首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper I will review some recent developments in the field of circumstellar shocks, particularly as they relate to colliding stellar winds. I shall review the basic physics of colliding winds and shocks, and discuss recent developments in hydrodynamic modelling of colliding winds. I shall also report on recent X-ray observations of shock emission in Wolf-Rayet binary systems where high resolution X-ray spectra of colliding wind shock emission is being seen. I will discuss the occurrence of colliding winds to such diverse systems as Wolf-Rayet binaries, pre-main sequence binaries, symbiotic stars as well as the Galactic center object IRS 7, where recent results on interacting winds are yielded insight into the structure of winds in general.  相似文献   

2.
A search for evidence of colliding winds is undertaken among the four certain Magellanic Cloud WC/WO spectroscopic binaries found in the companion Paper I, as well as among two Galactic WC/WO binaries of very similar subtype. Two methods of analysis, which allow the determination of orbital inclination and parameters relating to the shock cone from spectroscopic studies of colliding winds, are attempted. In the first method, Lührs' spectroscopic model is fitted to the moderately strong C  iii 5696-Å excess line emission arising in the shock cone for the stars Br22 and WR 9. The four other systems show only very weak C  iii 5696-Å emission. Lührs' model follows well the mean displacement of the line in velocity space, but is unable to reproduce details in the line profile and fails to give a reliable estimate of the orbital inclination. In the second method, an alternative attempt is also made to fit the variation of more global quantities, full width at half-maximum and radial velocity of the excess emission, with phase. This method also gives satisfactory results in a qualitative way, but shows numerical degeneracy with orbital inclination. Colliding wind effects on the very strong C  iv 5808-Å Wolf–Rayet emission line, present in all six binaries, are also found to behave qualitatively as expected. After allowing for line enhancement in colliding wind binaries, it now appears that all Magellanic Cloud WC/WO stars occupy a very narrow range in spectral subclass: WC4/WO3.  相似文献   

3.
The dynamics of the wind–wind collision in massive stellar binaries are investigated using 3D hydrodynamical models which incorporate gravity, the driving of the winds, the orbital motion of the stars and radiative cooling of the shocked plasma. In this first paper, we restrict our study to main-sequence O+O binaries. The nature of the wind–wind collision region is highly dependent on the degree of cooling of the shocked plasma, and the ratio of the flow time-scale of the shocked plasma to the orbital time-scale. The pre-shock wind speeds are lower in close systems as the winds collide prior to their acceleration to terminal speeds. Radiative inhibition may also reduce the pre-shock wind speeds. Together, these effects can lead to rapid cooling of the post-shock gas. Radiative inhibition is less important in wider systems, where the winds are accelerated to higher speeds before they collide, and the resulting collision region can be largely adiabatic. In systems with eccentric orbits, cold gas formed during periastron passage can persist even at apastron, before being ablated and mixed into its surroundings and/or accelerated out of the system.  相似文献   

4.
High-resolution numerical simulations reveal the turbulent character of the interaction zone of colliding, radiative, hypersonic flows. As the shocked gas cools radiatively, the cooled matter is squeezed into thin, high density shells. The remaining kinetic energy causes supersonic turbulence within these shells, before it is finally dissipated by internal shocks and vortex cascades. The density is far from homogeneous. High density filaments and large voids coexist. Its mean value is significantly below the stationary value. Similarly, areas with supersonic velocities are found next to subsonic regions. The mean velocity is slightly below or above the sound speed. While quasi uniform flow motions are observed on smaller scales the large scale velocity distribution is isotropic. Part of the turbulent shell is occupied by relatively uniform flow-patches, resembling coherent structures. Astronomical implications of the turbulent interaction zone are multifarious. It probably drives the X-ray variability in colliding wind binaries as well as the surprising dust formation on orbital scales in some WR-binaries. It lets us understand the knotty appearance of wind-driven structures as planetary and WR-ring nebulae, symbiotics, supernova remnants, galactic supperbubbles. Also, WR and other radiatively driven, clumpy winds, advection dominated accretion, cooling flows and molecular cloud dynamics in star-forming regions may carry its stamp This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Colliding winds in binaries are discussed mainly from an observational point of view. Collisions are especially energetic in the case of hot, luminous stars, which drive strong, fast winds. Emphasis is therefore devoted to binaries containing Wolf-Rayet stars. The subject is divided up into (1) continuum radiation (X-ray and non-thermal radio from the hot bow shock head, IR from dust formed in some WC + O binaries far downstream in the collision shock cone) and (2) line radiation (optical and UV, both from various regions downstream from the bow shock head). The latter is particularly useful in providing constraints on the velocity field and hence ultimately the geometry of the wind collision and the binary system itself. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
7.
The properties of radiative steady-state colliding stellar winds in binary systems are studied. It is shown that the presence of a singularity at the stagnation point has a major influence on the structure of these flows. This problem is of great importance if their stability properties are considered. None of the existing models treats this mathematical problem properly, and special efforts must be undertaken in the future in order to come to a firm conclusion about the physical nature of possible instabilities. At the moment, neither numerical nor analytical models can be considered to be of acceptable accuracy in the case of highly radiative steady-state colliding stellar winds.  相似文献   

8.
Two-dimensional calculations in the model of two colliding stellar winds are provided. The effects of energy losses on free-free emission and Comptonization are investigated. The expected X-ray emission of a typical WR+O binary system is calculated.  相似文献   

9.
We present results of an ≈20-ks X-ray observation of the Wolf–Rayet (WR) binary system WR 147 obtained with XMM–Newton . Previous studies have shown that this system consists of a nitrogen-type WN8 star plus an OB companion whose winds are interacting to produce a colliding wind shock. X-ray spectra from the pn and MOS detectors confirm the high extinction reported from infrared studies and reveal hot plasma including the first detection of the Fe Kα line complex at 6.67 keV. Spectral fits with a constant-temperature plane-parallel shock model give a shock temperature   kT shock= 2.7  keV (   T shock≈ 31  MK), close to but slightly hotter than the maximum temperature predicted for a colliding wind shock. Optically thin plasma models suggest even higher temperatures, which are not yet ruled out. The X-ray spectra are harder than can be accounted for using 2D numerical colliding wind shock models based on nominal mass-loss parameters. Possible explanations include: (i) underestimates of the terminal wind speeds or wind abundances, (ii) overly simplistic colliding wind models or (iii) the presence of other X-ray emission mechanisms besides colliding wind shocks. Further improvement of the numerical models to include potentially important physics such as non-equilibrium ionization will be needed to rigorously test the colliding wind interpretation.  相似文献   

10.
This paper presents calculations for forbidden emission-line profile shapes arising from colliding wind binaries. The main application is for systems involving a Wolf–Rayet (WR) star and an OB star companion. The WR wind is assumed to dominate the forbidden line emission. The colliding wind interaction is treated as an Archimedean spiral with an inner boundary. Under the assumptions of the model, the major findings are as follows. (i) The redistribution of the WR wind as a result of the wind collision is not flux conservative but typically produces an excess of line emission; however, this excess is modest at around the 10 per cent level. (ii) Deviations from a flat-toped profile shape for a spherical wind are greatest for viewing inclinations that are more nearly face-on to the orbital plane. At intermediate viewing inclinations, profiles display only mild deviations from a flat-toped shape. (iii) The profile shape can be used to constrain the colliding wind bow shock opening angle. (iv) Structure in the line profile tends to be suppressed in binaries of shorter periods. (v) Obtaining data for multiple forbidden lines is important since different lines probe different characteristic radial scales. Our models are discussed in relation to Infrared Space Observatory data for WR 147 and γ Vel (WR 11). The lines for WR 147 are probably not accurate enough to draw firm conclusions. For γ Vel, individual line morphologies are broadly reproducible but not simultaneously so for the claimed wind and orbital parameters. Overall, the effort demonstrates how lines that are sensitive to the large-scale wind can help to deduce binary system properties and provide new tests of numerical simulations.  相似文献   

11.
Recent observations have shown that some compact stellar binaries radiate the highest energy light in the universe. The challenge has been to determine the nature of the compact object and whether the very high energy gamma-rays are ultimately powered by pulsar winds or relativistic jets. Multiwavelength observations have shown that one of the three gamma-ray binaries known so far, PSR B1259−63, is a neutron star binary and that the very energetic gamma-rays from this source and from another gamma-ray binary, LS I +61 303, may be produced by the interaction of pulsar winds with the wind from the companion star. At this time it is an open question whether the third gamma-ray binary, LS 5039, is also powered by a pulsar wind or a microquasar jet, where relativistic particles in collimated jets would boost the energy of the wind from the stellar companion to TeV energies. I.F. Mirabel is on leave from CEA, France.  相似文献   

12.
We present new high spectral resolution X-ray observations of the colliding wind binary Vel taken with the ASCA satellite. We find two spectral components, one of which is post-shock emission from the colliding winds. Spectral variability is also seen, consistent with current notions of colliding wind phenomena.  相似文献   

13.
The influence of electron thermal conduction on the 2D gas dynamics of colliding stellar winds is investigated. It is shown that, as a result of the non-linear dependence of the electron thermal flux on the temperature, the pre-heating zones (in which the hot gas in the interaction region heats the cool winds in front of the shocks) have finite sizes. The dependence of the problem of the structure of the flow in the interaction region on the dimensionless parameters is studied, and a simple expression is derived for the size of the pre-heating zones at the axis of symmetry. It is shown that small values of the thermal conductivity do not suppress the Kelvin–Helmholtz instability if the adiabatic flow is subject to it. Further studies, both numerical and analytical, in this direction will be of great interest. The influence of thermal conduction on the X-ray emission from the interaction region is also estimated.  相似文献   

14.
The current Cherenkov telescopes together with GLAST are opening up a new window into the physics at work close to black holes and rapidly rotating neutron stars with great breakthrough potential. Very high energy gamma-ray emission up to 10 TeV is now established in several binaries. The radiative output of gamma-ray binaries is in fact dominated by emission above 1–10 MeV. Most are likely powered by the rotational spindown of a young neutron star that generates a highly relativistic wind. The interaction of this pulsar wind with the companion’s stellar wind is responsible for the high energy gamma-ray emission. There are hints that microquasars, accretion-powered binaries emitting relativistic jets, also emit gamma-ray flares that may be linked to the accretion–ejection process. Studying high energy gamma-ray emission from binaries offers good prospects for the study of pulsar winds physics and may bring new insights into the link between accretion and ejection close to black holes.  相似文献   

15.
Colliding winds of massive binaries have long been considered as potential sites of non-thermal high-energy photon production. This is motivated by the detection of non-thermal spectra in the radio band, as well as by correlation studies of yet unidentified EGRET γ-ray sources with source populations appearing in star formation regions. This work re-considers the basic radiative processes and its properties that lead to high energy photon production in long-period massive star systems. We show that Klein–Nishina effects as well as the anisotropic nature of the inverse Compton scattering, the dominating leptonic emission process, likely yield spectral and variability signatures in the γ-ray domain at or above the sensitivity of current or upcoming gamma ray instruments like GLAST-LAT. In addition to all relevant radiative losses, we include propagation (such as convection in the stellar wind) as well as photon absorption effects, which a priori can not be neglected. The calculations are applied to WR 140 and WR 147, and predictions for their detectability in the γ-ray regime are provided. Physically similar specimen of their kind like WR 146, WR 137, WR 138, WR 112 and WR 125 may be regarded as candidate sources at GeV energies for near-future γ-ray experiments. Finally, we discuss several aspects relevant for eventually identifying this source class as a γ-ray emitting population. Thereby we utilize our findings on the expected radiative behavior of typical colliding wind binaries in the γ-ray regime as well as its expected spatial distribution on the γ-ray sky.  相似文献   

16.
After initial claims and a long hiatus, it is now established that several binary stars emit high- (0.1–100 GeV) and very high-energy (>100 GeV) gamma rays. A new class has emerged called “gamma-ray binaries”, since most of their radiated power is emitted beyond 1 MeV. Accreting X-ray binaries, novae and a colliding wind binary (η Car) have also been detected—“related systems” that confirm the ubiquity of particle acceleration in astrophysical sources. Do these systems have anything in common? What drives their high-energy emission? How do the processes involved compare to those in other sources of gamma rays: pulsars, active galactic nuclei, supernova remnants? I review the wealth of observational and theoretical work that have followed these detections, with an emphasis on gamma-ray binaries. I present the current evidence that gamma-ray binaries are driven by rotation-powered pulsars. Binaries are laboratories giving access to different vantage points or physical conditions on a regular timescale as the components revolve on their orbit. I explain the basic ingredients that models of gamma-ray binaries use, the challenges that they currently face, and how they can bring insights into the physics of pulsars. I discuss how gamma-ray emission from microquasars provides a window into the connection between accretion–ejection and acceleration, while η Car and novae raise new questions on the physics of these objects—or on the theory of diffusive shock acceleration. Indeed, explaining the gamma-ray emission from binaries strains our theories of high-energy astrophysical processes, by testing them on scales and in environments that were generally not foreseen, and this is how these detections are most valuable.  相似文献   

17.
We have obtained complete phase coverage of the WC7+O binaries WR 42 = HD 97152 and WR 79 = HD 152270 with high signal-to-noise ratio (S/N), moderate-resolution spectra. Remarkable orbital phase-locked profile variations of the C  iii λ 5696 line are observed and interpreted as arising from colliding wind effects. Within this scenario, we have modelled the spectra using a purely geometrical model that assumes a cone-shaped wind–wind interaction region which partially wraps around the O star. Such modelling holds the exciting promise of revealing a number of interesting parameters for WR+O binaries, such as the orbital inclination, the streaming velocity of material in the interaction region and the ratio of wind momentum flux. Knowledge of these parameters in turn leads to the possibility of a better understanding of WR star masses, mass-loss rates and wind region characteristics.  相似文献   

18.
The observational methods to derive information about the instability and variability of winds of hot stars are discussed. The expected effects of blobs and shells in the winds on the P Cygni profiles of the UV resonance lines and on the wind emission lines such as H are described. The evidence for the variability and instability of the winds is derived from the UV observations of Discrete Absorption Components and their variability, the X-ray flickering in compact binaries and the H variations. The evidence for wind variations in Wolf-Rayet stars and Luminous Blue Variables is discussed briefly, as well as a possible explanation for the V/R variations of Be stars.  相似文献   

19.
The formation of dust in Wolf-Rayet stellar winds presents challenges to our understanding on account of the stars' strong UV radiation fields. These would heat the dust grains to sublimation unless they were shielded or restricted to significant distances (∼ 100 AU) from the stars where the wind densities appear to be too low to allow dust formation. Valuable clues are provided by observations of episodic dust formation on different mass- and time-scales, especially major outbursts modulated by orbital motion in binaries. Wind inhomogeneities on all scales — global wind-compressed zones arising from stellar rotation, high-density wakes produced in colliding-wind binaries and smaller clumps all appear to be significant. The observational evidence for these effects is reviewed. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

20.
The results of gasdynamic modeling allowed us to propose the new mechanism of transition to active state in classical symbiotics and explain the step-by-step rise to the light maximum during the outburst. Good agreement with available observational data for Z And supports our model. Existing observations of symbiotic stars indicate the presence of winds from both components at active stages in these systems. We have carried out the gasdynamic modeling of the outburst development process in the classic symbiotic star Z And in the framework of the colliding winds model. It is shown that contribution from the system of shocks that forms in the area of wind collision is rather significant especially at short wavelengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号