首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
-Considering both the seabed foundation and wave, an analytic model of "J" type is proposed for offshore pipeline-laying. The governing differential equation is also obtained for the pipeline on the seabed and for the suspension sections. By utilizing weighted- residual method and dual iteration technique, an approximate solution is obtained, too. In the end, calculation examples are given for analyzing the changeable relationship among the major parameters.  相似文献   

2.
In this paper, an exact analytic solution in terms of Taylor series to the explicit modified mild-slope equation (EMMSE) for wave scattering by a general Homma island is constructed and the convergence of the series solution is analyzed. To validate the new analytic solution, comparisons are made against the existing solutions including analytic solutions to both the long-wave equation and Helmholtz equation, approximate analytic solutions to the modified mild-slope equation, numerical solutions to the mild-slope equation and experimental solutions. Because of the use of the governing equation EMMSE together with mass-conserving matching conditions along the toe of the shoal, the present model is valid for not only waves in the whole spectrum from long waves to short waves but also bathymetries with the maximal seabed slope being as high as 4.27:1. Since the general Homma island is an extension of the original Homma island, the present solution can be very conveniently used to study the effects of bottom topography on combined refraction and diffraction. It is found that the larger the shoal size is, the more significant the wave amplification against the cylinder is.  相似文献   

3.
水下拖缆物理参数不均匀会影响拖缆的动力特性,研究非均匀拖缆的参数变化对拖缆动力特性的影响有一定的工程实际意义。建立了拖曳系统运动的三维数学模型,推导出了水下非均匀拖缆的稳态运动控制方程,在首尾两端加上相应的定解条件,直接求得或使用嵌套二分法求得非均匀拖缆在端点的初始值,进而求解稳态动力学方程。借助文献中的拖缆—海底拖车系统算例,通过计算结果的对比,验证了数学模型及计算方法的正确性。通过四阶龙格库塔法进行数值仿真计算,得到了稳态解,分析了非均匀拖缆自身物理参数变化对缆绳系统稳态运动的影响。结果表明,非均匀拖缆的切向阻力系数、法向阻力系数、直径和密度变化会影响稳态缆形和张力分布,影响的程度各不相同。最后给出了两个尾拖船系统非均匀拖缆的稳态运动算例。  相似文献   

4.
The dynamical behavior of a thin flexible array towed through the water is described by the Paidoussis equation. By discretizing this equation in space and time a finite-dimensional state-space representation is obtained where the states are the transverse displacements of the array from linearity in either the horizontal or vertical plane. The form of the transition matrix in the state-space representation describes the propagation of transverse displacements down the array. The outputs of depth sensors and compasses located along the array are shown to be related in a simple, linear manner to the states. From this state-space representation a Kalman filter which recursively estimates the transverse displacements and hence the array shape is derived. It is shown how the properties of the Kalman filter reflect the physics of the propagation of motion down the array. Solutions of the Riccati equation are used to predict the mean square error of the Kalman filter estimates of the transverse displacements  相似文献   

5.
对于海洋缆索系统,论文针对传统有限段法的不足,提出改进的缆索有限段法,缆索离散为若干弹性缆段组成的多柔体系统,根据缆索的特点选择适当的参考系和广义速率,引入有限元法中的形函数描述段内各点位移,根据Kane方程推导改进缆索有限段模型的运动方程。基于改进的缆索有限段法,提出了模拟拖曳缆索释放一回收过程的变拓扑结构模型,即用可变长度缆段长度的变化和缆段数量的改变建模缆索的释放和回收过程。文中对一海洋拖曳系统进行了动力学仿真,与海洋试验结果比较验证了模型的正确性。  相似文献   

6.
Flexible segment model (FSM) is adopted for the dynamics calculation of marine cable being laid. In FSM, the cable is divided into a number of flexible segments, and nonlinear governing equations are listed according to the moment equilibriums of the segments. Linearization iteration scheme is employed to obtain the numerical solution for the governing equations. For the cable being laid, the payout rate is calculated from the velocities of all segments. The numerical results are shown of the dynamic motion and tension of marine cables being laid during velocity change of the mother vessels.  相似文献   

7.
This paper uses the Galerkin method in the solution of the marine riser differential equation and compares the dynamic bending stresses in a tension-leg-platform riser calculated by the linearised single wave and linearised spectral analysis methods.The results show that it is possible to make some rational assessment of approximate peak values of bending stress in the spectral method.The analysis methods are applicable to any riser system subject to horizontal exciting forces due to fluid and vessel motion.  相似文献   

8.
An effective method for the linear analysis of dynamic response of submerged underwater oil storage tanks resting on a horizontal seabed to horizontal earthquake excitations is presented. The tank is axisymmetric in shape, has a flexible wall/roof, and is filled with oil and water. A general hybrid-finite element solution procedure has been formulated, wherein the tank structure, the interior fluids, as well as the near-field of the exterior water region are discretized into a toroidal finite-element network. The tank displacement is calculated as a superposition of the first few modes of the structure's free vibration. Contribution from the hydrodynamic interaction to the coupled motion is obtained by solving the Laplace equation with the appropriate boundary conditions, which includes a matching to the exterior far-field pressure (analytic) representation to simplify the computation process. The effects of fluids surrounding and inside the tank are studied. It is demonstrated that these effects have, in general, a significant impact on the tank earthquake response analysis.A comprehensive and predictive computer program for use in such tank response analysis has been developed for engineering applications.  相似文献   

9.
In this work, a theoretical analysis of the dynamic response of a poro-elastic soil to the action of long water waves is conducted. For some combinations of the physical parameters of the soil and the water waves, the vertical stress tends towards zero at a certain unknown depth in the soil, as measured from the top of that medium. Under this condition, the liquefaction of the soil is imminent, at which time the excess pore pressure is essentially equal to the overburden soil pressure. Physical problems of this type have been widely studied in the specialized literature. However, most major studies have focused on solving the governing equations together with a liquefaction criterion. Here, the maximum momentary liquefaction depth induced by long water waves is considered as part of the problem, which is treated as an eigenvalue problem. To solve this problem, the governing equations are written in dimensionless form. The theoretical results show that for long waves, the horizontal displacements are smaller in magnitude than the vertical displacements, and when the wavelength or wave period increases, the maximum liquefaction also increases. Analytical solutions for the excess pore pressure and the horizontal and vertical displacements are obtained. The analytical results for the pore pressure are found to be very close to the analytical results reported in the specialized literature.  相似文献   

10.
Digital computer simulation in two dimensions of a neutrally-stable fish towed on a faired cable has been used to investigate the response of the fish to disturbances in the ship motion. The numerical methods used are described broadly, excluding mathematical detail, and selected results are presented which indicate typical behaviour of the system.The free oscillations of the fish-cable system and its response to deterministic and random ship disturbances are investigated. This reveals the dynamic principles governing the motion and allows the formulation of simple rules to give a first approximation to the magnitude of the fish response. It is shown that, provided resonances of the ship and fish-cable system do not coincide, the overall amplitude of motion of the fish is proportional to the sine of the angle made by the top of the cable with the horizontal. Formulae are given for calculating approximately the resonant frequencies of the towed system.  相似文献   

11.
A numerical approach for predicting motion and tension of extensible marine cables during laying operations in a rough sea is presented here. The solution methodology consists of dividing the cable into straight elements, which must satisfy an equilibrium equation and compatibility relations. The system of nonlinear differential equations is solved by the Runge–Kutta method, taking the effect of regular and/or irregular waves into account explicitly.

Illustrative applications of the method are given for a typical cable laying ship. The results are presented as rms values of the cable dynamic tension and corresponding dynamic factor for two different types of cable and several values of cable stiffness. The effect of axial deformation on the maximum tension at the shipboard pulley location is highlighted.  相似文献   


12.
波浪作用下缆船拖带系统非线性运动数值模拟   总被引:1,自引:0,他引:1  
朱军  李炜  程虹 《海洋工程》2006,24(3):56-62
基于船舶操纵性运动方程和拖缆的三维动力学运动方程,提出了被拖点位置匹配的方法,建立了拖船—拖缆—被拖船系统整体非线性拖带动力学模型。为了考察被拖船航向稳定性与横向稳性的关系以及波浪载荷作用的影响,被拖船采用水平面四自由度运动方程,并引入了波浪的作用力和力矩。拖船采用PD控制方法较真实地模拟了拖船航向改变的运动过程。对一个拖船—拖缆—被拖船系统(5 000 t的拖船和3 000 t的被拖船)在时域内进行了规则波浪作用下拖带运动的模拟,计算结果表明被拖带船舶在波浪中运动呈现运动稳定、不稳定和临界状态3种可能的特性。根据模拟计算结果,认为波浪中拖带航向稳定是被拖带船舶保持稳性的必要条件。  相似文献   

13.
The dynamic response of a towed cable system to ship maneuver is parametrically simulated. Three dimensionless parameters influence on towed cable system maneuverability is investigated. They are ratio of total length to turning radius R/L, ratio of cable mass to vehicle mass σ, and ratio of mass unit length to hydrodynamic force w/r. An oscillatory motion of towed vehicle is found in simulation of spiral towed courses. Features of this oscillation in different spiral courses are compared. The sharp turns, gradual turns and their transient states of towed cable dynamics for different course directions are discussed extensively. According to the characters of transient states and horizontal trajectories evolution of maneuvered cable system, the dynamic behaviors can be divided into three situations in Fig. 8 turning maneuvers. The behavior of towed cable system during a zigzag turning course is simulated in the end. Two ingredients of heave motion are found during small ratio of turning radii to length in this course. The primary damp to initial turning becomes weak and the response to alternative turns plays a more and more important role. The damping properties of the transient behavior in different maneuvers show a periodical invariance to σ during some turning maneuvers.  相似文献   

14.
C.Z. Wang  G.X. Wu  K.R. Drake 《Ocean Engineering》2007,34(8-9):1182-1196
Interactions between water waves and non-wall-sided cylinders are analyzed based on velocity potential theory with fully nonlinear boundary conditions on the free surface and the body surface. The finite element method (FEM) is adopted together with a 3D mesh generated through an extension of a 2D Delaunay grid on a horizontal plane along the depth. The linear matrix equation for the velocity potential is constructed by imposing the governing equation and boundary conditions through the Galerkin method and is solved through an iterative method. By imposing the gradient of the potential equal to the velocity, the Galerkin method is used again to obtain the velocity field in the fluid domain. Simulations are made for bottom mounted and truncated cylinders with flare in a numerical tank. Periodic waves and wave groups are generated by a piston type wave maker mounted on one end of the tank. Results are obtained for forces, wave profiles and wave runups. Further simulations are made for a cylinder with flare subjected to forced motion in otherwise still open water. Results are provided for surge and heave motion in different amplitudes, and for a body moving in a circular path in the horizontal plane. Comparisons are made in several cases with the results obtained from the second order solution in the time domain.  相似文献   

15.
An integrated hydrodynamics and control model to simulate tethered underwater robot system is proposed. The governing equation of the umbilical cable is based on a finite difference method, the hydrodynamic behaviors of the underwater robot are described by the six-degrees-of-freedom equations of motion for submarine simulations, and a controller based on the fuzzy sliding mode control (FSMC) algorithm is also incorporated. Fluid motion around the main body of moving robot with running control ducted propellers is governed by the Navier–Stokes equations and these nonlinear differential equations are solved numerically via computational fluid dynamics (CFD) technique. The hydrodynamics and control behaviors of the tethered underwater robot under certain designated trajectory and attitude control manipulation are then investigated based on the established hydrodynamics and control model. The results indicate that satisfactory control effect can be achieved and hydrodynamic behavior under the control operation can be observed with the model; much kinematic and dynamic information about tethered underwater robot system can be forecasted, including translational and angular motions of the robot, hydrodynamic loading on the robot, manipulation actions produced by the control propellers, the kinematic and dynamic behaviors of the umbilical cable. Since these hydrodynamic effects are fed into the proposed coupled model, the mutual hydrodynamic influences of different portions of the robot system as well as the hydrological factors of the undersea environment for the robot operation are incorporated in the model.  相似文献   

16.
Within the framework of the general linear statement of the problem, we determine the conditions of generation of a geostrophic current in a layer of uniform rotating fluid for small displacements of the bottom of a basin. We deduce an equation relating the equilibrium shape of the surface of the fluid with residual deformations of the bottom and find its general solution. It is shown that the geostrophic current is generated only in the presence of residual deformations. We present numerical estimates of the intensity of the generated geostrophic formation for a model of motion of the bottom. The investigated mechanism of generation of geostrophic vortex fields is especially efficient in the shelf zone of the ocean. Translated by Peter V. Malyshev and Dmitry V. Malyshev  相似文献   

17.
The complexity of the laws of dynamics governing 3-D atmospheric flows associated with incomplete and noisy observations make the recovery of atmospheric dynamics from satellite image sequences very difficult. In this paper, we address the challenging problem of estimating physical sound and time-consistent horizontal motion fields at various atmospheric depths for a whole image sequence. Based on a vertical decomposition of the atmosphere, we propose a dynamically consistent atmospheric motion estimator relying on a multilayer dynamic model. This estimator is based on a weak constraint variational data assimilation scheme and is applied on noisy and incomplete pressure difference observations derived from satellite images. The dynamic model is a simplified vorticity-divergence form of a multilayer shallow-water model. Average horizontal motion fields are estimated for each layer. The performance of the proposed technique is assessed using synthetic examples and using real world meteorological satellite image sequences. In particular, it is shown that the estimator enables exploiting fine spatio-temporal image structures and succeeds in characterizing motion at small spatial scales.  相似文献   

18.
采用集中质量法研究了绷紧式系泊系统中系缆由于松弛-张紧过程产生的冲击张力。建立系泊缆绳离散的集中质量模型,对其独立单元进行受力分析并建立了单元的运动方程。给定缆绳上端点简谐激励,通过Ansys中的Aqwa模块,分析了缆绳的运动响应;针对缆绳运动响应过程中的三种状态进行了模拟计算,探讨了冲击张力产生的条件;研究了缆绳初始预张力、上端点激励幅值和频率、拖曳力系数、弹性模量以及单位长度质量对动态张力的影响。研究结果表明:这些影响因素不仅会影响缆绳动态张力的大小,也会对缆绳中的冲击张力产生一定的影响。  相似文献   

19.
A two-degree freedom model for an ALT-tanker system is established corresponding to the pitch of the ALT and the surge of the tanker.Tension in the mooring cable between the ALT and the tanker is represented by an unsymmetrical,piecewise-nonlinear function.Wave load on the tower is evaluated by use of the Morison equation.The first order wave load acting on the tanker is calculated by the linear diffraction theory based on the 2-D Helmholtz equation,and the near field approach of Pinkster is used to evaluate the second order drift force.The dynamic equation of motion is established based on the principle of D'lembert.Dynamic response and cable tension of a mooring system composed of an 88.4 m ALT and a 100000 t grade tanker are calculated.The influence of wave frequency,wave excitation amplitude,wind and current force on ALT-tanker motion and cable tension is discussed.  相似文献   

20.
For the study of the non-linear response of inclined tethers subjected to parametric excitation in submerged floating tunnels,a theoretical model for coupled tube-tether vibration is developed.Upon the assumption that the static equilibrium position of the tether is a quadratic parabola,the governing differential equations of the tether motion are derived by use of the Hamilton principle.An approximate numerical solution is obtained by use of Galerkin method and Runge-kutta method.The results show that,when the static equilibrimn position of the tether is assumed to be a quadratic parabola,the tether sag effect on its vibration may be reflected;the tether sag results in the asymmetry of tether vibration amplitude;for the reduction of the tether amplitude,the buoyant unit weight of the tether should approach to zero as far as possible during the design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号