首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Redwood Creek, north coastal California, USA, has experienced dramatic changes in channel configuration since the 1950s. A series of large floods (in 1955, 1964, 1972 and 1975) combined with the advent of widespread commercial timber harvest and road building resulted in extensive erosion in the basin and contributed high sediment loads to Redwood Creek. Since 1975, no peak flows have exceeded a 5 year recurrence interval. Twenty years of cross-sectional survey data document the downstream movement of a ‘sediment wave’ in the lower 26 km of this gravel-bedded river at a rate of 800 to 1600 m a−1 during this period of moderately low flows. Higher transit rates are associated with reaches of higher unit stream power. The wave was initially deposited at a site with an abrupt decrease in channel gradient and increase in channel width. The amplitude of the wave has attenuated more than 1 m as it moved downstream, and the duration of the wave increased from eight years upstream to more than 20 years downstream. Channel aggradation and subsequent degradation have been accommodated across the entire channel bed. Channel width has not decreased significantly after initial channel widening from large (>25 year recurrence interval) floods. Three sets of longitudinal surveys of the streambed showed the highest increase in pool depths and frequency in a degrading reach, but even the aggrading reach exhibited some pool development through time. The aggraded channel bed switched from functioning as a sediment sink to a significant sediment source as the channel adjusted to high sediment loads. From 1980 to 1990, sediment eroded from temporary channel storage represented about 25 per cent of the total sediment load and 95 per cent of the bedload exported from the basin.  相似文献   

2.
EXPERIMENTAL AND FIELD STUDY ON MINING-PIT MIGRATION   总被引:5,自引:0,他引:5  
1 INTRODUCTION Because of the large quantity of sand and gravel in their beds, rivers have always been considered as a major source of sand and gravel for civil works. Acceptable quality, ease of extraction and economy are some of the reasons could be mentioned. Unfortunately, specific laws and regulations regarding the safe in-stream mining have not been provided for users and officials. What should be taken into account are the effects of over-mining of sand and gravel, which can cause …  相似文献   

3.
1 INTRODUCTION Originating in the Kanglung Kang Glacier near Konggya Tso Lake (Lat. 30°30' N - long. 82°10'E) at an altitude of 4,877 m and 63 km southeast of the Manasarowar Lake in the Kailash Range of the Great Himalayas, the Brahmaputra River flows …  相似文献   

4.
A new analytic solution approach is presented for the modeling of steady flow to pumping wells near rivers in strip aquifers; all boundaries of the river and strip aquifer may be curved. The river penetrates the aquifer only partially and has a leaky stream bed. The water level in the river may vary spatially. Flow in the aquifer below the river is semi-confined while flow in the aquifer adjacent to the river is confined or unconfined and may be subject to areal recharge. Analytic solutions are obtained through superposition of analytic elements and Fourier series. Boundary conditions are specified at collocation points along the boundaries. The number of collocation points is larger than the number of coefficients in the Fourier series and a solution is obtained in the least squares sense. The solution is analytic while boundary conditions are met approximately. Very accurate solutions are obtained when enough terms are used in the series. Several examples are presented for domains with straight and curved boundaries, including a well pumping near a meandering river with a varying water level. The area of the river bottom where water infiltrates into the aquifer is delineated and the fraction of river water in the well water is computed for several cases.  相似文献   

5.
Few studies have precisely documented the response of stream channels to short-term flow variability. This paper examines the impact of sequential flows of various magnitudes on the morphology of a low-energy river in northeastern Illinois, U.S.A. Between June 1986 and November 1988 channel cross-sections were surveyed on a semiannual basis at 26 locations along a 7.2 km stretch of the Des Plaines River. During this period an estimated 100-year flood, several bankfull flows, and an extreme low flow associated with a severe drought occurred. The response of the river channel to each of these events was relatively minor. Mean changes for the reach were generally less than 3 per cent for mean depth and less than 1 per cent for width. Statistical analysis indicates that net changes in width and depth over the entire period were not significantly different from zero. This lack of geomorphic response is attributable to low stream power, low hydrologic variability, fine bed materials, and cohesive banks along this stretch of river. Although dramatic changes in channel morphology did not occur, subtleties in geomorphic response were observed that reflect the temporal ordering of hydrologic events.  相似文献   

6.
Planform dynamics of the Lower Mississippi River   总被引:1,自引:0,他引:1  
This paper presents an analysis of the planform behaviour of the Lower Mississippi River (LMR) using a series of maps and hydrographic surveys covering the period 1765–1975. Data allow analysis at various time and space scales, using fixed and statistically defined reaches, both before and after extensive channel modification. Previous research has interpreted planform change in relation to geomorphological or engineering regime‐type analyses of channel length and width for the LMR as a ‘single system’. The analysis here is broadly consistent with these approaches, but highlights the importance of meander geometry, in the form of the radius of curvature:width ratio. This neglected factor helps resolve paradoxes relating to observed changes in sediment transport and channel stability. When viewed over smaller time and space scales, analysis of dynamics using fixed reach boundaries reveals a downstream trend in the pattern of planform behaviour, which is closely related to the distribution of valley floor deposits, and which also reflects neotectonic influences. Analysis of changes using statistically determined reach boundaries shows that, over shorter time scales, meander trains are continually formed and modified over a period of approximately 120 years. Zones of more‐or‐less dynamic behaviour thus move through the LMR. The research also provides a context for 20th century engineering interventions to the river. These have constrained the magnitude of planform adjustment, but also altered the kind of response that is now possible in relation to changes in discharge and sediment load, and as a consequence of internal feedbacks within the LMR system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
A review of 112 years of change in the channel of the Salt River, central Arizona, U.S.A., shows that this arid-region river has a main-flow channel that has migrated laterally up to 1.6 km (1 mi) in response to floor events. Maps showing locational probabilities indicate that along the channel zones of relative locational stability alternate with zones of relative instability at a 3.2 km (2 mi) interval. Construction of upstream reservoirs has reduced sediment input into the main river but has not controlled floods. The channel width has not changed except for moderate fluctuations around mean values; the main-flow channel has incised approximately 6 m (20 ft) over most of the 48 km (30 mi) study reach during six recent floods. Gradient has remained unchanged. During floods bed material was mobilized to a depth below the original bed level that was greater than the height of the water surface above the original bed. Calculations based on tractive force indicate a threshold discharge of instability that is equal to the flow with a five-year return interval. The river exhibits remarkable stability with respect to gradient and sinuosity, irrespective of water and sediment discharges, but horizontal channel location exhibited selective instability. Over the record period of more than a century, the channel appears not to have been in equilibrium considering geometry, discharge, and sediment.  相似文献   

8.
In this study, we investigated the temporal variability of dissolved oxygen and water temperature in conjunction with water level fluctuations and river discharge in the Narew lowland river reach. For this purpose, high resolution hydrologic and water quality time series have been used. Spectral analyses of time series using continuous wavelet transform scheme have been applied in order to identify characteristic scales, its duration, and localisation in time. The results of wavelet analysis have shown a great number of periodicities in time series at the inter-annual time scale when compared to the classical Fourier analysis. Additionally, wavelet coherence revealed the complex nature of the relationship between dissolved oxygen and hydrological variables dependent on the scale and localisation in time. Hence, the results presented in this paper may provide an alternative representation to a frequency analysis of time series.  相似文献   

9.
Intensive field monitoring of a reach of upland gravel‐bed river illustrates the temporal and spatial variability of in‐channel sedimentation. Over the six‐year monitoring period, the mean bed level in the channel has risen by 0·17 m with a maximum bed level rise of 0·5 m noted at one location over a five month winter period. These rapid levels of aggradation have a profound impact on the number and duration of overbank flows with flood frequency increasing on average 2·6 times and overbank flow time increasing by 12·8 hours. This work raises the profile of coarse sediment transfer in the design and operation of river management, specifically engineering schemes. It emphasizes the need for the implementation of strategic monitoring programmes before engineering work occurs to identify zones where aggradation is likely to be problematic. Exploration of the sediment supply and transfer system can explain patterns of channel sedimentation. The complex spatial, seasonal and annual variability in sediment supply and transfer raise uncertainties into the system's response to potential changes in climate and land‐use. Thus, there is a demand for schemes that monitor coarse sediment transfer and channel response. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
What hydraulic information can be gained from remotely sensed observations of a river's surface? In this study, we analyze the relationship between river bed undulations and water surfaces for an ungauged reach of the Xingu River, a first‐order tributary of the Amazon river. This braided reach is crosscut more than 10 times by a ENVISAT (ENVironmental SATellite) track that extends over 100 km. Rating curves based on a modeled discharge series and altimetric measurements are used, including the zero‐flow depth Z 0 parameter, which describes river's bathymetry. River widths are determined from JERS (Japanese Earth Ressources Satellite) images. Hydrodynamic laws predict that irregularities in the geometry of a river bed produce spatial and temporal variations in the water level, as well as in its slope. Observation of these changes is a goal of the Surface Water and Ocean Topography satellite mission, which has a final objective of determining river discharge. First, the concept of hydraulic visibility is introduced, and the seasonality of water surface slope is highlighted along with different flow regimes and reach behaviors. Then, we propose a new single‐thread effective hydraulic approach for modeling braided rivers flows, based on the observation scales of current satellite altimetry. The effective hydraulic model is able to reproduce water surface elevations derived by satellite altimetry, and it shows that hydrodynamical signatures are more visible in areas where the river bed morphology varies significantly and for reaches with strong downstream control. The results of this study suggest that longitudinal variations of the slope might be an interesting criteria for the analysis of river segmentation into elementary reaches for the Surface Water Ocean Topography mission that will provide continuous measurements of the water surface elevations, the slopes, and the reach widths.  相似文献   

11.
Field measurements and morphodynamic simulations were carried out along a 5‐km reach of the sandy, braided, lower Tana River in order to detect temporal and spatial variations in river bed modifications and to determine the relative importance of different magnitude discharges on river bed and braid channel evolution during a time span of one year, i.e. 2008–2009. Fulfilling these aims required testing the morphodynamic model's capability to simulate changes in the braided reach. We performed the simulations using a 2‐D morphodynamic model and different transport equations. The survey showed that more deposition than erosion occurred during 2008–2009. Continuous bed‐load transport and bed elevation changes of ±1 m, and a 70–188‐m downstream migration of the thalweg occurred. Simulation results indicated that, during low water periods, modifications occurred in both the main channel and in other braid channels. Thus, unlike some gravel‐bed rivers, the sandy lower Tana River does not behave like a single‐thread channel at low discharge. However, at higher discharge, i.e. exceeding 497 m3/s, the river channel resembled a single‐thread channel when channel banks confined the flow. Although the spring discharge peaks caused more rapid modifications than slower flows, the cumulative volumetric changes of the low water period were greater. The importance of low water period flows for channel modifications is emphasized. Although the 2‐D model requires further improvements, the results were nevertheless promising for the future use of this approach in braided rivers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Continuous monitoring of bed shear stress in large river systems may serve to better estimate alluvial sediment transport to the coastal ocean.Here we explore the possibility of using a horizontally deployed acoustic Doppler current profiler(ADCP) to monitor bed shear stress,applying a prescribed boundary layer model,previously used for discharge estimation.The model parameters include the local roughness length and a dip correction factor to account for sidewall effects.Both these parameters depend on river stage and on the position in the cross-section, and were estimated from shipborne ADCP data.We applied the calibrated boundary layer model to obtain bed shear stress estimates over the measuring range of the HADCP.To validate the results,co-located coupled ADCPs were used to infer bed shear stress,both from Reynolds stress profiles and from mean velocity profiles. From HADCP data collected over a period of 1.5 years,a time series of width profiles of bed shear stress was obtained for a tidal reach of the Mahakam River,East Kalimantan,Indonesia.A smaller dataset covering 25 hours was used for comparison with results from the coupled ADCPs.The bed shear stress estimates derived from Reynolds stress profiles appeared to be strongly affected by local effects causing upflow and downflow,which are not included in the boundary layer model used to derive bed shear stress with the horizontal ADCP.Bed shear stresses from the coupled ADCP are representative of a much more localized flow,while those derived with the horizontal ADCP resemble the net effect of the flow over larger scales.Bed shear stresses obtained from mean velocity profiles from the coupled ADCPs show a good agreement between the two methods,and highlight the robustness of the method to uncertainty in the estimates of the roughness length.  相似文献   

13.
River incision and vegetation dynamics in cut-off channels   总被引:1,自引:0,他引:1  
The consequences of river incision on ecosystems dynamics in cut-off channels were hypothesized to be 1) the reduction of river backflows and overflows of the river in the former channels; 2) the reduction of seepage flows from the river and drainage into the channels; 3) the drainage of the hillslope aquifer by the former channels. The subsequent changes of aquatic plant communities should be 1) the terrestrialization of the higher part of former channels and 2) their change into more oligotraphent ones if the hillslope aquifer is poorer in nutrients than the river. In those reaches where the river bed is aggraded, river backflows in the cut-off channel should increase, as should overflows and seepage, and more eutraphent species should develop. Changes in aquatic vegetation were studied over a ten-year period in four cut-off channels supplied by a nutrient-poor hillslope aquifer and a nutrient-rich river. Two of them were located in an incised reach of the river, one in an aggraded reach and one (reference) in a reach that was neither aggraded nor incised. The vegetation of the reference channel exhibited only minor changes over the ten-year period, indicating that the successional trend is not perceptible at the time scale of the study, and thus that any change observed in the other channels can be ascribed to river incision or aggradation. Terrestrialization expected in the channels located in the incised reach clearly progressed in the downstream parts, but was inhibited by groundwater supplies in the upper parts. As expected, oligotraphent communities progressed or remained dominant in the upper part. The channel located in the aggraded reach of the river exhibited the highest floristic changes. As expected, eutraphent communities progressed in this channel, but unexpectedly, terrestrialization also progressed in the upstream part. Alternative explanations are: 1) aggradation could have instigated more backflows and overflows without modifying significantly the mean water-level and 2) more frequent water overflows could have favoured alluvial deposition and thus terrestrialization.  相似文献   

14.
Hyporheic restoration is of increasing interest given the role of hyporheic zones in supporting ecosystem services and functions. Given the prevalence of sediment pollution to waterways, an emerging restoration technique involves the removal of sediment from the interstices of gravel‐bed streams. Here, we document streambed sediment removal following a large, accidental release of fine sediment into a gravel‐bed river. We use this as a natural experiment to assess the impact of fine sediment removal on reach‐scale measures of transient storage and to document the responses of reaches with contrasting morphology (restored vs. unrestored) to changing discharge one‐field season. We conducted a series of conservative solute tracer experiments in each reach, interpreting both summary statistics for the recovered in‐stream solute tracer time series. Additionally, we applied the transient storage model to interpret the results via model parameters, including a Monte Carlo analysis to measure parameter identifiability and sensitivity in each experiment. Despite the restoration effort resulting in an open matrix gravel bed in the restored reach, we did not find the significant differences in most time series metrics describing reach‐scale transport and transient storage. We hypothesize that this is due to enhanced vertical exchange with the gravel bed in the restored reach replacing lateral exchange with macrophyte beds in the unrestored reach, developing a conceptual model to explain our findings. Consequently, we found that the impact of reach‐scale removal of fine sediment is not measureable using reach‐scale solute tracer studies. We offer recommendations for future studies seeking to measure the impacts of stream restoration at the reach scale.  相似文献   

15.
Due to changes in relative sea level of order 100 m, the contribution of tides and waves to net bed shear stress in shelf sea regions has varied considerably over the Late Glacial and Holocene. Understanding the spatial and temporal distribution of this ratio leads to a deeper understanding of the erosion and deposition of sediments over the shelf seas throughout this time period. Tidal and wave models are here applied to palaeo time slices of the northwest European shelf seas over the last 12,000 years. The model simulations include a series of sensitivity tests to account for the influence of interannual variability in wind conditions on the resulting bed shear stress. The results show that there has been a significant decrease over the last 12,000 years in shelf-scale mobilisation of coarse sediment. Since there was a lower magnitude of wave orbital velocity penetrating to the sea bed as a result of increasing relative sea level, this reduction in sediment mobilisation was primarily controlled by a shelf-scale decrease in wave-induced bed shear stress over the last 12,000 years. The predictions of mean and residual bed shear stress for the modelled palaeo time slices are a useful tool with which to inform site-selection and subsequent interpretation of sediment cores. In addition, the modelled reconstructions of palaeo tidal range over the shelf seas demonstrates the potential errors associated with assuming a present-day tidal range when correcting palaeo sea-level proxies from their deposited datum (e.g. palaeo mean high water spring tide) to palaeo mean sea level.  相似文献   

16.
17.
During mountain torrents, large-magnitude floods may result from heavy rainfall and cause the breakage of landslide dams naturally formed by heavy rainfall, earthquakes, and so on. The characteristics of longitudinal spreading of clear water discharge and changes in flow depth must be clarified because the changes in peak depth have not yet been examined in steep-slope torrents and because there are few data on spreading of flash floods and related sedimentation in mountainous torrents. In the present study, experimental data were collected through hydraulic model tests over a rigid bed, and the spreading of water, fine sediment, bed load, and large boulders due to flooding are discussed assuming that flash flooding/debris flows occur in the upstream reach. The effects of changes in flow width, such as expansions and contractions in the flow width, as well as changes in meandering channels, sediment transportation, and spreading flow depth resulting from bores are examined using flume data for a steep-slope torrent. The data obtained in the present study reveal that fine sediment components are transported to the downstream reach if large-magnitude floods occur and that the spreading rate and peak lags of the fine sediment and water level indicate the occurrence of a flood in the upstream reach.  相似文献   

18.
肖潇  毛北平  吴时强 《湖泊科学》2021,33(1):266-276
洞悉长江洞庭湖汇流河段的水文关系及其变化规律对确保长江中下游的防洪安全至关重要.为了掌握汇流河段水文特征演变情况,本文结合汇流河段处监利、城陵矶、螺山等国家重要水文控制断面的近百年水文资料,通过M-K检验、Morlet小波分析等方法研究了该河段逐日水位、流量等水文数据,分析了汇流河段年内分配、年际变化、变化趋势、突变点及变化周期等水文特征,并探讨了具体成因.研究结果表明:①长江与洞庭湖汇流河段年最高水位一般出现在7月,年最低水位一般出现在1、2月;②汇流河段年径流量主要集中在59月,占年径流总量的63.64%~73.44%;③近50年城陵矶水位高、中、低水分别约抬升0.98、0.56、1.46 m;④近10年城陵矶与监利年径流比降至0.66.⑤在长江中下游水利开发历程中,经突变检验表明,下荆江裁弯取直和三峡蓄水175 m对江湖水文特征的影响较为明显.⑥城陵矶站和螺山站的年径流量、水位平均周期约为16 a,监利站的年径流量、水位平均周期约为8 a.⑦19542017年间,汇流比最大值一直在降低,其发生时间在逐渐提前.以上成果为深入研究流域复杂的江湖演变规律提供了科学参考.  相似文献   

19.
We present herein clear field evidence for the persistence of a coarse surface layer in a gravel‐bed river during flows capable of transporting all grain sizes present on the channel bed. Detailed field measurements of channel topography and bed surface grain size were made in a gravel‐bed reach of the Colorado River prior to a flood in 2003. Runoff produced during the 2003 snowmelt was far above average, resulting in a sustained period of high flow with a peak discharge of 27 m3/s (170% of normal peak flow); all available grain sizes within the study reach were mobilized in this period of time. During the 2003 peak flow, the river avulsed immediately upstream of the study reach, thereby abandoning approximately one half kilometer of the former channel. The abandonment was rapid (probably within a few hours), leaving the bed texture essentially frozen in place at the peak of the flood. All locations sampled prior to the flood were resampled following the stream abandonment. In response to the high flow, the surface median grain size (D50s) coarsened slightly in the outer part of the bend while remaining nearly constant along the inner part of the bend, resulting in an overall increase from 18 to 21 mm for the study reach. Thus, the coarse bed surface texture persisted despite shear stresses throughout the bend that were well above the critical entrainment value. This may be explained because the response of the bed texture to increases in flow strength depends primarily upon the continued availability of the various grain size percentiles in the supply, which in this case was essentially unlimited for all sizes present in the channel. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
The mining of alluvial tin in the Ringarooma basin began in 1875, reached a peak in 1900–20, and had virtually ceased by 1982. During that time 40 million m3 of mining waste were supplied to the main river, quickly replacing the natural bed material and requiring major adjustments to the channel. Based on estimates of sediment supply from more than 50 widely scattered mines and the frequency of flows capable of transporting the introduced load, the river's transport history is reconstructed using a mass-conservation model. Because of the lengthy time period (110 years) and river distance (75 km) involved, the model cannot predict detailed change but it does reproduce the main pattern of sediment movement in which successive phases of aggradation and degradation progress downstream. Peak storage is predicted in that part of the river where braiding and anastomosis are best developed. Aggradation was most rapid in the upper reaches close to major supply points, becoming slower and later with distance downstream. Channel width increased by up to 300 per cent where the valley floor was broad and braiding became relatively common. Bridges had frequently to be replaced. While bed levels were still rising in lower reaches, degradation began in upper ones, notably after 1950, and by 1984 had progressed downriver over 30 km. Rates of incision reached 0·5 m yr?1, especially in the early 1970s when record high flows occurred. As a result of degradation the bed material became gravelly through either reexposure of the original bed or lag concentration of coarser fractions. Also a narrower unbraided channel has developed. The river is beginning to heal itself and upper reaches now have reasonably stable beds but at least another 50 years will be required for the river to cleanse its channel of mining debris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号