首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The field of low-frequency microseisms is investigated with the use of data from 83 stations of the F-net broadband network in Japan over the period from the beginning of 1997 through June 2008. Vertical components with a sampling step of 1 s are used for analysis, as well as signals with a sampling step of 1 min obtained from the initial data by averaging and thinning. Long-period regularities of changes in the singularity spectrum support width Δα and the generalized Hurst exponent α* for the field of low-frequency microseisms were revealed by estimating multifractal singularity spectra in consecutive time windows 30 min long for 1-s data and 24 hour long for 1-min data. The average value of the parameter α* for 1-s data significantly decreased before the Hokkaido earthquake of September 25, 2003 (M = 8.3), and was not restored subsequently to its previous level. Prior to September 2003, 1-min data on α* variations experienced strong annual changes, which completely ceased afterwards. Both these effects are interpreted as an increase in the degree of synchronization of microseismic noise on Japan’s islands after the September 25, 2003, earthquake. This hypothesis is also supported by estimates of the measures of correlation and spectral coherence between variations in the average values of Δα and α* calculated for 1-min data inside five spatial clusters of stations from consecutive time fragments two months long. Based on the well-known statement of the theory of catastrophes that synchronization is one of the flags of an approaching catastrophe, it was suggested that the Hokkaido event could be a foreshock of an even stronger earthquake nucleating in the region of Japan’s islands.  相似文献   

2.
The results of the long (2011–2016) investigation of background seismic noise (BSN) in Kamchatka by the method suggested by Doct. Sci. (Phys.-Math.) A.A. Lyubushin with the use of the data from the network of broadband seismic stations of the Geophysical Survey of the Russian Academy of Sciences are presented. For characterizing the BSN field and its variability, continuous time series of the statistical parameters of the multifractal singularity spectra and wavelet expansion calculated from the records at each station are used. These parameters include the generalized Hurst exponent α*, singularity spectrum support width Δα, wavelet spectral exponent β, minimal normalized entropy of wavelet coefficients En, and spectral measure of their coherent behavior. The peculiarities in the spatiotemporal distribution of the BSN parameters as a probable response to the earthquakes with Мw = 6.8–8.3 that occurred in Kamchatka in 2013 and 2016 are considered. It is established that these seismic events were preceded by regular variations in the BSN parameters, which lasted for a few months and consisted in the reduction of the median and mean α*, Δα, and β values estimated over all the stations and in the increase of the En values. Based on the increase in the spectral measure of the coherent behavior of the four-variate time series of the median and mean values of the considered statistics, the effect of the enhancement of the synchronism in the joint (collective) behavior of these parameters during a certain period prior to the mantle earthquake in the Sea of Okhotsk (May 24, 2013, Mw = 8.3) is diagnosed. The procedures for revealing the precursory effects in the variations of the BSN parameters are described and the examples of these effects are presented.  相似文献   

3.
The low-frequency seismic noise recorded by the broadband IRIS stations in 1994–2012 is studied in the period range of 40 to 360 s. It is shown that for samples of a few months in length, the power spectra of noise at stations spaced apart a few thousand kilometers and operating in different meteorological and seismotectonic conditions are overall similar, which indicates that the sources of the noise are global. At the same time, the slope of the spectra changes with the increase in the period in the subintervals of 40–90, 120–200, and 200–360 s, which points to the difference of the sources generating the seismic noise. The amplitude of the noise at the stations located a few thousand km apart from the Sumatra earthquake of December 26, 2004, M = 9.2, and from the Tohoku earthquake of March 11, 2011, M = 9.0, increased after these events. This indicates the global character of the aftermath of these seismic catastrophes. After the Kronotskoe earthquake of December 5, 1997, which was weaker (M = 7.9), the noise grew only at the PET station located within 300 km of the epicenter. According to the records at the PET station, this earthquake was preceded by the increased noise level observed in 1994–1997. After 1999, the seismic noise declined and remained low up to the end of the studied interval with a duration of 14 years. Our results show that the low-frequency seismic noise generated by the sources in the atmosphere of the Earth is contributed by the processes taking place in the lithosphere.  相似文献   

4.
Geotechnical engineering aspects of the catastrophic earthquake, which occurred in Japan on March, 11, 2011 and called Tohoku earthquake are discussed. A review is presented of the first results obtained mainly by Japanese scientists based on records of seismic networks of Japan K-NET, Kik-net and on GPS data. The basic concepts of seismic zoning in Japan and the location of the Tohoku-oki earthquake on the seismic zoning maps are described, as well as models of the source process obtained by various authors based on teleseismic data, strong motion data, GPS data, and tsunami observations. The recorded peak accelerations and velocities and their correspondence to the current empirical attenuation curves are discussed. The records of the Tohoku earthquake made by Japanese seismic networks K-NET, Kik-net and some others represent unique seismological material and the most complete seismic database (including vertical array records) in the near-source zone of a strongest earthquake with magnitude M w = 9. These data will be studied by seismologists all over the world for many years and, probably, they will answer many questions of geotechnical seismic engineering.  相似文献   

5.
The seismic regime taking place before the Tohoku mega-earthquake was studied using the catalog of the Japan Meteorological Agency (JMA). We show that the Tohoku earthquake was preceded by a 6–7-year period of regional reduction in the b-value and in the rate of main shocks. The space-time regions that involved precursory activation were nearly identical with the predictive phenomena that were previously detected by A.A. Lyubushin from an analysis of seismic noise based on data from the Japanese F-net. We discovered a previously unknown effect of correlation between the number of main shocks and the b-value. Both the ordinary foreshock activation and the longer weaker tendency, which consist in a precursory increase in the seismicity rate, were identified in the vicinities of M ≈ 7 Japanese earthquakes (similarly to the seismicity in the Generalized Vicinities of large earthquakes based on worldwide data).  相似文献   

6.
According to the normative maps of the General Seismic Zoning in the Russian Federation, OSR-97, the Moscow metropolitan area is situated within the 5 point seismic zone. Of highest hazard priority for tall buildings in Moscow are the low-frequency vibrations proceeding from the deep sources of strong earthquakes that occur in the East Carpathians (the Vrancea zone, Romania) at a distance of approximately 1350 km from Moscow. Accelerations of the ground vibrations in Moscow are found from the analysis of seismic signals produced by Mw = 5.0 to Mw = 7.4 Vrancea earthquakes and recorded at the Moskva seismic station. Extrapolation of the parameters of the weak and moderate earthquakes towards stronger seismic events provides an estimate for the maximum expected horizontal accelerations of Ahor = 2.3 cm/s2 in case of the Mw = 8.0 Vrancea earthquake. The synthetic accelerogram of the maximum possible effect on the benchmark soils of Moscow is calculated. The displacements of the ground are multidimensional and not necessarily oriented strictly towards the seismic source. These inferences suggest that the MSK-64 macroseismic scale be corrected and the Construction Norms and Regulations, SNIP II-7-81*, be updated with regard to the hazard assessment of low-frequency seismic effects of 5 point and weaker seismic events including those caused by distant earthquakes.  相似文献   

7.
Data from a superconducting gravimeter were obtained from the Geodetic Observatory Pecny (GOPE), Czech Republic, and compared with acceleration data from a broadband seismometer at the same location. We calculated synthetic seismograms for several point- and finite-source fast solutions of the 2011 Tohoku earthquake obtained from surface waves and tested them only against the observed gravity data because of high-noise levels in the low-frequency seismic data. We have obtained a good fit of the synthetic amplitude spectrum with the data up to 1.7 mHz without an additional increase of the moment magnitude Mw. In this aspect, the 2011 Tohoku earthquake was similar to the 2010 Maule earthquake and different from the 2004 Sumatra-Andaman earthquake, where the free-oscillations studies resulted in an increase of the early Mw values. The degree-one mode 3S{ia1} dominates the 3S1?C2S2?C1S3 triplet at the GOPE station.  相似文献   

8.
Presently, there are a lot of observations on the significant impact of strong remote earthquakes on underground water and local seismicity. Teleseismic wave trains of strong earthquakes give rise to several hydraulic effects in boreholes, namely permanent water level changes and water level oscillations, which closely mimic the seismograms (hydro-seismograms). Clear identical anomalies in the deep borehole water levels have been observed on a large part of the territory of Georgia during passing of the S and Love–Rayleigh teleseismic waves (including also multiple surface Rayleigh waves) of the 2011 Tohoku M9 earthquake. The analysis carried out in order to find dynamically triggered events (non-volcanic tremors) of the Tohoku earthquake by the accepted methodology has not revealed a clear tremor signature in the test area: the Caucasus and North Turkey. The possible mechanisms of some seismic signals of unknown origin observed during passage of teleseismic waves of Tohoku earthquake are discussed.  相似文献   

9.
The highest seismic activity in Vietnam is observed in the northwest of the country, hence the practical significance of more accurate assessment of the earthquake hazard for the area. The worldwide experience of seismicity, in particular, the recent Tohoku mega-earthquake (March 11, 2011, M w = 9.0, Japan) shows that instrumental and historical data alone are insufficient to reliably estimate earthquake hazard. This is all the more relevant in relation to Vietnam where the period of instrumental observation is short and historical evidence is nearly lacking. In this connection we made an attempt to construct maps of earthquake hazard based on known seismicity data using the available geological and geophysical data and the method of G.I. Reisner and his associates for classification of areas by seismic potential. Since the question of what geological and geophysical parameters are to be used and with what weights remains unresolved, we developed a program package to estimate Mmax based on different options in the use of geological and geophysical data. In this paper we discuss the first results and the promise held by this program package.  相似文献   

10.
Immediately following the M S7.0 Lushan earthquake on April 20, 2013, using high-pass and low-pass filtering on the digital seismic stations in the Shanxi Province, located about 870–1,452 km from the earthquake epicenter, we detected some earthquakes at a time corresponding to the first arrival of surface waves in high-pass filtering waveform. The earthquakes were especially noticed at stations in Youyu (YUY), Shanzizao (SZZ), Shanghuangzhuang (SHZ), and Zhenchuan (ZCH), which are located in a volcanic region in the Shanxi Province,but they were not listed in the Shanxi seismic observation report. These earthquakes occurred 4–50 min after the passage of the maximum amplitude Rayleigh wave, and the periods of the surface waves were mainly between 15 and 20 s following. The Coulomb stresses caused by the Rayleigh waves that acted on the four stations was about 0.001 MPa, which is a little lower than the threshold value of dynamic triggering, therefore, we may conclude that the Datong volcanic region is more sensitive to the Coulomb stress change. To verify, if the similar phenomena are widespread, we used the same filtering to observe contrastively continuous waveform data before, and 5 h after, the M S7.0 Lushan earthquake and M S9.0 Tohoku earthquake in 2011. The results show that the similar phenomena occur before the earthquakes, but the seismicity rates after the earthquakes are remarkably increased. Since these weak earthquakes are quite small, it is hard to get clear phase arrival time from three or more stations to locate them. In addition, the travel time differences between P waves and S waves (S–P) are all less than 4 s, that means the events should occur in 34 km around the stations in the volcanic region. The stress of initial dynamic triggering of the M S9.0 Tohoku earthquake was about 0.09 MPa, which is much higher than the threshold value of dynamic triggering stress. The earthquakes after the M S9.0 Tohoku earthquake are related to dynamic triggering stress, but the events before the earthquake cannot be linked to seismic events, but may be related to the background seismicity or from other kinds of local sources, such as anthropogenic sources (i.e., explosions). Using two teleseismic filtering, the small background earthquakes in the Datong volcanic region occur frequently, thus we postulate that previous catalog does not apply bandpass filter to pick out the weak earthquakes, and some of the observed weak events were not triggered by changes in the dynamic stress field.  相似文献   

11.
Crustal deformation by the M w 9.0 megathrust Tohoku earthquake causes the extension over a wide region of the Japanese mainland. In addition, a triggered M w 5.9 East Shizuoka earthquake on March 15 occurred beneath the south flank, just above the magma system of Mount Fuji. To access whether these earthquakes might trigger the eruption, we calculated the stress and pressure changes below Mount Fuji. Among the three plausible mechanisms of earthquake–volcano interactions, we calculate the static stress change around volcano using finite element method, based on the seismic fault models of Tohoku and East Shizuoka earthquakes. Both Japanese mainland and Mount Fuji region are modeled by seismic tomography result, and the topographic effect is also included. The differential stress given to Mount Fuji magma reservoir, which is assumed to be located to be in the hypocentral area of deep long period earthquakes at the depth of 15 km, is estimated to be the order of about 0.001–0.01 and 0.1–1 MPa at the boundary region between magma reservoir and surrounding medium. This pressure change is about 0.2 % of the lithostatic pressure (367.5 MPa at 15 km depth), but is enough to trigger an eruptions in case the magma is ready to erupt. For Mount Fuji, there is no evidence so far that these earthquakes and crustal deformations did reactivate the volcano, considering the seismicity of deep long period earthquakes.  相似文献   

12.
We discuss the problem of the ambiguity of gravity inversion, i.e., finding the depth distribution of density and the depth and frequency dependences of the Q-factor from the entire set of the present-day seismic and astrometric data on the travel times of seismic waves, the periods and attenuation factors of the free oscillations of the Earth, as well as the amplitudes and phases of the forced nutations. In the first part of the paper, we present the new and more accurate determinations of the periods and Q-factors for the fundamental tones and overtones of the spheroidal and toroidal oscillations of the Earth, which have periods longer than 3 min. These determinations are based on analyzing the signals from the Sumatra, Tohoku, and Okhotsk earthquakes of magnitude 9, which were recorded by the stations of the Global Seismographic Network (GSN) in Obninsk and Kazakhstan. It is shown that, although the Okhotsk earthquake had a lower magnitude than the other quakes analyzed (since its seismic source was extremely deep (about 600 km)), the amplitudes of the overtones excited by this event are significantly higher than the amplitudes of the overtones caused by the Sumatra and Tohoku events of magnitude 9. Moreover, the amplitudes of the overtones from the Okhotsk earthquake exceed the amplitudes of the overtones of the free oscillations caused by the other seismic events of magnitude 9 that occurred in the second half of the 20th century. Due to this, the data on the Okhotsk Sea earthquake are of utmost importance for the solution of the inverse problems of reconstructing the vertical profiles of Q-factor in the ultra-low frequency (ULF) range and for reconstructing the vertical distribution of density. Based on the new empirical data, we obtained new and more accurate estimates for the periods and attenuation factors of the free oscillations of the Earth.  相似文献   

13.
Attenuation of seismic compression waves leads to the real existence of a fast P1 wave in rocks which are fully saturated with dropping fluid and a slow P2 wave in the rocks containing gas in their pores. This accounts for the seismic blanking zones below the gas horizons for the P1 waves. Oscillations of gaseous inclusions ensure the energy transfer to the dominant frequencies which are different for the cases of passive seismic (few Hz) and active source seismic (10–20 Hz). The intervals of dominant frequencies are determined from the negative attenuation of these low-frequency waves. According to the observations and the suggested equation, random noise amplifies the signal at these frequencies. Thus, the P2 waves at the dominant frequency of the active source seismics are applicable for elaborating on the details of the saturation of the production layer by hydrocarbons. The relation to the AVO method (Amplitude Variation with Offset) and dilatancy effect during the preparation of an earthquake is noted.  相似文献   

14.
Earthquake source parameters, seismological, geological, geophysical, geodetic, and macroseismic data are reported for the source zone of the Tohoku earthquake (M = 9) that occurred on March 11, 2011 near the eastern coast of Honshu Island. The seismotectonic position of the seismic source situated in the western Pacific active margin, distribution of epicenters and hypocenters of the main shock, foreshocks and aftershocks, features of the focal mechanism solutions, and directions of the horizontal and vertical offsets of the Island surface were studied to focus attention on the nature of deformation in the Honshu Region. The obtained data make it possible to establish intraplate and interplate components in the complex source of the earthquake. Relationships between seismic and geodetic manifestations were investigated. The Tohoku earthquake was suggested to be a great lithospheric structure.  相似文献   

15.
The seismic history of the city of Ragusa (Italy), the geotechnical characterisation of the subsoil and the site response analysis should be correctly evaluated for the definition of the Seismic Geotechnical Hazard of the city of Ragusa, through geo-settled seismic microzoning maps. Basing on the seismic history of the city of Ragusa, the following earthquake scenarios have been considered: the “Val di Noto” earthquake of January 11, 1693 (with intensity X–XI on MCS scale, magnitude MW=7.41 and epicentral distance of about 53 km); the “Etna” earthquake of February 20, 1818 (with intensity IX on MCS scale, magnitude MW=6.23 and epicentral distance of about 64 km); the Vizzini earthquake of April 13, 1895 (with intensity I=VII–VIII on MCS scale, magnitude MW=5.86 and epicentral distance of about 26 km); the “Modica” earthquake of January 23, 1980 (with intensity I=V–VI on MCS scale, magnitude MW=4.58 and epicentral distance of about 10 km); the “Sicilian” earthquake of December 13, 1990 (with intensity I=VII on MCS scale, magnitude MW=5.64 and epicentral distance of about 50 km). Geotechnical characterisation has been performed by in situ and laboratory tests, with the definition of shear wave velocity profiles in the upper 30 m of soil. Soil response analyses have been evaluated for about 120 borings location by some non-linear 1-D models. Finally the seismic microzonation of the city of Ragusa has been obtained in terms of maps with different peak ground acceleration at the surface; shaking maps for the central area of the city of Ragusa were generated via GIS for the earthquake scenarios.  相似文献   

16.
Following a brief overview of past applications of, and more recent advances on seismic microzonation, the results of a seismic microzonation study for the city of Chania, Greece, are presented. The study was based on Vs vs. depth profiles obtained at 19 sites of the urban area by performing SASW measurements. The spatial distribution of Vs values was utilized in estimating Vs30 values, depth to bedrock and the fundamental ground period variation across the area of the city as well as for conducting 1-D finite element non-linear inelastic site response analyses. The input earthquake excitations employed in the response analyses were based on the results of an available seismic hazard study for the Chania Area. The results of analyses were utilized for establishing the spatial distribution of rock motion amplification, the expected ground motions and spectral values in the area of the city. Contour maps providing values of the expected ground motion in the urban area are given which may become a practical tool in assessing the seismic risk and expected damage in the Chania area. The maps can also be used in the design of new earthquake resistant structures or the seismic retrofitting of existing ones. Finally, the results were utilized to demonstrate the inadequacy of using Vs,30 values for classifying the soil conditions in the Chania area.  相似文献   

17.
Multi-fractal analysis under the self-organized criticality (SOC) hypothesis is performed for the VHF electromagnetic noises observed before an earthquake. A rather strong (M=7.2) earthquake took place in the off-sea of Sendai, and we have utilized the corresponding VHF noise (at 49.5 MHz) data at several stations in the Tohoku area. Among the three observing stations used for analysis, the VHF data only at one station (Kunimi) have exhibited significant precursors; that is, a significant increase in multi-fractal complexity at the last stage of the rupture. The use of fractal analysis enables to sort out the lithospheric effect following the SOC, among the few possible noise sources at VHF. The change observed only at this station might be related with the geological structure around this station because there are fault regions around the station.  相似文献   

18.
Spatial sensitivity of seismic hazard results to different models with respect to background seismic activity and earthquake occurrence in time is investigated. For the contribution of background seismic activity to seismic hazard, background area source with uniform seismicity and spatially smoothed seismicity models are taken into consideration. For the contribution of faults, through characteristic earthquakes, both the memoryless Poisson and the time dependent renewal models are utilized. A case study, involving the assessment of seismic hazard for the Bursa province in Turkey, is conducted in order to examine quantitatively the influence of these models on seismic hazard results. The spatial variation of the difference in Peak Ground Acceleration (PGA) values obtained from these different models is presented in the form of difference maps for return periods of 475 and 2475 years. Best estimate seismic hazard maps for PGA and Spectral Accelerations (SA) at 0.2 and 1.0 s are obtained by using the logic tree method.  相似文献   

19.
20.
The aftershocks of the catastrophic Sumatra-Andaman earthquake of December 26, 2004 (M = 9.0) are analyzed in the general context of the theory of critical phenomena. The analysis relies on the idea that, according to this theory, critical transitions have two key properties. The first is that the intensity of the fluctuations in a dynamical system monotonically increases with the approach of the bifurcation point, so that at a certain time instant, a sufficiently strong internal pulse initiates the catastrophe. This transition can be treated as spontaneous. The second property is that the reactance of the dynamical system drastically increases on the approach of the bifurcation. Even a weak external perturbation in the near-threshold interval can result in a catastrophe. In this case, it is reasonable to refer to the critical transition as an induced transition. The aftershocks of the Sumatra-Andaman earthquake are likely to demonstrate the typical features of induced seismicity. First, the strongest aftershock (M = 7.2) occurred 3 h 20 min after the main shock. It could have probably been induced by the round-trip seismic echo. Second, it was found that the spectral density of the aftershock sequence significantly increases at about ~0.3 mHz, which is close to the frequency of the spheroidal mode 0S2. This suggests that the spheroidal oscillations of the Earth, which are excited by the main seismic shock, modulate the aftershock activity. Both hypotheses are supported by the analysis of the aftershocks of the Tohoku earthquake of March 11, 2011 (M = 9.0).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号