首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The HydraSleeve is a sampling device for collecting groundwater from the screened interval of a monitoring well without purging that uses a check valve to take in water over the first 3 to 5 feet of an upward pulling motion. If the check valve does not perform as expected, then the HydraSleeve has the potential to collect water from an incorrect depth interval, possibly above the screened interval of the well. We have evaluated volatile organic chemical (VOC) results from groundwater samples collected with the HydraSleeve sampler compared to other methods for sampling monitoring wells at three sites. At all three sites, lower VOC concentration results were observed for samples collected using the HydraSleeve. At two of these three sites, the low concentration sample results were most strongly associated with monitoring wells with more than 10 feet of water above the monitoring well‐screened interval. At the site with the largest dataset, the median bias for samples collected with HydraSleeve was ?20% (p < 0.001). At this site, a bias of ?26% (p < 0.001) was observed for the subset of monitoring wells with greater than 10 feet of water above the screened interval compared to a bias of ?7% (p = 0.21) for wells screened across the top of the water table. In addition to lower VOC concentrations, the monitoring records obtained using the HydraSleeve were more variable compared to monitoring records obtained using purge sampling methods, a characteristic that would make it more difficult to determine the long‐term concentration trend in the well.  相似文献   

2.
The screened auger is a laser-slotted, hollow-stem auger through which a representative sample of ground water is pumped from an aquifer and tested for water-quality parameters by appropriate field-screening methods. Screened auger sampling can be applied to ground water quality remedial investigations, providing:(1) a mechanism for determining a monitoring well's optimal screen placement in a contaminant plume; and (2) data to define the three-dimensional configuration of the contaminant plume.
Screened auger sampling has provided an efficient method for investigating hexavalent chromium and volatile organic compound contamination in two sandy aquifers in Cadillac, Michigan. The aquifers approach 200 feet in thickness and more than 1 square mile in area. A series of screened auger borings and monitoring wells was installed, and ground water was collected at 10-foot intervals as the boreholes were advanced to define the horizontal and vertical distribution of the contaminant plumes. The ability of the screened auger to obtain representative ground water samples was supported by the statistical comparison of field screening results and subsequent laboratory analysis of ground water from installed monitoring wells.  相似文献   

3.
The Hydropunch™ is a stainless steel and Teflon® sampling tool that is capable of collecting a representative ground water sample without requiring the installation of a ground water monitoring well. To collect a sample, the Hydropunch (Patent #4669554) is connected to a small-diameter drive pipe and either driven or pushed hydraulically to the desired sampling depth. As the tool is advanced, it remains in the closed position, which prevents soil or water from entering the Hydropunch. Once the desired sampling depth is obtained, the tool is opened to the aquifer by pulling up the drive pipe approximately 1.5 feet (0.46m). In the open position, ground water can flow freely into the sample chamber of the tool. When the sample chamber is full, the Hydropunch is pulled to the surface. As the tool is retracted, check valves close and trap the ground water in the sample chamber. At the surface the sample is transferred from the Hydropunch to an appropriate sample container. The tool is a fast, inexpensive alternative for collecting ground water samples from a discrete interval. It is excellent for vertical profiling or defining the areal extent of a contaminant plume.  相似文献   

4.
In order to avoid contamination of ground water samples by stagnant water in the well bore, it is generally recommended that the well be purged prior to sampling. There is however, a divergence of opinion both on the need for purging and the best methods of purging. This paper describes detailed field tests in which non-reactive tracers were used to examine, from a well hydraulics point of view, the need for purging and also the effectiveness of various purging procedures. Results show that in the permeable geologic materials of the test site, and for the non-reactive tracers, the water within the screened interval will be purged by the natural flow of water through the screen, while the water above will remain stagnant. The volume of water above the screen is referred to here as one bore volume. It,is suggested that with consideration of the required sample volume, the volume of water stored in the screen, the sampling rate, and the position of the sampler intake, dedicated samplers could be used to obtain representative ground water samples without prior purging of the well.
Of the purging procedures tested, pumping from just below the air-water interface in the well, or the method of "complete removal" of the water within the well bore were the only effective means for complete removal of the stagnant water. Using these procedures, it appeared that representative samples could be obtained with the removal of only two to three bore volumes of water.  相似文献   

5.
An Analysis of Low-Flow Ground Water Sampling Methodology   总被引:1,自引:0,他引:1  
Low-flow ground water sampling methodology can minimize well disturbance and aggravated colloid transport into samples obtained from monitoring wells. However, in low hydraulic conductivity formations, low-flow sampling methodology can cause excessive drawdown that can result in screen desaturation and high ground water velocities in the vicinity of the well, causing unwanted colloid and soil transport into ground water samples taken from the well. Ground water velocities may increase several fold above that of the natural setting. To examine the drawdown behavior of a monitoring well, mathematical relationships can be developed that allow prediction of the steady-state drawdown for constant low-flow pumping rates based on well geometry and aquifer properties. The equations also estimate the time necessary to reach drawdown equilibrium. These same equations can be used to estimate the relative contribution of water entering a sampling device from either the well standpipe or the aquifer. Such equations can be useful in planning a low-flow sampling program and may suggest when to collect a water sample. In low hydraulic conductivity formations, the equations suggest that drawdown may not stabilize for well depths, violating the minimal drawdown requirement of the low-flow technique. In such cases, it may be more appropriate to collect a slug or passive sample from the well screen, under the assumption that the water in the well screen is in equilibrium with the surrounding aquifer.  相似文献   

6.
Acquisition of Representative Ground Water Quality Samples for Metals   总被引:1,自引:0,他引:1  
R.S. Kerr Environmental Research Laboratory (RSKERL) personnel have evaluated sampling procedures for the collection of representative, accurate, and reproducible ground water quality samples for metals for the past four years. Intensive sampling research at three different field sites has shown that the method by which samples are collected has a greater impact on sample quality, accuracy, and reproducibility than whether the samples are filtered or not. In particular, sample collection practices that induce artificially high levels of turbidity have been shown to have the greatest negative impacts on sample quality. Results indicated the ineffectiveness of bailers for collection of representative metal samples. Inconsistent operator usage together with excessive purging generally resulted in excessive turbidity (>100 NTUs) and large differences in filtered and unfiltered metal samples. The use of low flow rate purging and sampling consistently produced filtered and unfiltered samples that showed no significant differences in concentrations. Turbidity levels were generally less than 5 NTUs, even in fine-textured glacial till. We recommend the use of low flow rates, during both purging and sampling, placement of the sampling intake at the desired sampling point, minimal disturbance of the stagnant water column above the screened interval, monitoring of water quality indicators during purging, minimization of atmospheric contact with samples, and collection of unfiltered samples for metal analyses to estimate total contaminant loading in the system. While additional time is spent due to use of low flow rates, this is compensated for by eliminating the need for filtration, decreased volume of contaminated purge water, and less resampling to address inconsistent data results.  相似文献   

7.
Cone penetrometer tests and HydroPunch® sampling were used to define the extent of volatile organic compounds in ground water. The investigation indicated that the combination of these techniques is effective for obtaining ground water samples for preliminary plume definition. HydroPunch samples can be collected in unconsolidated sediments and the analytical results obtained from these samples are comparable to those obtained from adjacent monitoring wells. This sampling method is a rapid and cost-effective screening technique for characterizing the extent of contaminant plumes in soft sediment environments. Use of this screening technique allowed monitoring wells to be located at the plume boundary, thereby reducing the number of wells installed and the overall cost of the plume definition program.  相似文献   

8.
Lawrence Livermore National Laboratory (LLNL) uses a cost-effective sampling (CES) methodology to evaluate and review ground water contaminant data and optimize the site's ground water monitoring plan. The CES methodology is part of LLNL's regulatory approved compliance monitoring plan (Lamarre et al. 1996). It allows LLNL to adjust the ground water sampling plan every quarter in response to changing conditions at the site. Since the use of the CES methodology has been approved by the appropriate regulatory agencies, such adjustments do not need additional regulatory approval. This permits LLNL to respond more quickly to changing conditions. The CES methodology bases the sampling frequency for each location on trend, variability, and magnitude statistics describing the contaminants at that location, and on the input of the technical staff (hydrologists, chemists, statisticians, and project leaders). After initial setup is complete, each application of CES takes only a few days for as many as 400 wells. Effective use of the CES methodology requires sufficient data, an understanding of contaminant transport at the site, and an adequate number of monitoring wells downgradient of the contamination. The initial implementation of CES at LLNL in 1992 produced a 40% reduction in the required number of annual routine ground water samples at LLNL. This has saved LLNL $390,000 annually in sampling, analysis, and data management costs.  相似文献   

9.
A ground water monitoring program should include an investigation of all possible areas of concern. To be completely effective, the program should include soil sampling, soil analysis and water-quality examination of both the saturated and unsaturated zones. A well-tooled drill rig can take all the proper soil samples, perform all necessary tests and install a functional monitoring well. With the introduction of the fluoropolymer (Teflon(r)) sleeve lysimeter, a single monitoring well can be constructed to monitor both the saturated and unsaturated zones in one installation. The monitoring well screen and casing may also be completely constructed of fluoropolymer.
The sleeve lysimeter is designed with a threaded hollow inner diameter, allowing it to be attached between the joints of a casing string. This hollow I.D. acts as an extension of the casing; the lysimeter surrounds the casing. This creates an isolated vessel for sampling the vadose zone. Access to the screened monitoring well below is unaffected. Tests have shown that when properly installed, these porous fluoropolymer filter units can collect samples with no interaction between the filter and collected fluids.  相似文献   

10.
Robowell is an automated process for monitoring selected ground water quality properties and constituents by pumping a well or multilevel sampler. Robowell was developed and tested to provide a cost-effective monitoring system that meets protocols expected for manual sampling. The process uses commercially available electronics, instrumentation, and hardware, so it can be configured to monitor ground water quality using the equipment, purge protocol, and monitoring well design most appropriate for the monitoring site and the contaminants of interest. A Robowell prototype was installed on a sewage-treatment plant infiltration bed that overlies a well-studied u neon fined sand and gravel aquifer at the Massachusetts Military Reservation, Cape Cod, Massachusetts, during a time when two distinct plumes of constituents were released. The prototype was operated from May 10 to November 13, 1996, and quality-assurance/quality-control measurements demonstrated that the data obtained by the automated method was equivalent to data obtained by manual sampling methods using the same sampling protocols. Water level, specific conductance, pH, water temperature, dissolved oxygen, and dissolved ammonium were monitored by the prototype as the wells were purged according to U.S. Geological Survey (LJSGS) ground water sampling protocols. Remote access to the data record, via phone modem communications, indicated the arrival of each plume over a few days and the subsequent geochemical reactions over the following weeks. Real-time availability of the monitoring record provided the information needed to initiate manual sampling efforts in response to changes in measured ground water quality, which proved the method and characterized the screened portion of the plume in detail through time. The methods and the case study described are presented to document the process for future use.  相似文献   

11.
Experiments simulating the dynamics of compliance sampling via a monitoring well were performed to assess the effects of common well screen materials (rigid polyvinyl chloride, polytetrafluoroethylene, stainless steel 304. and stainless steel 316) on several metals and tri- chloroethylene (TCE) in ground water. This was achieved by using a continuous flow-through chamber system capable of exposing monitoring well screens to ground water for periods ranging from 0.25 to 8 hours. The findings of this study are more representative than static laboratory experiments for assessing the potential effects well casing materials have on ground water samples. Under dynamic flow conditions stainless steel 304 and 316 screens were found to influence solution concentrations of Pb, Cd, Cr, Ni, and Fe, while ground water TCE concentrations were not affected by any of the materials tested.  相似文献   

12.
State-of-the-art analytical techniques are capable of detecting contamination In the part per billion (ppb) range or lower. At these levels, a truly representative ground water sample Is essential to precisely evaluate ground water quality. The design specifications of a ground water monitoring system are critical in ensuring the collection of representative samples, particularly throughout the long-term monitoring period.
The potential interfaces from commonly used synthetic well casings require a thorough assessment of site, hydrogeology and the geochemical properties of ground water. Once designed, the monitoring system must be installed following guidelines that ensure adequate seals to prevent contaminant migration during the installation process or at some time in the future. Additionally, maintaining the system so the wells are in hydraulic connection with the monitored zone as well as periodically Inspecting the physical integrity of the system can prolong the usefulness of the wells for ground water quality. When ground water quality data become suspect due to potential interferences from existing monitoring wells, an appropriate abandonment technique must be employed to adequately remove or destroy the well while completely sealing the borehole.
The results of an inspection of a monitoring system comprised of six 4-inch diameter PVC monitoring wells at a hazardous well facility Indicated that the wells were improperly installed and in some cases provided a pathway for contamination. Subsequent down hole television inspections confirmed inaccuracies between construction logs and the existing system as well as identified defects in casing materials. An abandonment program was designed which destroyed the well casings in place while simultaneously providing a competent seal of the re-drilled borehole.  相似文献   

13.
The objective of most ground water quality monitoring programs is to obtain samples that are "representative" or that retain the physical and chemical properties of the ground water in an aquifer. Many factors can influence whether or not a particular sample is representative, but perhaps the most critical factor is the method or type of sampling device used to retrieve the sample.
The sampling equipment available today ranges from simple to highly sophisticated, and includes bailers, syringe devices, suction-lift pumps, gas-drive devices, bladder (Middelburg-type) pumps, gear-drive and helical rotor electric submersible pumps and gas-driven piston pumps. New devices are continually being developed for use in small-diameter wells in order to meet the needs of professionals engaged in implementing elaborate ground water monitoring programs.
In selecting a sampling device for a monitoring program, the professional must consider a number of details. Among the considerations are: the outside diameter of the device, the overall impact of the device on ground water sample integrity (including the materials from which the sampling device and associated equipment are made and the method by which the device delivers the sample), the capability of the device to purge the well of stagnant water, the rate and the ability to control the rate at which the sample is delivered, the depth limitations of the device, the ease of operating, cleaning and maintaining the device, the portability of the device and required accessory equipment, the reliability and durability of the device, and the initial and operational cost of the device and accessory equipment. Based on these considerations, each of the devices available for sampling ground water from small-diameter wells has its own unique set of advantages and disadvantages that make it suitable for sampling under specific sets of conditions. No one sampling device is applicable to all sampling situations.  相似文献   

14.
An investigation of elevated concentrations of nickel and chromium in certain ground water samples collected at Williams Air Force Base (AFB) indicated that type 304 stainless steel well materials are the source. Chloride in the ground water has apparently caused crevice corrosion of the stainless steel well screens installed during site characterization. An evaluation of site geochemistry suggested that chromium released from the well screen would precipitate, while nickel would remain dissolved. Thus, low-flow purging and sampling significantly reduces the chromium found in the ground water samples because such sampling minimizes the collection of artificially entrained particulates. In contrast to chromium, nickel concentrations did not decrease during low-flow purging and sampling, indicating that it is dissolved. Nickel and chromium concentrations are both low following high-volume purging when turbidity levels are stabilized below 10 nephelometric turbidity units prior to sampling. In the latter case, chromium concentration is low because particulate collection is minimized, and nickel concentration is low because of increased dilution. Based on these results, it is recommended that elevated levels of nickel and chromium in ground water samples collected from stainless steel monitoring wells be carefully evaluated, because well materials may be the source. In addition, although low-volume purging is increasingly becoming the sampling method of choice, high-volume purging may be a useful means of determining whether the well materials influence nickel and chromium concentrations.  相似文献   

15.
Purge and pump samples from screened wells reflect concentration averaging and contaminant redistribution by wellbore flow. These issues were assessed in a screened well at the Hanford Site by investigating the vertical profile of a technetium-99 plume in a conventional well under static and pumped conditions. Specific conductance and technetium-99 concentrations were well correlated, and this enabled measurement of specific conductance to be used as a surrogate for technetium-99 concentration. Time-series measurements were collected during purging from three specific conductance probes installed in the well at 1.2, 3.1, and 4.9 m below the static water level in a 7.7-m-deep screened well. The vertical contaminant profile adjacent to the well in the aquifer was calculated using the concentration profile in the well during pumping, the pumping flow rate, and a wellbore flow and mixing model. The plume was found to be stratified in the aquifer—the highest concentrations occurred adjacent to the upper part of the screened interval. The purge and pump sample concentrations were 41% to 58% of the calculated peak concentration in the aquifer. Plume stratification in the aquifer adjacent to the well screen became more pronounced as pumping continued. Extended pumping may have partially reversed the effect of contaminant redistribution in the aquifer by wellbore flow and allowed the stratification of the plume to be more observable. It was also found that the vertical profile of contamination in the well under static (i.e., nonpumping conditions) was not representative of the profile in the aquifer. Thus, passive or micropurge sampling techniques, which sample the wellbore water at different depths, would not yield results representative of the aquifer in this well.  相似文献   

16.
Volatile organic compounds (VOCs) are present in multiple water-bearing zones beneath and downgradient of Lawrence Livermore National Laboratory. This area is composed of interfingering unconsolidated alluvial sediments with hydraulic conductivities ranging over four orders of magnitude. The more permeable sediments exhibit moderate hydraulic interconnection horizontally and less interconnection vertically, and appear to consist largely of interconnected stream channel deposits. To optimize selection of monitoring well screened intervals in this complex environment, a technique that enables collection of saturated formation samples from each water-bearing zone without contamination from other VOC-containing zones was developed, tested, and implemented. The technique utilizes a wireline punch-coring system that allows the drill bit to be replaced with a core barrel without removing the drill rod from the borehole. To help ensure that a sample from one water-bearing zone is not contaminated by VOCs from another zone, the drilling fluid is replaced with new fluid before each sampling run. Overnight chemical analysis by gas chromatography enables field personnel to know the vertical distribution of VOCs as drilling proceeds. Since its first use in 1985, the technique has successfully characterized the presence or absence of VOCs in ground water in 123 of 140 wells, many with concentrations in ground water in the low parts-per-billion range. Our sampling technique is a cost-effective and rapid method of evaluating the vertical distribution of VOCs in ground water in a complex hydrogeologic environment.  相似文献   

17.
Hydrogeologic and ground water quality data obtained from a gas-driven multilevel sampler system and a polyvinyl chloride (PVC) monitoring well nest with the same aquifer communication intervals are compared. All monitoring points are in close proximity to each other. The study was conducted at an eight-acre uncontrolled hazardous waste site. The site is located in an alluvial valley composed of approximately 40 feet of alluvium overlying shale bedrock. The ground water at the site is contaminated with various organic constituents. A ground water monitoring network consisting of 26 conventional monitoring wells, nine observation well points, and six multilevel gas-driven samplers was established to characterize the hydrogeologic regime and define the vertical and horizontal extent of contamination in the vicinity of the abandoned chemical plant. As part of this study, a multilevel monitoring system was installed adjacent to a well nest. The communication zones of the multilevel samplers were placed at the same elevation as the sand packs of the well nest. The multilevel sampler system and well nest are located in a contaminated area directly downgradient of the site. A comparison of the vertical head distribution and ground water quality was performed between the well nest and the multilevel sampling system. The gas-driven multilevel sampling system consists of three gas-driven samplers that monitor separate intervals in the unconsolidated materials. The well nest, composed of two PVC monitoring wells in separate boreholes, has the same communication interval as the other two gas-driven samplers. Hydraulic head information for each multilevel sampler was obtained using capillary tubing. This was compared with heads obtained from the well nest utilizing an electric water level indicator. Chemical analyses from the PVC and multilevel sampler wells were performed and compared with one another. The analyses included organic acids, base neutrals, pesticides, PCBs, metals, volatile organics, TOX, TOC, CN, pH and specific conductance.  相似文献   

18.
The reliability of ground water monitoring information can be assured by careful selection of sample handling and analytical procedures. Sampling mechanism selection has been studied far less than analytical methodologies (Scalf et al. 1981, Nacht 1983). This study has as its primary goal the identification of reliable sampling mechanisms for purgeable organic compounds and gas-sensitive chemical parameters in ground water. Carefully controlled sampling experiments were run to investigate the error contributed to chemical results due to sampling mechanism alone. Fourteen commercial sampling devices in five mechanistic categories were evaluated for their performance in sample collection for solution parameters, dissolved gases and purgeable organic compounds. Systematic errors related to sampling mechanism can reduce the accuracy of monitoring data by factors of two to three times that involved in analytical procedures.  相似文献   

19.
The use of in‐field analysis of vapor‐phase samples to provide real‐time volatile organic compound (VOC) concentrations in groundwater has the potential to streamline monitoring by simplifying the sample collection and analysis process. A field validation program was completed to (1) evaluate methods for collection of vapor samples from monitoring wells and (2) evaluate the accuracy and precision of field‐portable instruments for the analysis of vapor‐phase samples. The field program evaluated three vapor‐phase sample collection methods: (1) headspace samples from two locations within the well, (2) passive vapor diffusion (PVD) samplers placed at the screened interval of the well, and (3) field vapor headspace analysis of groundwater samples. Two types of instruments were tested: a field‐portable gas chromatograph (GC) and a photoionization detector (PID). Field GC analysis of PVD samples showed no bias and good correlation to laboratory analysis of groundwater collected by low‐flow sampling (slope = 0.96, R2 = 0.85) and laboratory analysis of passive water diffusion bag samples from the well screen (slope = 1.03; R2 = 0.96). Field GC analysis of well headspace samples, either from the upper portion of the well or at the water‐vapor interface, resulted in higher variability and much poorer correlation (consistently biased low) relative to laboratory analysis of groundwater samples collected by low‐flow sample or passive diffusion bags (PDBs) (slope = 0.69 to 0.76; R2 = 0.60 to 0.64). These results indicate that field analysis of vapor‐phase samples can be used to obtain accurate measurements of VOC concentrations in groundwater. However, vapor samples collected from the well headspace were not in equilibrium with water collected from the well screen. Instead, PVD samplers placed in the screened interval represent the most promising approach for field‐based measurement of groundwater concentrations using vapor monitoring techniques and will be the focus of further field testing.  相似文献   

20.
We report the results of two independent laboratory investigations to evaluate total and leachable concentrations of glycols, glycol ethers, phenol, and other compounds in representative Type I and Type I/II Portland cement products that United States Environmental Protection Agency (EPA), The American Society of Testing and Materials (ASTM) and others recommend as annular sealants in monitoring well completions. Water well drillers also use these cements in their well completions. The EPA has included some of these compounds for analysis in their National Hydraulic Fracturing Study to evaluate the effects of hydraulic fracturing on ground‐ and surface water resources. During any contaminant investigation, materials used in monitoring or water well drilling, completion, development, and sampling must be free of the chemicals being targeted by the regulatory agency. Three of five bulk cement products we tested contained part per million (ppm) (mg/kg) concentrations of diethylene glycol, ethylene glycol, tetraethylene glycol, and triethylene glycol; chemicals added as grinding aids during manufacture. Some cements also contained ppb (µg/kg) concentrations of benzoic acid, phenols, propylene glycol, and 2‐butoxyethanol. Leaching of cured cement samples in water produced ppm (mg/L) concentrations of glycols in the supernatant. These results show that cured cements in monitoring or water wells can contaminate groundwater samples with glycols and phenol. Our findings should help prevent future sample bias and false positives when testing for glycol compounds and phenol in groundwater samples from monitoring or water wells and highlight the need to test materials or products used in monitoring or water well drilling, completions, development, and sampling to avoid false positives when sampling and analyzing for less common analytical constituents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号