首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 109 毫秒
1.
改进的GPS模糊度降相关LLL算法   总被引:2,自引:1,他引:1  
刘志平  何秀凤 《测绘学报》2007,36(3):286-289
模糊度降相关技术可以有效提高模糊度求解的效率及成功率,LLL(A.K.Lenstra,H.W.Lenstra,L.Lovasz)算法是新出现的模糊度降相关方法。详细分析LLL算法,针对该算法中存在的缺陷,提出逆整数乔勒斯基、整数高斯算法和升序调整矩阵辅助的改进LLL算法。利用谱条件数及平均相关系数为准则,以300个随机模拟的对称正定矩阵作为模糊度方差-协方差矩阵,对LLL算法和改进的LLL算法进行仿真计算。比较与分析结果表明,改进LLL算法模糊度降相关处理更加彻底,能有效地加速整周模糊度搜索及成功解算。  相似文献   

2.
通过分析目前存在的逆整数乔列斯基降相关方法--白化变换、基于排序和下三角乔列斯基分解的降相关方法的特点,提出了一种新的模糊度降相关方法.该方法是基于协方差矩阵对角线元素降序排列和上三角乔列斯基分解来达到模糊度降相关的目的.通过实测数据的降相关计算得到:新方法与白化交换相比降相关效果相当,但新方法的效率较高;新方法与基于排序和下三角乔列斯基分解的降相关方法相比降相关效果和效率都相当.  相似文献   

3.
GNSS模糊度降相关算法及其评价指标研究   总被引:4,自引:0,他引:4  
针对Gauss、LDL和LLL算法构造整数阵存在的实数阵元素计算、实数至整数阵转换的排序问题,分别研究了相应的元素升序降相关算法和整逆型(先求逆后取整)降相关算法。分析了谱条件数、降相关系数和平均相关系数等降相关算法评价指标的优缺点,提出了等效相关系数评价指标。研究结果表明,等效相关系数较其他3种指标能更有效地评价不同维数方差阵,尤其是高维情况的降相关算法效果;逆整型优于整逆型降相关算法,升序(逆整型)降相关算法更佳,且优劣顺序为升序LDL、升序Gauss和升序LLL算法。  相似文献   

4.
模糊度降相关的整数分块正交化算法   总被引:1,自引:1,他引:0  
范龙  翟国君  柴洪洲 《测绘学报》2014,43(8):818-826
随着模糊度实数解协方差矩阵维数的增加,由于取整运算舍入误差的影响,LLL降相关算法的成功率低、降相关效果差。本文引入分块正交的思想,设计了整数分块Gram-Schmidt正交化算法,同时联合LLL算法提出了基于整数分块正交化的LLL降相关算法(IBGS-LLL)。利用随机模拟的方法,分析了不同维数下不同分块方式的降相关效果,明确了不同模式下算法的分块方式。在动态和静态模式下与改进的LLL算法进行了比较,证明了IBGS-LLL算法在模糊度协方差矩阵降相关方面具有更优的效果和更高的成功率。  相似文献   

5.
通过正则化实现整周模糊度快速搜索   总被引:1,自引:0,他引:1  
在讨论迭代双乔里斯基整数变换降相关性LAMBDA方法的基础上,发现解算历元数较少时方差一协方差阵轻微病态,提出了在分解前对方差一协方差阵正则化的改进法,实例证明改进后的方法需要历元数减少,搜索效率和稳定性高。  相似文献   

6.
利用两种z变换算法的PS-DInSAR相位解缠与等价性证明   总被引:1,自引:1,他引:0  
在介绍PS-DInSAR相位解缠函数模型的基础上,给出了应用LAMBDA方法求解模糊度和形变参数的过程,并将两种改进的z变换降相关算法——逆整乔列斯基和LLL应用于PS-DInSAR相位解缠。以z变换过程的迭代次数、z变换后的模糊度向量间的平均相关系数和协因数阵的谱条件数为准则,对两种算法进行仿真模拟和分析,结果表明逆整乔列斯基算法和LLL算法等价。最后从理论上对两种降相关算法的一致性进行了解释。  相似文献   

7.
下三角Cholesky分解的整数高斯变换算法   总被引:1,自引:0,他引:1  
针对全球导航卫星系统(GNSS)载波相位测量中,基于整数最小二乘估计准则解算整周模糊度问题。目前以LAMBDA降相关算法和Lenstra-Lenstra-Lovász(LLL)为代表的规约算法应用最为广泛。由于不同算法采用的模糊度方差-协方差阵的分解方式不同,导致难以合理地进行不同算法性能的比较。该文通过分析LAMBDA算法的降相关特点,从理论上推出基于下三角Cholesky分解多维情形下的整数高斯变换的降相关条件及相应公式,并与分解方式不同的LAMBDA和LLL算法作了对比。实验结果表明,降相关采用的分解方式将会直接影响计算复杂度和解算性能,因此该文推导的整数高斯变换算法便于今后基于下三角Cholesky分解的降相关算法间的合理比较。  相似文献   

8.
GPS模糊度降相关LLL算法的一种改进   总被引:2,自引:0,他引:2  
针对LLL(Lenstra,Lenstra,Lovasz algorithm)算法的不足,提出了具有自适应性的整数正交变换算法,并采用此算法和升序排序调整矩阵对LLL算法进行了改进。通过LLL算法和改进的LLL算法对随机模拟的600个对称正定矩阵的模糊度方差-协方差阵和30组实测数据进行处理分析,发现改进的LLL算法能够更有效地降低协方差阵的条件数,减小备选模糊度组合数,更有利于整周模糊度的搜索和解算。  相似文献   

9.
在GNSS模糊度解算的过程中,由于模糊度之间存在相关性,为减少搜索时间需要对模糊度的协方差矩阵进行降相关处理。降相关算法的优劣将直接影响到模糊度搜索的效率。本文基于Householder正交变换提出了一种新的降相关算法,并利用随机模拟数据和北斗实测数据,从谱条件数、平均相关系数和规约时间3个方面将Householder算法与目前较为流行的LLL算法以及逆整数Cholesky算法进行了对比。通过实验分析得出,Householder算法能够明显改善降相关处理的效果。但是该算法仍存在规约时间较长的不足,需要进一步完善。  相似文献   

10.
为解决格理论中最近向量和最短向量两大难题而提出的经典LLL算法已成功应用到模糊度降相关领域。由于模糊度降相关中对变换矩阵的要求,LLL算法在GS正交化变换过程中加入了取整运算,通过分析发现算法的整数正交过程在取整舍入误差的基础上还会引入新的误差,并且随着变换的进行该误差还会累积,最终影响正交化的效果。在分析的基础上对整数正交化过程进行改进,并且通过计算分析验证改进算法较之前有了很大的改进。  相似文献   

11.
Random simulation and GPS decorrelation   总被引:13,自引:1,他引:13  
 (i) A random simulation approach is proposed, which is at the centre of a numerical comparison of the performances of different GPS decorrelation methods. The most significant advantage of the approach is that it does not depend on nor favour any particular satellite–receiver geometry and weighting system. (ii) An inverse integer Cholesky decorrelation method is proposed, which will be shown to out-perform the integer Gaussian decorrelation and the Lenstra, Lenstra and Lovász (LLL) algorithm, and thus indicates that the integer Gaussian decorrelation is not the best decorrelation technique and that further improvement is possible. (iii) The performance study of the LLL algorithm is the first of its kind and the results have shown that the algorithm can indeed be used for decorrelation, but that it performs worse than the integer Gaussian decorrelation and the inverse integer Cholesky decorrelation. (iv) Simulations have also shown that no decorrelation techniques available to date can guarantee a smaller condition number, especially in the case of high dimension, although reducing the condition number is the goal of decorrelation. Received: 26 April 2000 / Accepted: 5 March 2001  相似文献   

12.
A new practical approach to GNSS high-dimensional ambiguity decorrelation   总被引:4,自引:1,他引:3  
Based on both the lower and the upper triangular Cholesky decomposition algorithms, the (inverse) lower triangular Cholesky integer transformation and the (inverse) upper triangular Cholesky integer transformation are defined, and the (inverse) paired Cholesky integer transformation is proposed. Then, for the case of high-correlation ambiguity, a multi-time (inverse) paired Cholesky integer transformation is given. In addition, a simple and practical criterion is presented to solve the uniqueness problem of the integer transformation. It is verified by an example that (1) the (inverse) paired Cholesky integer transformation is very convenient and very efficient in practical computation; (2) the (inverse) paired Cholesky integer transformation is better than both the (inverse) lower triangular Cholesky integer transformation and the (inverse) upper triangular Cholesky integer transformation; and that (3) the inverse paired Cholesky integer transformation outperforms the paired Cholesky integer transformation slightly in the most cases.  相似文献   

13.
A new approach to GPS ambiguity decorrelation   总被引:13,自引:1,他引:12  
Ambiguity decorrelation is a useful technique for rapid integer ambiguity fixing. It plays an important role in the least-squares ambiguity decorrelation adjustment (Lambda) method. An approach to multi-dimension ambiguity decorrelation is proposed by the introduction of a new concept: united ambiguity decorrelation. It is found that united ambiguity decorrelation can provide a rapid and effective route to ambiguity decorrelation. An approach to united ambiguity decorrelation, the HL process, is described in detail. The HL process performs very well in high-dimension ambiguity decorrelation tests. Received: 9 March 1998 / Accepted: 1 June 1999  相似文献   

14.
The LLL algorithm, introduced by Lenstra et al. (Math Ann 261:515–534, 1982), plays a key role in many fields of applied mathematics. In particular, it is used as an effective numerical tool for preconditioning the integer least-squares problems arising in high-precision geodetic positioning and Global Navigation Satellite Systems (GNSS). In 1992, Teunissen developed a method for solving these nearest-lattice point (NLP) problems. This method is referred to as Lambda (for Least-squares AMBiguity Decorrelation Adjustment). The preconditioning stage of Lambda corresponds to its decorrelation algorithm. From an epistemological point of view, the latter was devised through an innovative statistical approach completely independent of the LLL algorithm. Recent papers pointed out some similarities between the LLL algorithm and the Lambda-decorrelation algorithm. We try to clarify this point in the paper. We first introduce a parameter measuring the orthogonality defect of the integer basis in which the NLP problem is solved, the LLL-reduced basis of the LLL algorithm, or the $\Lambda $ -basis of the Lambda method. With regard to this problem, the potential qualities of these bases can then be compared. The $\Lambda $ -basis is built by working at the level of the variance-covariance matrix of the float solution, while the LLL-reduced basis is built by working at the level of its inverse. As a general rule, the orthogonality defect of the $\Lambda $ -basis is greater than that of the corresponding LLL-reduced basis; these bases are however very close to one another. To specify this tight relationship, we present a method that provides the dual LLL-reduced basis of a given $\Lambda $ -basis. As a consequence of this basic link, all the recent developments made on the LLL algorithm can be applied to the Lambda-decorrelation algorithm. This point is illustrated in a concrete manner: we present a parallel $\Lambda $ -type decorrelation algorithm derived from the parallel LLL algorithm of Luo and Qiao (Proceedings of the fourth international C $^*$ conference on computer science and software engineering. ACM Int Conf P Series. ACM Press, pp 93–101, 2012).  相似文献   

15.
It has been discovered that (a) the variance of all entries of the ambiguity vector transformed by a (inverse) paired Cholesky integer transformation is reduced relative to that of the corresponding entries of the original ambiguity vector; (b) the higher the dimension of the ambiguity vector, the more significantly the transformed variance will be decreased. The property of variance reduction is explained theoretically in detail. In order to better measure the property of variance reduction, an efficiency factor on variance reduction of ambiguities is defined. Since the (inverse) paired Cholesky integer transformation is generally performed many times for the GNSS high-dimensional ambiguity vector, the computation formula of the efficiency factor on the multi-time (inverse) paired Cholesky integer transformation is deduced. The computation results in the example show that (a) the (inverse) paired Cholesky integer transformation has a very good property of variance reduction, especially for the GNSS high-dimensional ambiguity vector; (b) this property of variance reduction can obviously improve the success rate of the transformed ambiguity vector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号