首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The changes in the phytoplankton absorption properties during a diurnal cycle were investigated at one station located in the north-western area of the Alborán Sea. The experiment was performed in spring when the water column was strongly stratified. This hydrological situation permitted the establishment of a deep chlorophyll a (chl a) fluorescence maximum (DFM) which was located on average close to the lower limit of the mixed layer and the nutricline. The relative abundance of pico-phytoplankton (estimated as its contribution to the total chl a) was higher in the surface, however, micro-phytoplankton dominated the community at the DFM level. Chl a specific absorption coefficient (a*(λ)) also varied with optical depth, with a* (the spectrally average specific absorption coefficient) decreasing by 30% at the DFM depth with respect to the surface. A significant negative correlation between the contribution of the micro-phytoplankton to the total chl a and a* was obtained indicating that a* reduction was due to changes in the packaging effect. Below the euphotic layer, a* increased three-fold with respect to the DFM, which agrees with the expected accumulation of accessory pigments relative to chl a as an acclimation response to the low available irradiance. The most conspicuous change during the diurnal cycle was produced in the euphotic layer where the chl a concentration decreased significantly in the afternoon (from a mean concentration of 1.1 μg L−1 to 0.7 μg L−1) and increased at dusk when it averaged 1.4 μg L−1. In addition, a* and the blue-to-red absorption band ratio increased in the afternoon. These results suggest that a*(λ) diurnal variability was due to increase in photo-protective and accessory pigments relative to chl a. The variation ranges of a*(λ) at 675 and 440 nm (the absorption peaks in the red and blue spectral bands, respectively) in the euphotic layer were 0.01–0.04 and 0.02–0.10 m2 mg−1 chl a, respectively. Approximately 30% out of this variability can be attributed to the diurnal cycle. This factor should therefore be taken into account in refining primary production models based on phytoplankton light absorption.  相似文献   

2.
We have estimated the spatial variability of phytoplankton specific absorption coefficients (a* ph ) in the water column of the California Current System during November 2002, taking into account the variability in pigment composition and phytoplankton community structure and size. Oligotrophic conditions (surface Chl < 0.2 mg m−3) dominated offshore, while mesotrophic conditions (surface Chl 0.2 to 2.0 mg m−3) where found inshore. The specific absorption coefficient at 440 [a* ph (440)] ranged from 0.025–0.281 m2mg−1 while at 675 nm [a* ph (675)] it varied between 0.014 and 0.087 m2mg−1. The implementation of a size index based on HPLC data showed the community structure was dominated by picoplankton. This would reduce the package effect in the variability of a* ph (675). Normalized a ph curves were classified in two groups according to their shape, separating all spectra with peaks between 440 and 550 nm as the second group. Most samples in the first group were from surface layers, while the second group were from the deep chlorophyll maximum or deeper. Accessory photoprotective pigments (APP) tended to decrease with depth and accessory photosynthetic pigments (APS) to increase, indicating the importance of photoprotective mechanisms in surface layers and adaptation to low light at depth. Samples with higher ratios of APP:APS (>0.4) were considered as phytoplankton adapted to high irradiances, and lower ratios (<0.26) as adapted to low irradiances. We found a good relationship between APP:APS and a* ph (440) for the deeper layer (DCM and below), but no clear evidence of the factors causing the variability of a* ph (440) in the upper layer.  相似文献   

3.
Phytoplankton absorption and pigment characteristics of a red tide were investigated in coastal waters of the southern Benguela. Diagnostic indices indicated that dinoflagellates were the dominant phytoplankton group, with diatoms and small flagellates being of secondary importance. Very high biomass was observed close to the coast where chlorophyll a concentrations of up to 117 mg m–3 were measured. Both measured (a ph) and reconstructed pigment absorption (a pig) displayed an increasing trend with chlorophyll a, while the package effect index (Q* a) decreased, indicating increased packaging with an increase in biomass. Proportioning of the total pigment absorption between 400 and 700 nm revealed that chlorophyll a accounted for 39–65% of the absorption, while photosynthetic carotenoids (15–30%) and chlorophyll cs (15–30%) were also prominent in absorbing light for photosynthesis.  相似文献   

4.
The variety in shape and magnitude of thein vivo chlorophyll-specific absorption spectra of phytoplankton was investigated in relation to differences in pigment composition off Sanriku, northwestern North Pacific. Site-to-site variations of the absorption coefficients,a ph * (λ), and pigment composition were clearly observed. At warm-streamer stations, higher values ofa ph * (440) anda ph * (650) were found with relatively high concentrations of chlorophyllb (a green algae marker). At stations located in the Oyashio water (cold streamer),a ph * (440) values were lower and fucoxanthin (a diatom marker) concentrations were higher, compared to the other stations. The peak in the absorption spectra at the Oyashio stations was shifted toward shorter wavelengths, which was probably due to the presence of phaeopigments. In a Kuroshio warm-core ring, the magnitude ofa ph * (440) was in between those at the warm-streamer and Oyashio stations, and the diagnostic pigment was peridinin (a dinoflagellate marker). These findings indicated that major differences in phytoplankton absorption spectra of each water mass were a result of differences in the phytoplankton pigment composition of each water mass, which was probably related to the phytoplankton community.  相似文献   

5.
Spectral absorption coefficients of total particulate material and detritus were measured throughout the euphotic zone along the equator between 165°E and 150°W and during time-series for each of these two longitudes in October 1994 (JGOFS-FLUPAC cruise). The sum of pigments obtained by spectrofluorometry (tChla=DV−chla+Chla) was used for normalization (and was also compared to fluorometric and HPLC measurements as an intercalibration study). In order to assess the specific absorption coefficient of photosynthetically active pigments (aps) from the pigment-specific absorption coefficient for phytoplankton (aph*), we made a multiple regression analysis of measured phytoplankton absorption spectra onto publishedin vivo spectra of pure pigments. This made it possible to calculate the concentrations of photoprotective carotenoids (tPPC) when HPLC measurements were not available and thus to subtract their contribution to absorption from the total phytoplanktonic absorption coefficient (aph). Methodological uncertainties in both coefficients used for calculating absorption coefficients and in pigment measurements are discussed. Pigments and absorption measurements made during the cruise enabled us to describe two typical trophic regimes in the equatorial Pacific ocean: oligotrophic waters of the ”warm pool“ west of 170°W and high-nutrient, low-chlorophyll waters (HNLC) of the upwelling east of 170°W. The vertical decreasing gradient of aph* from the surface to the deep chlorophyll maximum (DCM) was due to a high tPPC/tChla ratio at the surface and was higher in the oligotrophic (0.14-0.065 m2 mg (tChla)−1 biomass dominated byProchlorococcus, rich in zeaxanthin) than in the mesotrophic area (0.07-0.06 m2 mg (tChl a)-' biomass dominated by picoeucaryotes). Below the DCM,aph* reached a similar minimum value in both oligotrophic and mesotrophic areas.a*ps varied less than a*ph from the surface layer to the DCM in both oligotrophic and mesotrophic areas. The difference in a*ph and a*ps from west to east of the transect could be interpreted as a shift in the phytoplankton composition, with a dominance of procaryotes in the west and a dominance of eucaryotes in the upwelling area. Higher aps in well-lit typical oligotrophic waters indicated that phytoplankton communities dominated byProclorococcus might be more efficient for capturing light usable for photosynthesis than those present in the HNLC situation.  相似文献   

6.
基于2013年8月琼东海域两个连续站的观测资料,对比分析了近岸站位和陆架站位的营养盐和叶绿素a浓度周日变化特征及其影响因素。结果表明:在垂直分布上,近岸站位S1与陆架站位S2的温跃层减弱了营养盐的向上输运;在时间变化上,S1站底层硅酸盐、硝酸盐和磷酸盐浓度具有半日波动的特点,而S2站的营养盐则不具有周日波动的现象,这说明近岸站位的营养盐受到潮汐作用的影响更显著。S1站的叶绿素a分层不明显,夜间的低值可能体现浮游动物的摄食作用,S2站位的叶绿素a分层明显,夜间没体现浮游动物的摄食作用。总体上,琼东海域近岸站位S1和陆架区站位S2叶绿素a和营养盐周日波动都受到温跃层、潮汐、生物作用和光照的影响,但S1站受潮汐作用影响更显著,且S1站叶绿素a浓度还受到浮游动物摄食作用影响。由于叶绿素a和营养盐受到多种环境要素的影响,使得两者相关性不显著。  相似文献   

7.
于1989年1月 - 1989年8月采用连续培养和半连续培养方法进行了伪矮海链藻细胞分裂、叶绿素a含量和活体荧光特性与光、营养盐关系的研究。结果表明,细胞分裂、活体荧光、叶绿素a均呈现光照期的增长速率明显高于黑暗期的增长速率的日变化规律,荧光增强比则在光照期开始后或黑暗期结束时出现最高值;光强和营养盐不仅影响各指标日变化的幅度,而且还可改变荧光增强比峰值出现时间。因此,在研究细胞分裂、叶绿素a和荧光特性的昼夜节律时,必须考虑光和营养盐这两个重要因素。  相似文献   

8.
Properties of the light saturation curve of photosynthesis and ribulose-1,5-bisphosphate carboxylase (RuBPC) activity are shown to change qualitatively in a natural population of marine phytoplankton during a spring bloom. Evidence is presented to show that these changes constitute photoadapative responses to increasing irradiance. As irradiance increased during the bloom, both the level of light-saturated photosynthesis (Pm) and the initial slope of the light saturation curve (α = photosynthetic efficiency) increased whether those parameters were normalized to chlorophyll a concentration (Pmb, αb) or to cell numbers (Pmc, αc). The magnitudes of these changes were such that Ik (= Pm/α, the photoadaptation parameter) did not change, but Im, the light intensity at which photosynthesis becomes saturated, increased. RuBPC activity, both chlorophyll a (RuBPCb) and cell number normalized (RuBPCc), also increased during the bloom. We suggest that these adaptations were achieved by simultaneously increasing the number of photosynthetic units, proportionately decreasing the photosynthetic unit size, and increasing both the concentrations of the enzymes of the dark reactions and possibly also of photosynthetic electron transport components.We also observed diminished levels of photoinhibition in the high light adapted cells late in the bloom and have suggested that this was a consequence of the same suite of physiological changes.In situ carbon fixation per cell increased during the bloom whereas no change occurred in this parameter when normalized to chlorophyll a concentration. Although these photoadaptive responses thus permitted carbon to be fixed in situ more rapidly per cell, at a constant efficiency with respect to investment of energy in the photosynthetic apparatus, they did not result in a change in growth rate. Based on consideratios of the role of time scale in physiological adaptation, however, it is suggested that the observed alterations in photosynthesis with increasing irradiance might permit a cell to more rapidly fill an energy quota for division, possibly an advantage in a mixing environment in which energy is patchily distributed, both spatially and temporalyy.Phosphoenolpyruvate carboxylase activity when normalized to chlorophyll a (PEPCb) did not change during the bloom while chlorophyll a normalized dark carbon fixation decreased sharply and was quantitatively small compared to PEPCb. On this basis and considering that RuBPCb increased during the bloom, it is suggested that, although PEPC may be involved in dark carbon fixation, its most important quantitative role is probably an indirect one in light dependent photosynthesis.We have also considered the relevance of laboratory results on photoadaptation to interpretations of field studies and have suggested that batch culture studies must be treated with caution but that turbidistat and semi-continuous methods provide reasonable simulations of natural conditions.  相似文献   

9.
An autonomous above-water radiometer was operated during the summer of 2005 on the Gustaf Dalén Lighthouse Tower (GDLT) off the Swedish coast in the Baltic Proper. Normalized water leaving radiances, LWN(λ), produced from measurements performed with the autonomous system at various center-wavelengths λ in the 412–675 nm spectral range, were applied within the context of water quality monitoring and satellite ocean color validation activities. Specifically these in situ radiometric data were used to determine the chlorophyll a concentration through a regional band-ratio algorithm and to assess LWN(λ) derived from top-of-atmosphere Moderate Resolution Imaging Spectroradiometer (MODIS) observations. The in situ measurements collected during a bloom occurring in July 2005 were also used to investigate the spectral and small scale temporal-spatial variability of LWN(λ) in the presence of cyanobacteria.  相似文献   

10.
In May and September 1999 11 stations were sampled in the southern and central North Sea, located in the German Bight, eastern Oyster Ground and Dogger Bank. The study focused on the influence of particle mixing on transport of chlorophyll a to deeper sediment layers and vertical bacterial distribution (max. DEPTH=10 cm). The sampling stations were chosen to reflect a gradient in environmental conditions in the North Sea. The sampling stations differed in respect to redox potential (eH up to −243 mV in the German Bight and up to 274 mV in the offshore regions), silt content (up to 54% in the German Bight and 0·34% at the northern Dogger Bank) and different proportion of fresh organic material on total organic matter content (C/N ratios ranging from 9·27 in the German Bight up to 1·72 in the offshore sediments). Although bacterial densities (8·55×109 g−1in the German Bight up to 0·35×109 g−1in offshore sediments) were significantly correlated to chlorophyll a content in the sediment (P<0·01), inconsistencies in the temporal pattern of both variables in the surficial sediment layer suggested, that the dynamics of bacterial densities is generally controlled by food supply but also by other variables. The chlorophyll a content in the surficial sediments of the German Bight (up to 1·84 μg g−1) was significantly higher than in the Oyster Ground (up to 0·58 μg g−1) and the Dogger Bank area (up to 0·68 μg g−1). With increasing chlorophyll a input to the benthic realm a subsequent enhanced burial of this compound into deeper sediment layers was expected either by biological (bioturbation) or by physical sediment mixing. However, the vertical profile of chlorophyll a decreased steeply in the sediments of the German Bight. Contrary, subsurface peaks were measured in the offshore areas. It was concluded from these results, that the vertical distribution of organic matter in sediments is less limited by the quantitative input from the water column but concomitant with particle mixing itself. The extent and possible mechanisms of particle mixing in the different study areas in relation to specific environmental factors is discussed.  相似文献   

11.
Seasonal changes in oceanographic conditions related to primary productivity was investigated in the southwestern Okhotsk Sea during non-iced seasons, using the observation data conducted in 2000∼2006. Based on hydrographic characteristics, the studied area could be classified into two regions, the Coastal Region which is influenced under the Soya Warm Current and the Forerunner Water of the Soya Warm Current, and the Offshore Region where the Intermediate Cold Water was located in the subsurface layer. This study is the first report on seasonal change of nutrient and chlorophyll a concentrations in the offshore region of the southwestern Okhotsk Sea. Variability of concentrations of chlorophyll a and nutrients is temporally and regionally high in the Coastal Region. The maximum chlorophyll a concentration in April was observed at the surface layer of both regions. The most remarkable feature on the vertical structure in the Offshore Region was the consistent existence of the Intermediate Cold Water and the development of seasonal thermocline in the subsurface layer during summer and autumn. The stratification formed within the euphotic zone in the Offshore Region resulted in the formation of the subsurface chlorophyll a maximum (SCM) from May to October. Throughout the research period, although less amplitude of nutrients at the surface was observed in the Coastal Region than that in the Offshore Region, comparable amplitude of chlorophyll a concentration was observed between regions. These results suggested differences of environmental conditions for primary production between the two regions. Depending on the presence of SCM, relationships between chlorophyll a concentration at the sea surface and chlorophyll a standing stock within the euphotic layer were different. At most stations with SCM, the surface chlorophyll a concentration was lower than 0.6 mg m-3. This suggests that the presence of SCM and the chlorophyll a standing stock within the euphotic layer may be estimated using the surface chlorophyll a concentration from spring to autumn in the studied area.  相似文献   

12.
The monthly abundance, biomass and taxonomic composition of zooplankton of Izmit Bay (the northeastern Marmara Sea) were studied from October 2001 to September 2002. Most species within the zooplankton community displayed a clear pattern of succession throughout the year. Generally copepods and cladocerans were the most abundant groups, while the contribution of meroplankton increased at inner-most stations and dominated the zooplankton. Both species number (S) and diversity (H′) were positively influenced by the increase in salinity of upper layers (r = 0.30 and r = 0.31, p < 0.001, respectively), while chlorophyll a was negatively affected (r = −0.36, p < 0.001). Even though Noctiluca scintillans had a significant seasonality (F11,120 = 8.45, p < 0.001, ANOVA), abundance was not related to fluctuations in temperature and only chlorophyll a was adversely correlated (r = −0.35, p < 0.001). In general, there are some minor differences in zooplankton assemblages of upper and lower layers. A comparison of the species composition and abundance of Izmit Bay with other Black Sea bays reveals a high similarity between them.  相似文献   

13.
Light attenuation (Kd) of photosynthetically active radiation (PAR) by chromophoric dissolved organic matter (CDOM), total suspended solids (TSS) and chlorophyll a (Chl a) were measured at nine stations along an estuarine gradient in the Swan River, Western Australia, over 15 months. There were strong spatial gradients associated with the marine-freshwater transition along the 32 km of estuary sampled, as well as seasonal gradients mainly associated with rainfall, 80% of which occurs between May and September. CDOM absorbances at 440 nm reached a maximum of 10.9 m−1 with the freshwater inflow but concentrations of suspended matter remained low throughout the sampling period (1.0–21.0 mg l−1) under the diurnal tides of the estuary. CDOM was the dominant constituent of Kd and a stepwise multiple regression showed that 66% (p < 0.0001) of the variation in Kd can be explained by CDOM and an additional 8% (p < 0.0001) by TSS. As a consequence of this result, analysis into the influence of river discharge rates on CDOM absorbance levels was examined for 2002 using data collected during this study, and for 2000 and 2001 using historical dissolved organic carbon (DOC) and river discharge data. The outcome of this analysis infers that greater river discharge rates result in increased CDOM absorbances in the Swan River estuary.  相似文献   

14.
The seasonal dynamics of inorganic nutrients and phytoplankton biomass (chlorophyll a), and its relation with hydrological features, was studied in the NW Alboran Sea during four cruises conducted in February, April, July and October 2002. In the upper layers, the seasonal pattern of nutrient concentrations and their molar ratios (N:Si:P) was greatly influenced by hydrological conditions. The higher nutrient concentrations were observed during the spring cruise (2.54 μM NO3, 0.21 μM PO43− and 1.55 μM Si(OH)4, on average), coinciding with the increase of salinity due to upwelling induced by westerlies. The lowest nutrient concentrations were observed during summer (<0.54 μM NO3, 0.13 μM PO43− and 0.75 μM Si(OH)4, on average), when the lower salinities were detected. Nutrient molar ratios (N:Si:P) followed the same seasonal pattern as nutrient distribution. During all the cruises, the ratio N:P in the top 20 m was lower than 16:1, indicating a NO3 deficiency relative to PO43−. The N:P ratio increased with depth, reaching values higher than 16:1 in the deeper layers (200–300 m). The N:Si ratio in the top 20 m was lower than 1:1, excepting during spring when N:Si ratios higher than 1:1 were observed in some stations due to the upwelling event. The N:Si ratio increased with depth, showing a maximum at 50–100 m (>1.5:1), which indicates a shift towards Si-deficiency in these layers. The Si:P ratio was much lower than 16:1 throughout the water column during the four cruises. In general, the spatial and seasonal variation of phytoplankton biomass showed a strong coupling with hydrological and chemical fields. The higher chlorophyll a concentrations at the depth of the chlorophyll maximum were found in April (2.57 mg m−3 on average), while the lowest phytoplankton biomass corresponded to the winter cruise (0.74 mg m−3 on average). The low nitrate concentrations together with the low N:P ratios found in the upper layers (top 20 m) during the winter, summer and autumn cruises suggest that N-limitation could occur in these layers during great part of the year. However, N-limitation during the spring cruise was temporally overcome by nutrient enrichment caused by an intense wind-driven upwelling event.  相似文献   

15.
Zooplankton diel vertical migration is evident on the mixed isothermal side of the western Irish Sea frontal system but is often influenced by large tides and persistent geostrophic currents. On the stratified side of the front, temperature acts as a controlling factor with most of the zooplankton occurring above the thermocline and carrying out pronounced vertical migration when chlorophyll a levels are low and diffuse. At higher chlorophyll levels, when discrete chlorophyll a maxima form, zooplankton vertical movement may be greatly modified with a large number of species and stages concentrating within these maxima at all times of the diel light cycle.  相似文献   

16.
Phytoplankton chlorophyll stocks in the Antarctic Ocean   总被引:5,自引:0,他引:5  
Phytoplankton chlorophyll stocks in the Indian sector of the Antarctic Ocean were estimated on the basis of published data collected from nine cruises of the Icebreaker,Fuji in 1965–1976, during routine observations of the Japanese Antarctic Research Expedition (JARE). Surface chlorophylla concentration, measured at 631 stations in waters south of 35°S, ranged from 0.01 to 3.01 mg m–3, At about half of the stations the values were less than 0.24 mg and at only 29 stations were high values more than 1.00 mg m–3 recorded. The levels of surface chlorophylla stocks were estimated in three groups; (1) data obtained on the southward leg through the eastern Indian sector (middle-late December), (2) those on the northward leg through the western Indian sector (late February–early March) and (3) those on the northward leg through the eastern Atlantic sector (late February–early March). Furthermore, mean values and standard deviations were calculated for each of six different water masses from north to south,i. e., subtropical water between 35°S and the Subtropical Convergence (STC) zone, water within the STC zone, Subantarctic Upper Water, water within the Antarctic Convergence (AC) zone, Antarctic Surface Water between the AC zone and 63°S, and Antarctic Surface Water south of 63°S. Mean values of surface chlorophylla concentrations for each of the six water masses on the three legs ranged from 0.15 to 0.58 mg m–3 and were comparable to those reported by other workers previously. Seasonal periodicity of phytoplankton chlorophyll stock is discussed. The surface chlorophyll stock in the oceanic water of the Antarctic Ocean does not seem to be so high as previously believed.  相似文献   

17.
The East China Sea (ECS),one of the largest continental seas,has dynamic hydrology and complex optical characteristics that make ocean color remote-sensing retrieval difficult.The distributions and proportions of the light absorption coefficients of major ocean color components based on two large-scale investigations in the ECS are presented,showing these features in typical summer and winter seasons.The absorption coefficient a CDOM,a NAP and a phy of colored dissolved organic matter,non-algal particle,and pigment of phytoplankton show a decreasing trend from the coast to the outer shelf.According to the a CDOM distribution at 440 nm,the Changjiang River plume shows an abnormal southeastward transport.An extremely high a NAP value patch at 440 nm is present in the middle coast.The chlorophyll-a-specific phytoplankton pigment absorption (a phy) is much higher in winter than in summer,which may cause serious underestimated results when applying the averaged a phy into remote-sensing algorithms for chlorophyll concentration retrieval.The importance of phytoplankton size was evident in outer shelf waters.The absorption of a CDOM (440) is a dominant component accounting for over half of the total seawater absorption in summer.The a NAP (440) accounts for 64% of the absorption of the ECS coastal area in winter.  相似文献   

18.
Sediment samples were collected at stations along cross-shelf transects in Onslow Bay, North Carolina, during two cruises in 1984 and 1985. Station depths ranged from 11 to 285 m. Sediment chlorophyll a concentrations ranged from 0·06 to 1·87 μg g−1 sediment (mean, 0·55), or 2·6–62·0 mg m2. Areal sediment chlorophyll a exceeded water column chlorophyll a a at 16 of 17 stations, especially at inshore and mid-shelf stations. Sediment ATP concentrations ranged from 0 to 0·67 μg g−1 sediment (mean, 0·28). Values for both biomass indicators were lowest in the depth range including the shelf break (50–99 m). Organic carbon contents of the sediments were uniformly low across the shelf, averaging 0·159% by weight. Photography of the sediments revealed extensive patches of microalgae on the sediment surface.Our data suggest that viable benthic microalgae occur across the North Carolina continental shelf. The distribution of benthic macroflora on the North Carolina shelf indicates that sufficient light and nutrients are available to support primary production out to the shelf break. Frequent storm-induced perturbations do not favour settling of phytoplankton, an alternative explanation for the presence of microalgal pigments in the sediments. Therefore, we propose that a distinct, productive benthic microflora exists across the North Carolina continental shelf.  相似文献   

19.
Both historic and currently operational chlorophyll algorithms of the satellite-borne ocean color sensors, such as SeaWiFS, were evaluated for in situ spectral radiation and chlorophyll data in some Case I waters, including the waters in the Indian Ocean sector of the Southern Ocean. Chlorophyll a concentration of the data set (n = 73) ranged from 0.04 to 1.01 mg m–3. The algorithms had higher accuracy for the low- and mid-latitude waters (RMSE: 0.163–0.253), specifically the most recently developed algorithms of OCTS and Sea WiFS showed 0.163 and 0.170 of Root Mean Square Errors, respectively. However, these algorithms had large errors (0.422–0.621) for the Southern Ocean data set and underestimated the surface chlorophyll by more than a factor of 2.6. The absorption coefficients in the blue spectral region retrieved from remote sensing reflectance varied in a nonlinear manner with chlorophyll a concentration, and the value in the Southern Ocean was significantly lower than that in the low- and mid-latitude waters for each chlorophyll a concentration. The underestimation of chlorophyll a concentration in the Southern Ocean with these algorithms was caused by the lower specific absorption coefficient in the region compared with the low- and mid-latitude waters under the same chlorophyll a concentration.  相似文献   

20.
Dissolved, particulate, and plankton hydrocarbons and fatty acids have been analysed by gas chromatography and gas chromatography/mass spectrometry in samples taken during a 16-month period at two stations located in Villefranche Bay, Mediterranean Sea. The study has been conducted in connection with regular determinations of chlorophyll a, zooplankton biomass and species of net plankton samples. The n-alkanes show a regular distribution pattern of odd and even carbon numbered compounds between n-C21 and n-C36 with additional characteristics associated with biological phenomena: abundance of n-C15 and n-C17, predominance of pristane over n-C17 in zooplankton-rich samples, predominance of even carbon numbered n-alkanes in the range C18–C20, generally associated with a mixture of higher molecular weight even carbon numbered n-alkanes, modifying the regular distribution of the n-alkanes. For the station located at the end of the bay, the correlation between particulate hydrocarbons, particulate n-alkanes and chlorophyll a contents ( 0.630) is significant — well below the 0.05 level. There is discussion of this correlation which indicates a possible direct contribution of phytoplankton to the hydrocarbons of seawater or other biochemical associations between plankton and dissolved organic matter. Polyunsaturated fatty acids such as C20 and C22 are more abundant in plankton and suspended matter than in seawater. Data relative to those components allow us to evaluate the percentage of living plankton in suspended matter. General trends indicate the existence of a relation between particulate fatty acid and zooplanktonic biomass concentrations in the bay water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号