首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high-pressure, relatively low-temperature metamorphic complex is exposed at Motalafjella, Spitsbergen. White mica concentrates from the complex record variably discordant 40Ar/39Ar age spectra in which apparent ages systematically increase throughout low-temperature portions of the analyses and define intermediate- and high-temperature plateaux. Phengitic concentrates record plateau ages of c. 470 Ma whereas paragonitic concentrates yield c. 460 Ma plateaux. These ages are interpreted to date diachronous cooling through different argon closure temperatures following the high-pressure metamorphism. The slight discordance displayed in low-temperature portions of the experiments is interpreted to reflect a partial rejuvenation of intracrystalline argon systems during an c. 400–425 Ma thermal overprint associated with late Caledonian tectonothermal activity. White mica concentrates and associated whole-rocks yield Rb---Sr mineral + whole-rock ages from 457 ± 11 Ma to 474 ± 11 Ma. These are interpreted to date post-metamorphic cooling through Sr blocking temperatures. Because similar ages are recorded by both K---Ar and Rb---Sr isotopic systems, relatively rapid post-metamorphic cooling is implied. This and relatively rapid depressurization during uplift indicate that the 40Ar/39Ar and Rb---Sr mineral ages likely closely date the peak metamorphism.

The high pressure complex is unconformably overlain by variably cleaved, Upper Ordovician-Lower Silurian flysch which was deformed into regional recumbent folds prior to deposition of unconformably overlying Early Devonian molasse. Two penetratively cleaved slate samples display internally discordant 40Ar/39Ar whole-rock age spectra with ages increasing from c. 100 Ma to c. 470 Ma. The spectral discordance is interpreted to reflect the combined effects of: (1) a polymineralic character: (2) a detrital source similar in age to the Motalafjella complex; and (3) a partial, post-Paleozoic thermal rejuvenation of the detrital mica argon systems. No thermal overprint associated with Late Silurian cleavage formation appears to be recorded. This agrees with textural characteristics which suggest that the cleavage largely developed through pressure-solution assisted, grain-boundary sliding.  相似文献   


2.
Sub-bottom sediment profiles and sediment cores show that the lacustrine sediments in lake Linnevatnet are underlain by marine sediments and a basal till that mantles the bedrock. The till was probably deposited by the glacier that during the Late Weichselian glacial maximum removed all pre-existing sediments from the basin. The cores were collected in closed basins, where continuous deposition is expected. The marine sediment in the studied cores is up to 8 m thick and consists of bioturbated clay and silt. Radiocarbon dates on shells from the base of the marine sequence suggest that glacial retreat from the lake basin occurred around 12,500BP. This is more than a thousand years older than basal shell dates from raised marine sediments on the slopes above the lake. Typical ice proximal litbofacies were not identified in the cores. stratigraphic record indicates both a rapid glacial retreat and that no younger glacial re-advances occurred. During the Younger Dryas local glaciers on western Svalbard were smaller than during the Little Ice Age. This is in sharp contrast to western Europe, where Younger Dryas glaciers were much larger than those the Little Ice Age.  相似文献   

3.
To understand the deformation mechanism and seismic anisotropy in the uppermost mantle beneath Spitsbergen, Svalbard, in the Arctic, the deformation microstructures of olivine in the peridotite of Spitsbergen were studied. Seismic anisotropy in the upper mantle can be explained mainly by the lattice-preferred orientation (LPO) of olivine. The LPOs of the olivine in the peridotites were determined using electron backscattered diffraction patterns. Eight specimens out of 10 showed that the [100] axis of the olivine was aligned subparallel to the lineation and that the (010) plane was subparallel to the foliation, showing a type A LPO. In the other two specimens the [100] axis of olivine was aligned subparallel to the lineation and both the [010] and [001] axes were distributed in a girdle nearly perpendicular to the lineation, showing a type D LPO. The dislocation density of the olivine in the samples showing a type D LPO was higher than that in the samples showing a type A LPO. The result of an Fourier transformation infrared study showed that both the types A and D samples were dry. These observations were in good agreement with a previous experimental study ( Tectonophysics , 421 , 2006, 1 ): samples showing a type D LPO for olivine were observed at a high stress condition and samples showing both types A and D LPO were deformed under dry condition. Observations of both strong LPOs and dislocations of olivine indicate that the peridotites studied were deformed by dislocation creep. The seismic anisotropy calculated from the LPOs of the olivine could be used to explain the seismic anisotropy of P - and S -waves in the lithospheric mantle beneath Spitsbergen, Svalbard.  相似文献   

4.
This study explored the relationship between high-Arctic fiord depositional environments and the natural thermoluminescence (TL) signal of sediments. The energy and duration of light exposure during transportation and deposition controls the TL level of silicate mineral grains in the sediment. The TL signal of sediments rapidly decreases within c. 0·5 km of a glacier sediment source. The highest TL levels are from tills and ice-proximal glacial-marine sediments, which receive little or no light exposure during transportation and deposition. Intermediate and consistent TL levels are recorded for ice-distal glacialmarine muds, c. 0·5–5·0 km from the glacier front, reflecting slower sedimentation rates. The lowest TL levels are for littoral and sublittoral sediments which receive extended light exposure with shoaling. The granulometry of the sediments is fairly homogeneous and is not diagnostic of a sedimentary environment with most samples dominated by silt and clay; littoral and ice-proximal samples exhibit peak abundances in sand. These results suggest that the relative TL signal of sediments is sensitive to a depositional environment, particularly for environments proximal (within 0·5 km) to a glacier terminus and in shallow water, less than 15 m deep.  相似文献   

5.
Large volumes of carbonate breccia occur in the late syn-rift and early post-rift deposits of the Billefjorden Trough, Central Spitsbergen. Breccias are developed throughout the Moscovian Minkinfjellet Formation and in basal parts of the Kazimovian Wordiekammen Formation. Breccias can be divided into two categories: (i) thick, cross-cutting breccia-bodies up to 200 m thick that are associated with breccia pipes and large V-structures, and (ii) horizontal stratabound breccia beds interbedded with undeformed carbonate and siliciclastic rocks. The thick breccias occur in the central part of the basin, whereas the stratabound breccia beds have a much wider areal extent towards the basin margins. The breccias were formed by gravitational collapse into cavities formed by dissolution of gypsum and anhydrite beds in the Minkinfjellet Formation. Several dissolution fronts have been discovered, demonstrating the genetic relationship between dissolution of gypsum and brecciation. Textures and structures typical of collapse breccias such as inverse grading, a sharp flat base, breccia pipes (collapse dolines) and V-structures (cave roof collapse) are also observed. The breccias are cemented by calcite cements of pre-compaction, shallow burial origin. Primary fluid inclusions in the calcite are dominantly single phase containing fresh water (final melting points are ca 0 °C), suggesting that breccia diagenesis occurred in meteoric waters. Cathodoluminescence (CL) zoning of the cements shows a consistent pattern of three cement stages, but the abundance of each stage varies stratigraphically and laterally. δ18O values of breccia cements are more negative relative to marine limestones and meteoric cements developed in unbrecciated Minkinfjellet limestones. There is a clear relationship between δ18O values and the abundance of the different cement generations detected by CL. Paragenetically, later cements have lower δ18O values recording increased temperatures during their precipitation. Carbon isotope values of the cements are primarily rock-buffered although a weak trend towards more negative values with increasing burial depth is observed. The timing of gypsum dissolution and brecciation was most likely related to major intervals of exposure of the carbonate platform during Gzhelian and/or Asselian/Sakmarian times. These intervals of exposure occurred shortly after deposition of the brecciated units and before deep burial of the sediments.  相似文献   

6.
Late Weichselian glacier limits for the Forlandsundet area, western Spitsbergen are reconstructed from the stratigraphic distribution of tills and deglacial deposits, variations in the altitude of the marine limit, distribution of pre-Late Weichselian raised beach deposits, and the rare occurrence of moraines and striated bedrock. The Late Weichselian glaciation was primarily a local event with fjord outlet-glaciers expanding no more than 15 km beyond their present position; cirque glaciers were similar to their neoglacial limits. A previously reconstructed ice sheet centered over the Barents Shelf had little direct influence on the glaciation of the Forlandsundet area. Glacier retreat began at or prior to 10.5 ka ago and possibly as early as 13 ka ago with fjords mostly, and perhaps rapidly deglaciated by 10 to 9 ka ago.  相似文献   

7.
The mean apparent radiocarbon ages of marine shells, colleted alive before the initiation of atomic bomb testing, and also before the main input of dead carbon derived from fossil fuels, are found to be 440 yr for the coast of Norway, 510 yr for Spitsbergen, and 750 yr for Ellesmere Island, Arctic Canada. The relationship between these apparent ages and the oceanic circulation pattern, is discussed. Also possible variations of the apparent ages back in time are discussed.  相似文献   

8.
 Carbonates of mantle origin have been found in xenoliths from Quaternary basaltic volcanoes in NW Spitsbergen. The carbonates range from dolomite to Mg-bearing calcite and have high Mg-numbers [Mg/(Mg+Fe)=(0.92–0.99)]. In some samples they occur interstitially, e.g. at triple junctions of silicate minerals and appear to be in textural and chemical equilibrium with host lherzolite. Most commonly, however, the carbonates make up fine-grained aggregates together with (Ca,Mg)-rich olivine and (Al,Cr,Ti)-rich clinopyroxene that typically replace spinel, amphibole, and orthopyroxene as well as primary clinopyroxene and olivine. Some lherzolites contain amphibole and apatite that appear to have formed before precipitation of the carbonates. In situ analyses by proton microprobe show very high contents of Sr in the clinopyroxene, carbonates and apatite; the apatite is also very rich in LREE, U, Th, Cl, Br. Disseminated amphibole in carbonate-bearing rocks is very poor in Nb and Zr, in contrast to vein amphibole and mica from carbonate-free rocks that are rich in Nb and Zr. Overall, the Spitsbergen xenoliths provide evidence both for the occurrence of primary carbonate in apparent equilibrium with the spinel lherzolites (regardless of the nature of events that emplaced them) and for the formation of carbonate-bearing pockets consistent with metasomatism by carbonate melts. Calcite and amorphous carbonate-rich materials occur in com- posite carbonate-fluid inclusions, veins and partial melting zones that appear to be related to fluid action in the mantle, heating of the xenoliths during their entrainment in basaltic magma, and to decompression melting of the carbonates. Magnesite is a product of secondary, post-eruption alteration of the xenoliths. Received: 6 October 1995/Accepted: 17 June 1996  相似文献   

9.
The Maksyutov complex (Southern Urals, Russia) is a well-preserved example of subduction-related high-pressure metamorphism. One of its two litho-tectonic units consists of rocks that experienced eclogite-facies conditions. Published 40Ar/39Ar data on phengite, U/Pb data on rutile, and Sm/Nd mineral data define a cluster of ages around 370 to 380 Ma. Nevertheless, no consensus exists as to the detailed interpretation of data and the exact age of eclogitization. We present new, high-precision internal mineral Rb/Sr isochrons for eclogite-facies metabasites, felsic eclogites, and eclogite-facies quartz veins. Nine isochrons, mainly controlled by omphacite and white mica phases, give concordant ages with an average value of 375 ± 2 Ma (2σ). Microtextural features, such as prograde growth zoning in eclogite-facies phases, suggest that the assemblages dated formed at a stage of prograde metamorphism. Sr-isotopic equilibria among eclogite-facies phases, and among eclogite-facies fluid veins and the host rocks, indicate that our ages reflect crystallization ages, related to the prograde-metamorphic, probably fluid-mediated eclogitization reactions. This interpretation is reinforced by data from fluid-precipitated quartzitic eclogites, whose modal composition, together with intergrowth relationships, conclusively imply closed-system behavior after crystallization. The possible occurrence of a pre-375 Ma event of ultra-high-pressure metamorphism (UHPM) in the Maksyutov complex is disproved by isotope systematics, microtextures, and mineral zoning patterns.  相似文献   

10.
The glaciotectonic processes that have shaped the morphology and structural geology of the Comfortlessbreen thrust-moraine complex are shown to be largely proglacial in origin, with the development of low-angle thrusts, nappe-like structures and folds. The propagation of the deformation has extended into the glacier foreland. A style of deformation called the 'englacial deformation zone' explains the incorporation of subglacial debris into the ice by thrusting and subsequent deposition of thrust sheets is inherited from the ice structures. A model for thrust-moraine development and its possible chronology at Comfortlessbreen emphasizes the role played by glaciomarine sediment in facilitating deformation and also the role of thrusting, rathcr than pushing, in moraine formation. The importance of sediment type in controlling the overall development of the moraine is emphasized and a comparison to illustrate this control is made with neighbouring Uvrsbreen.  相似文献   

11.
Upper-mantle xenoliths in Cenozoic basalts of northwestern Spitsbergen are rocks of peridotite (spinel lherzolites) and pyroxenite (amphibole-containing garnet and garnet-free clinopyroxenites, garnet clinopyroxenites, and garnet and garnet-free websterites) series. The upper-mantle section in the depth range 50–100 km is composed of spinel peridotites; at depths of 80–100 km pyroxenites (probably, dikes or sills) appear. The equilibrium conditions of parageneses are as follows: in the peridotites—730–1180 °C, 13–27 kbar, and oxygen fugacity of − 1.5 to + 0.3 log. un.; in the pyroxenites—1100–1310 °C, 22–33 kbar. The pyroxenite minerals have been found to contain exsolved structures, such as orthopyroxene lamellae in clinopyroxene and, vice versa, clinopyroxene lamella in orthopyroxene. The formation temperatures of unexsolved phases in orthopyroxene and clinopyroxene are nearly 100–150 °C higher than the temperatures of the lamellae–matrix equilibrium and the equilibrium of minerals in the rock. The normal distribution of cations in the spinel structure and the equilibrium distribution of Fe2 + between the M1 and M2 sublattices in the orthopyroxenes point to the high rate of xenolith ascent from the rock crystallization zone to the surface. All studied Spitsbergen rock-forming minerals from mantle xenoliths contain volatiles in their structure: OH, crystal hydrate water H2Ocryst, and molecules with characteristic CH and CO groups. The first two components are predominant, and the total content of water (OH– + H2Ocryst) increases in the series olivine → garnet → orthopyroxene → clinopyroxene. The presence of these volatiles in the nominally anhydrous minerals (NAM) crystallized at high temperatures and pressures in the peridotites and pyroxenites testifies to the high strength of the volatile–mineral bond. The possibility of preservation of volatiles is confirmed by the results of comprehensive thermal and mass-spectral analyses of olivines and clinopyroxene, whose structures retain these components up to 1300 °C. The composition of hypothetic C–O–H fluid in equilibrium (in the presence of free carbon) with the underlying mantle rocks varies from aqueous (> 80% H2O) to aqueous–carbonic (~ 60% H2O). The fluid becomes essentially aqueous when the oxygen activity in the system decreases. However, there is no strict dependence of the redox conditions on the depth of formation of xenoliths.  相似文献   

12.
The La Hague region of northwest France exposes Palaeo-Proterozoic Icartian gneisses which were reworked and intruded by calc-alkaline plutonic rocks during the Cadomian Orogeny (about 700–500 Ma). 40Ar/39Ar mineral cooling ages have been determined to clarify the timing of the regional metamorphism of orthogneisses and the emplacement of quartz diorite plutons in this region. Metamorphic amphiboles within Icartian gneisses display discordant 40Ar/39Ar apparent age spectra interpreted to result from limited Variscan (about 350–300 Ma) overprinting of intracrystalline argon systems which initially cooled through post-metamorphic hornblende closure temperatures during the Cadomian at about 600 Ma. Igneous hornblendes from the weakly foliated Jardeheu and Moulinet quartz diorites record isotope correlation ages of 599 ± 2 and 561 ± 2 Ma, respectively. Igneous hornblende and biotite from foliated quartz diorite on the nearby Channel Island of Alderney record isotope correlation ages of about 560 Ma. The results imply that metamorphic and plutonic events in the La Hague-Alderney region were approximately contemporaneous with those recorded on Guernsey and Sark, which are thus likely to have formed part of the same tectonic block during the Cadomian Orogeny.  相似文献   

13.
14.
Englacial debris structures, morphology and sediment distribution at the frontal part and at the proglacial area of the Scott Turnerbreen glacier have been studied through fieldwork and aerial photograph interpretation. The main emphasis has been on processes controlling the morphological development of the proglacial area. Three types of supraglacial ridges have been related to different types of englacial debris bands. We suggest that the sediments were transported in thrusts, along flow lines and in englacial meltwater channels prior to, and during a surge in, the 1930s, before the glacier turned cold. Melting-out of englacial debris and debris that flows down the glacier front has formed an isolating debris cover on the glacier surface, preventing further melting. As the glacier wasted, the stagnant, debris-covered front became separated from the glacier and formed icecored moraine ridges. Three moraine ridges were formed outside the present ice-front. The further glacier wastage formed a low-relief proglacial area with debris-flow deposits resting directly on glacier ice. Melting of this buried ice initiated a second phase of slides and debris flows with a flow direction independent of the present glacier surface. The rapid disintegration of the proglacial morphology is mainly caused by slides and stream erosion that uncover buried ice and often cause sediments to be transported into the main river and out of the proglacial area. Inactive stream channels are probably one of the morphological elements that have the best potential for preservation in a wasting ice-cored moraine complex and may indicate former ice-front positions.  相似文献   

15.
徐庆安 《江苏地质》2023,47(2):135-142
安徽安庆大龙山岩体位于扬子地台北东缘,发育大量中生代侵入岩浆岩。野外地质勘查发现,大龙山岩体可能为复式岩体,有多期岩浆作用,在其核部的正长岩附近发育一定量的闪长玢岩。对闪长玢岩和正长岩进行年代学研究,其锆石年龄分别为(137.7±1.9)Ma和(128.8±2.1)Ma。其中,在大龙山闪长玢岩中发育一定量的继承锆石,形成年代分别为古元古代(约2.0 Ga)和新元古代(约0.8 Ga),在正长岩中未发现捕获继承锆石。根据获取的继承锆石年龄,结合区域地质演化资料,推断大龙山岩体经历了复杂的演化过程:古元古代的褶皱“会聚”到伸展体制转换的“回返”,新元古代的拉张垮塌,中生代的多期次岩浆侵入和多来源、多阶段的结晶分异。  相似文献   

16.
Abstract The Western Baja terrane (WBt) of west-central Baja California is an uplifted subduction complex that is divided into smaller 'subterranes'on the basis of bounding faults and petrological differences. Each subterrane contains coherent Early Jurassic to Early Cretaceous sedimentary and mafic volcanic rocks (not melange) that have been metamorphosed under blueschist facies conditions. Key phases in metabasites and metaturbidites include jadeitic to acmitic clinopyroxene, sodic amphibole, lawsonite, aragonite, chlorite, titanite and white mica. Pressure indicators include the jadeite content of clinopyroxene and the presence of aragonite. Temperature indicators include the presence of lawsonite, the absence of greenschist facies minerals and results from vitrinite reflectance studies. Conditions at the peak of metamorphism were >8 kbar, 225–325°C for subterrane 1, 7–8 kbar, 170–220°C for subterrane 2, and 5–6 kbar, 175–200°C for subterrane 3; these correspond to cold geothermal gradients (6–9/km). Vein assemblages that include aegerine–jadeite and aegerine, albite, aragonite, lawsonite and sodic amphibole indicate uplift during continued cold conditions, probably during steady-state subduction.  相似文献   

17.
Controversy over the age of peak metamorphism and therefore the tectonic evolution of the Arabian margin relates to the polydeformed and polymetamorphosed nature of glaucophane-bearing eclogites from the Saih Hatat window beneath the allochthonous Samail ophiolite in NE Oman. These eclogites contain relicts of earlier fabrics, structures and metamorphic assemblages and provide a record of change from subduction to exhumation. The eclogites are part of a mafic layer that was disrupted into boudins up to 0.5 km in length within a lower plate shear zone (As Sifah shear zone). The megaboudins not only preserve the relicts of the highest grade of metamorphism but also an early ENE-trending lineation and sheathlike isoclines enveloped by the flat-lying schistosity. The boudin-bearing layer is isoclinally folded with calc-schist, mafic schist and quartz–mica schist, where the regional folds have axes parallel to the NE-trending stretching lineation (a-type folds). Textural evidence suggests multiple growth events for garnet and clinopyroxene, requiring polymetamorphism of the mafic layers that formed the eclogite megaboudins. The surrounding calc-schist and quartz–mica schist are both intensely deformed with transposition foliation containing an NE-trending lineation in phengite and asymmetric shear indicators such as C′-type shear bands and asymmetric pressure shadows around garnets, that give top-to-the-NE sense of shear. Although consistent ENE-trending lineations in all the boudins suggest that they have largely acted as passive, nonrotating rigid bodies, the presence of NE-vergent asymmetric mesofolds, extensive dynamic recrystallisation, multiple generations of phengites and a range of 40Ar–39Ar apparent ages within the megaboudins suggest, however, that they have not acted entirely passively during the later deformation. Phengites isolated from the high-P/low-T fabrics show groupings in 40Ar–39Ar apparent ages interpreted as distinct metamorphic/cooling intervals at 140–135, 120–98 and 92–80 Ma. Microstructural relations suggest that age groupings younger than 100 Ma reflect phengite growth during exhumation with the top-to-the-NE shearing. The older ages (120–110 Ma) from fabrics that give top-to-the-S shear sense may reflect growth during the subduction phase. The combination of groupings of apparent argon ages older than the crystallisation age of the Samail Ophiolite, the suggestion of different geothermal gradients, and superposed metamorphism suggest that the eclogites and garnet blueschists formed as a result of underthrusting along a break that was not directly related to the metamorphic sole of the ophiolite. The glaucophane–eclogites are interpreted as having formed at different times under varying pressure–temperature conditions during underthrusting with variations in the rate of underthrusting, allowing thermal equilibration and/or rapid cooling at different crustal levels.  相似文献   

18.
19.
Olivine tholeiites (8–10 wt. % MgO) from Krafla show significantcorrelations between major elements (notably Fe) and incompatibletrace elements. In particular, the samples with the highestFe contents are the most enriched in elements such as K, Ti,and light rare earth elements (LREEs). The observed trends cannotbe explained by fractional crystallization of olivine, plagioclase,or clinopyrox-ene from a single primary magma, nor are theylikely to result from crustal contamination. The simplest explanationfor the compositional variations is that they result from imperfectmixing of primary melts, produced at different levels in theupwelling asthenosphere, which later underwent olivine fractionation.Nd and Sr isotopic data hint at the possibility that some mixingbetween two (plume and non-plume) mantle sources may also berequired. The average olivine tholeiite composition is comparedwith the average compositions of melts, predicted from parameterizationsof melting experiments, produced from mantle with differentpotential temperatures. The predicted compositions were correctedfor fractional crystallization before the comparison was made.The data compare well with the predicted average compositionof melt from mantle with a potential temperature of {small tilde}1580C. Differences between the observed and predicted compositions(notably higher Fe and lower Na in the Krafla basalts) are ascribedeither to errors related to the modelling or to the effect oftemperature- and velocity-structure of the mantle plume beneathIceland. The average REE composition of the olivine tholeiiteswas then inverted to obtain the variation of melt fraction withdepth. The predicted melt fraction rises from 00 at a depthof {small tilde} 140 km (consistent with a potential temperatureclose to 1580 C) to a maximum value of {small tilde} 03 atthe surface. The predicted melt thickness ({small tilde}22 kmwhen corrected for fractional crystallization) is consistentwith geophysical estimates of crustal thickness.  相似文献   

20.
新的区域地质调查在海南岛东北部木栏头地区识别出一套从前未知的中级变质杂岩。木栏头变质杂岩主要沿林新—木栏头—虎威岭—赤坡—七星岭—新埠海—铺前海边沿岸呈基岩或不同尺度的无根岩块断续出露,其主体是钙硅酸盐岩和正、副片麻岩,含有少量斜长角闪岩、石英岩和大理岩,并按分布区域可进一步区分出林新片麻岩- 斜长角闪岩组合、木栏头变质火山岩- 钙硅酸盐岩组合、虎威岭- 七星岭片麻岩- 钙硅酸盐岩- 大理岩组合和新埠海- 铺前片麻岩组合等四套岩石组合。对30件变质基性岩、变质中酸性岩、变质碎屑沉积岩、钙硅酸盐岩以及花岗和伟晶岩脉等不同类型岩石的锆石U- Pb定年结果表明,木栏头变质杂岩的原岩主体是一套二叠纪火山- 沉积岩系,其内含有少量二叠纪花岗质侵入岩以及前寒武纪结晶基底的残留。前寒武纪结晶基底主要包括古元古代晚期(1670 Ma)碎屑沉积岩和中元古代早期(1460~1410 Ma)花岗质片麻岩,晚二叠世碱性花岗岩中还存在大量单一的中元古代晚期(1180 Ma)继承锆石。变质沉积岩中的早期碎屑锆石年龄峰值为2550~2490 Ma、1850~1780 Ma、1600~1560 Ma、1450 Ma和1100 Ma,表明其物源主要来自于海南岛中部的抱板群、石碌群和石灰顶组。二叠纪花岗岩的侵入时代主要为280 Ma和260 Ma,与陆缘弧前盆地环境下形成的火山- 沉积岩系的时代基本一致。这些沉积岩中的碎屑锆石除具有395~345 Ma和280~256 Ma两个年龄峰值外,部分样品还含有960~930 Ma和450~410 Ma两个重要年龄峰值,与前人在海南岛晚古生代地层中获得的年代学结果相似。木栏头变质杂岩经历了晚二叠世—中三叠世(254~235 Ma)高角闪岩相区域变质和深熔作用以及花岗和伟晶岩脉的大规模侵入,独居石U- Pb定年表明中侏罗世(159 Ma)花岗岩脉也侵入其中。结合近年发表的研究资料,我们认为海南岛应属于印支陆块的一部分,由中元古代结晶基底和早古生代盖层构成的琼南地体以及该地体演化而来的琼北构造混杂岩带两个次级构造单元组成,邦溪- 晨星构造带或昌江- 琼海断裂不能被视为华南和印支陆块间的构造边界,真正的古特提斯缝合带(即金沙江- 哀牢山- 马江缝合带的东延)应位于木栏头北部,大致相当于现今琼州海峡断裂的位置。华南和印支陆块间古特提斯洋盆的关闭始于石炭纪(340~300 Ma)洋壳的南向俯冲,形成北部的潮滩鼻榴辉岩和南部的邦溪- 晨星弧后盆地,二叠纪时期(280~255 Ma)洋盆持续俯冲形成海南岛主体大陆岛弧以及木栏头弧前盆地,而后洋盆最终关闭并进入到陆- 陆碰撞和碰撞后伸展阶段,从而形成木栏头变质杂岩以及海南岛内部其他三叠纪变质岩和同期花岗质岩石。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号