z perpendicular to the primaries plane, intersecting it at the centre of gravity. For sufficiently small distance from the primaries plane the third body describes an oscillatory motion around it. The motion of the three bodies is described by a coupled system of second order differential equations for the radial distance of the primaries r and the third mass oscillation z. This problem which is dealt with for zero initial eccentricity of the primaries motion, is generally non integrable and therefore represents an interesting dynamical system for advanced perturbative methods. In the present paper we use an original method of rewriting the coupled system of equations as a function iteration in such a way as to decouple the two equations at any iteration step. The decoupled equations are then solved by classical perturbation methods. A prove of local convergence of the function iteration method is given and the iterations are carried out to order 1 in r and to order 2 in z. For small values of the initial oscillation amplitude of the third mass we obtain results in very good agreement to numerically obtained solutions.  相似文献   

8.
The article analyses the stability properties of minimum-control artificial equilibrium points in the planar circular restricted three-body problem. It is seen that when the masses of the two primaries are of different orders of magnitude, minimum-control equilibrium is obtained when the spacecraft is almost coorbiting with the second primary as long as their mutual distance is not too small. In addition, stability is found when the distance from the second primary exceeds a minimum value which is a simple function of the mass ratio of the two primaries and their separation. Lyapunov stability under non-resonant conditions is demonstrated using Arnold’s theorem. Among the most promising applications of the concept we find solar-sail-stabilized observatories coorbiting with the Earth, Mars, and Venus.  相似文献   

9.
This paper deals with the Sitnikov family of straight-line motions of the circular restricted three-body problem, viewed as generator of families of three-dimensional periodic orbits. We study the linear stability of the family, determine several new critical orbits at which families of three dimensional periodic orbits of the same or double period bifurcate and present an extensive numerical exploration of the bifurcating families. In the case of the same period bifurcations, 44 families are determined. All these families are computed for equal as well as for nearly equal primaries (μ = 0.5, μ = 0.4995). Some of the bifurcating families are determined for all values of the mass parameter μ for which they exist. Examples of families of three dimensional periodic orbits bifurcating from the Sitnikov family at double period bifurcations are also given. These are the only families of three-dimensional periodic orbits presented in the paper which do not terminate with coplanar orbits and some of them contain stable parts. By contrast, all families bifurcating at single-period bifurcations consist entirely of unstable orbits and terminate with coplanar orbits.  相似文献   

10.
The association of the Sitnikov family with families of multiple three-dimensional periodic orbits is studied. In particular, the families consisting of three-dimensional periodic orbits bifurcating from self-resonant orbits of the Sitnikov family at double, triple and quadruple period of the bifurcation orbit are considered. The branch families close upon themselves and remain 3D up to their terminations having two common members with the Sitnikov family. By varying the mass parameter we also study the evolution of some of the computed families and find that they become isolas and disappear gradually in three-dimensions by shrinking to point size.  相似文献   

11.
We study the existence, linear stability and bifurcations of what we call the Sitnikov family of straight line periodic orbits in the case of the restricted four-body problem, where the three equal mass primary bodies are rotating on a circle and the fourth (small body) is moving in the direction vertical to the center mass of the other three. In contrast to the restricted three-body Sitnikov problem, where the Sitnikov family has infinitely many stability intervals (hence infinitely many Sitnikov critical orbits), as the “family parameter” ż0 varies within a finite interval (while z 0 tends to infinity), in the four-body problem this family has only one stability interval and only twelve 3-dimensional (3D) families of symmetric periodic orbits exist which bifurcate from twelve corresponding critical Sitnikov periodic orbits. We also calculate the evolution of the characteristic curves of these 3D branch-families and determine their stability. More importantly, we study the phase space dynamics in the vicinity of these orbits in two ways: First, we use the SALI index to investigate the extent of bounded motion of the small particle off the z-axis along its interval of stable Sitnikov orbits, and secondly, through suitably chosen Poincaré maps, we chart the motion near one of the 3D families of plane-symmetric periodic orbits. Our study reveals in both cases a fascinating structure of ordered motion surrounded by “sticky” and chaotic orbits as well as orbits which rapidly escape to infinity.  相似文献   

12.
13.
We study the stability of motion in the 3-body Sitnikov problem, with the two equal mass primaries (m 1 = m 2 = 0.5) rotating in the x, y plane and vary the mass of the third particle, 0 ≤ m 3 < 10−3, placed initially on the z-axis. We begin by finding for the restricted problem (with m 3 = 0) an apparently infinite sequence of stability intervals on the z-axis, whose width grows and tends to a fixed non-zero value, as we move away from z = 0. We then estimate the extent of “islands” of bounded motion in x, y, z space about these intervals and show that it also increases as |z| grows. Turning to the so-called extended Sitnikov problem, where the third particle moves only along the z-axis, we find that, as m 3 increases, the domain of allowed motion grows significantly and chaotic regions in phase space appear through a series of saddle-node bifurcations. Finally, we concentrate on the general 3-body problem and demonstrate that, for very small masses, m 3 ≈ 10−6, the “islands” of bounded motion about the z-axis stability intervals are larger than the ones for m 3 = 0. Furthermore, as m 3 increases, it is the regions of bounded motion closest to z = 0 that disappear first, while the ones further away “disperse” at larger m 3 values, thus providing further evidence of an increasing stability of the motion away from the plane of the two primaries, as observed in the m 3 = 0 case.  相似文献   

14.
This paper considers the restricted circular three-body problem with respect to the radiation repulsion force acting upon a particle on the part of one of the main bodies (the Sun). The characteristic of the family of stationary particular solutions of the problem (libration points) representing the relative equilibrium positions in a rotating Cartesian system is given. On the basis of the KAM theory with the help of a computer a nonlinear analysis of the triangular libration points stability for the planar case is carried out. These libration points are proved to be strictly stable by Liapunov practically in the whole area of fulfilling the necessary stability conditions. Instability is discovered at the resonant curve of the third order and at the greater part of the resonant curve of the fourth order. The plotted results of the investigation allowed us to draw a conclusion about the Liapunov stability of the triangular libration points in a problem with respect to the radiation pressure for all the planets of the Solar system.  相似文献   

15.
The predictor-corrector method is described for numerically extending with respect to the parameters of the periodic solutions of a Lagrangian system, including recurrent solutions. The orbital stability in linear approximation is investigated simultaneously with its construction.The method is applied to the investigation of periodic motions, generated from Lagrangian solutions of the circular restricted three body problem. Small short-period motions are extended in the plane problem with respect to the parameters h, µ (h = energy constant, µ = mass ratio of the two doninant gravitators); small vertical oscillations are extended in the three-dimensional problem with respect to the parameters h, µ. For both problems in parameter's plane h, µ domaines of existince and stability of derived periodic motions are constructed, resonance curves of third and fourth orders are distinguished.  相似文献   

16.
The non-linear stability of motions around L5 in the elliptic restricted problem of the three bodies is investigated numerically with emphasis on the effect of the orbital eccentricity of the primaries on the shape of the established stability regions. It is shown that with increasing eccentricity, the width of these regions is decreasing.  相似文献   

17.
In this work, the single-mode motions around the collinear and triangular libration points in the circular restricted three-body problem are studied. To describe these motions, we adopt an invariant manifold approach, which states that a suitable pair of independent variables are taken as modal coordinates and the remaining state variables are expressed as polynomial series of them. Based on the invariant manifold approach, the general procedure on constructing polynomial expansions up to a certain order is outlined. Taking the Earth–Moon system as the example dynamical model, we construct the polynomial expansions up to the tenth order for the single-mode motions around collinear libration points, and up to order eight and six for the planar and vertical-periodic motions around triangular libration point, respectively. The application of the polynomial expansions constructed lies in that they can be used to determine the initial states for the single-mode motions around equilibrium points. To check the validity, the accuracy of initial states determined by the polynomial expansions is evaluated.  相似文献   

18.
Two-charged bodiesM 1 andM 2 revolve round their centre of mass in circular orbits under Newton's inverse-square law and the so similar Coulomb's law. A third-charged-bodyM, without mass and charge (i.e., such that it is attracted or repulsed byM 1 andM 2, but does not influence their motion), moves in a field with a force function, namely $$U = {\text{ }}\frac{{q - \mu }}{{r_1 }}{\text{ }} + {\text{ }}\frac{{\mu - q}}{{r_2 }}$$ , which is created byM 1 andM 2. In what follows, the existence and location of the collinear and equilateral Lagrangian points or solutions with be discussed and the interpretation of them will be given. This work is a generalization of the classical restricted circular three-body problem.  相似文献   

19.
The objective of this paper is to find periodic solutions of the circular Sitnikov problem by the multiple scales method which is used to remove the secular terms and find the periodic approximated solutions in closed forms. Comparisons among a numerical solution (NS), the first approximated solution (FA) and the second approximated solution (SA) via multiple scales method are investigated graphically under different initial conditions. We observe that the initial conditions play a vital role in the numerical and approximated solutions behaviour. The obtained motion is periodic, but the difference of its amplitude is directly proportional with the initial conditions. We prove that the obtained motion by the numerical or the second approximated solutions is a regular and periodic, when the infinitesimal body starts its motion from a nearer position to the common center of primaries. Otherwise when the start point distance of motion is far from this center, the numerical solution may not be represent a periodic motion for along time, while the second approximated solution may present a chaotic motion, however it is always periodic all time. But the obtained motion by the first approximated solution is periodic and has regularity in its periodicity all time. Finally we remark that the provided solutions by multiple scales methods reflect the true motion of the Sitnikov restricted three–body problem, and the second approximation has more accuracy than the first approximation. Moreover the solutions of multiple scales technique are more realistic than the numerical solution because there is always a warranty that the motion is periodic all time.  相似文献   

20.
The extended phase space of the Sitnikov problem is studied by using a stroboscopic map and computing escape times. Comparisons of phase portraits and plots of escape times reveal the intrinsic connection between the geometry of the phase space and the dynamical behaviour of the system. Properties of the phase space are analysed both in the central regular region and far from it. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号