首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polar and high latitude substorms and solar wind conditions   总被引:1,自引:0,他引:1  
All substorm disturbances observed in polar latitudes can be divided into two types: polar, which are observable at geomagnetic latitudes higher than 70° in the absence of substorms below 70°, and high latitude substorms, which travel from auroral (<70°) to polar (>70°) geomagnetic latitudes. The aim of this study is to compare conditions in the IMF and solar wind, under which these two types of substorms are observable on the basis of data from meridional chain of magnetometers IMAGE and OMNI database for 1995, 2000, and 2006–2011. In total, 105 polar and 55 high latitude substorms were studied. It is shown that polar substorms are observable at a low velocity of solar wind after propagation of a high-speed recurrent stream during the late recovery phase of a magnetic storm. High latitude substorms, in contrast, are observable with a high velocity of solar wind, increased values of the Bz component of the IMF, the Ey component of the electric field, and solar wind temperature and pressure, when a high-speed recurrent stream passes by the Earth.  相似文献   

2.
The results of the previous studies, where the expressions were obtained for the electric current, which is generated at the bow shock front and is closed through the magnetosphere, and for the magneto-pause potential as a function of such solar wind parameters as the plasma density and velocity and the IMF intensity, are used. The power (W) consumed by the magnetosphere is equal to the Poynting vector flux S through the magnetopause. According to the special case of the Poynting theorem applied by Heikkila to the-magnetosphere, the energy flux can be expressed in terms of the electric potential (the integration is carried out over the entire surface of the magnetosphere). As a result, the required dependence, which is quadratic with respect to the IMF B z component, has been obtained for W. It is discussed why the magnetosphere is energy-isolated at the northward IMF B z component despite this.  相似文献   

3.
The Weimer and IZMEM statistical convection models are driven with a time series of interplanetary magnetic field (IMF) measurements made onboard the Wind spacecraft. The model outputs are used to infer the ionospheric convection velocity at Casey, Antarctica (80.8°S geomagnetic latitude), and then compared with measurements of Doppler velocity made using a Digisonde, and measurements of F-region convection implied by a collocated magnetometer. During a single, representative campaign interval, 13–17 February 1996, the Weimer model explained 19% (42%) of the variation in Doppler speed (direction) observed by the Digisonde, and 21% (14%) of the equivalent convection components observed by the magnetometer. This compares with IZMEM which explained 16% (46%) of the variation in Doppler speed (direction) observed by the Digisonde, and 34% (32%) of the equivalent convection components observed by the magnetometer. In general, there was better agreement between convection direction than convection speed. Some of the disagreement was probably due to differences between the IMF measured by Wind located ∼170 RE upstream in the solar wind and the IMF actually arriving at the magnetopause. However, the results of this study do show that measurements of ionospheric velocity using different experimental techniques need heavy averaging to identify a common component of velocity controlled by the IMF vector. The present time series approach was also used to estimate 16±5 min as the time required for the ionospheric convection to reconfigure in response to IMF changes occurring at the magnetopause.  相似文献   

4.
南向行星际磁场事件与磁暴关系的研究   总被引:5,自引:5,他引:5       下载免费PDF全文
利用172-182年IMP-8飞船的太阳风观测资料和相应地磁活动性指数Dst和AE,研究了43个南向行星际磁场事件期间太阳风和磁层的耦合问题. 与这43个事件对应的地磁暴是中等的和强的磁暴(Dst<-50nT). 结果表明:(1) 在43个事件中有11个(约占25.6髎)紧随激波之后,18个处于激波下游流场中(占42髎),其余14个(占33髎)和激波没有关连. 绝大多数事件都伴有太阳风动压和总磁场强度的增加;(2) 当行星际晨昏向电场强度EI>-4mV/m时,只引起磁亚暴,对Dst指数没有明显影响. 仅当EI<-5mV/m时,磁亚暴和磁暴才会同时出现;(3) 太阳风动压的增加会增强能量向环电流的输入,但不是密度和速度单独起作用,而是以PK=ρV2的组合形式影响能量的输入;(4) 虽然行星际磁场(IMF)南向分量BZ对太阳风和磁层的耦合起着关键作用,但IMF的BX和BY分量相对于BZ的大小对太阳风向磁层的能量传输也有一定影响. 当BX、BY相对BZ较大时能量耦合加强.  相似文献   

5.
The effect of the interplanetary parameters on the latitudinal position of the substorm westward electrojet is studied in the work. The data from the IMAGE chain of magnetic stations and POLAR and WIND satellites for the period close to the solar activity minimum (1995–1996) and for the period of the solar activity maximum (2000) have been used for this purpose. It has been indicated that the electrojet poleward edge reaches, on average, higher latitudes at a higher solar wind velocity and at a larger (B s ) IMF southward component. It has been indicated that the average latitude of the westward electrojet center increases with increasing solar wind velocity and decreases with increasing IMF southward component, as a result of which the electrojet center is, specifically, not observed at high geomagnetic latitudes at large values of the IMF southward component.  相似文献   

6.
王明  吕建永  李刚 《地球物理学报》2014,57(11):3804-3811
利用全球磁流体力学(MHD)的模拟结果,研究了太阳风压力系数与上游太阳风参数和日下点磁层顶张角的相关性.在识别出日下点附近磁层顶位置后,通过拟合得到日下点附近的磁层顶张角.在考虑上游太阳风中的磁压和热压以及磁层顶外侧的太阳风动压的情况下,计算了太阳风压力系数.通过分析行星际磁场不同方向时太阳风动压在日地连线上与磁压和热压的转化关系,详细研究了太阳风参数和日下点磁层顶张角对太阳风压力系数的影响,得到以下相关结论:(1) 在北向行星际磁场较大(Bz≥5 nT)时,磁层顶外侧磁压占主导,南向行星际磁场时磁层顶外侧热压占主导;(2) 太阳风压力系数随着行星际磁场的增大而增大,随着行星际磁场时钟角的增大而减小;并且在行星际磁场大小和其他太阳风条件相同时,北向行星际磁场时的太阳风压力系数要大于南向行星际磁场时的;北向行星际磁场时,太阳风压力系数随着太阳风动压的增大而减小,南向行星际磁场时,太阳风压力系数随着太阳风动压的增大而增大;以上结论是对观测结果的扩展;(3) 最后,我们还发现太阳风压力系数随着日下点磁层顶张角的增大而增大.  相似文献   

7.
Based on the magnetopause observations near the Earth by the Prognoz/Interball satellites in 1972–2000, the empirical model of this boundary has been proposed, and the magnetopause behavior at different parameters of the oncoming solar wind has been studied. For the first time, it has been detected that the Earth’s magnetopause is compressed by ∼5% in the direction perpendicular to the plane including the vectors of the solar wind velocity and IMF. At the same time, any dependence of the subsolar magnetopause position on the IMF B z component has not been revealed in the Progrnoz/Interball data. The proposed magnetopause model can be used to model the position and shape of the near-Earth bow shock.  相似文献   

8.
The results of studying the Pc4–5 pulsation parameters based on the method of bistatic backscatter of radio waves, using the EISCAT/Heating HF facility (Tromsø, Norway) and IMAGE ground-based magnetometers (Scandinavia), are presented. The observations were performed during the morning hours on October 3, 2006, when a substorm developed on the nightside. An analysis of the observational data obtained from 1000 to 1020 UT indicated that wave-like disturbances with periods corresponding to Pc4–5 pulsations (80–240 s) existed at that time. The variations in the full vector of the ionospheric irregularity motion and the electric field strength in an artificially disturbed high-latitude ionospheric F region has been reconstructed based on simultaneous Doppler observations on two paths. A general conformity is observed among the time variations in Pc4–5 pulsations in the magnetic and ionospheric data: between the velocity amplitude (|V|) and the X component of the Earth’s magnetic field and between the irregularity motion azimuth and the Y component. Large-scale waves, corresponding to the natural resonances of magnetic field lines (small values of the azimuthal number |m| ~ 2–4), and small-scale waves (large values |m| ~ 17–20) were simultaneously registered during the experiment based on magnetic data. It has been indicated that the periods of wave-like processes registered using the method of bistatic backscatter and ground-based magnetometers were in agreement with one another. The formation of wave-like processes is explained by the nonstationary impact of the solar wind and IMF on the Earth’s magnetosphere. The variations in the IMF, according to the ACE satellite measurements, were characterized by a sharp increase in the solar wind plasma dynamic pressure that occurred at about 09 UT on October 3, 2006, and was accompanied by rapid polarity reversals of the north-ward-southward (B z) and transverse (B y) IMF components.  相似文献   

9.
The characteristics of dayside auroras during the large (16–24 nT) positive values of the IMF B z component, observed on January 14, 1988, during the interaction between the Earth’s magnetosphere and the body of the interplanetary magnetic cloud, have been studied based on the optical observations on Heiss Island. A wide band of diffuse red luminosity with an intensity of 1–2 kilorayleigh (kR) was observed during 6 h in the interval 1030–1630 MLT at latitudes higher than 75° CGL. Rayed auroral arcs, the brightness of which in the 557.7 nm emission sharply increased to 3–7 kR in the postnoon sector immediately after the polarity reversal of the IMF B y component from positive to negative, were continuously registered within the band. Bright auroral arcs were observed at the equatorward edge of red luminosity. It has been found out that the red auroral intensity increases and the band equatorward boundary shifts to lower latitudes with increasing solar wind dynamic pressure. However, a direct proportional dependence of the variations in the auroral features on the dynamic pressure variations has not been found. It has been concluded that the source of bright discrete auroras is located in the region of the low-latitude boundary layer (LLBL) on closed geomagnetic field lines. The estimated LLBL thickness is ∼3 R e . It has been concluded that the intensity of the dayside red band depends on the solar wind plasma density, whereas the position of the position equatorward boundary depends on the dynamic pressure value and its variations.  相似文献   

10.
Small-scale (scales of ∼0.5–256 km) electric fields in the polar cap ionosphere are studied on the basis of measurements of the Dynamics Explorer 2 (DE-2) low-altitude satellite with a polar orbit. Nineteen DE-2 passes through the high-latitude ionosphere from the morning side to the evening side are considered when the IMF z component was southward. A rather extensive polar cap, which could be identified using the ɛ-t spectrograms of precipitating particles with auroral energies, was formed during the analyzed events. It is shown that the logarithmic diagrams (LDs), constructed using the discrete wavelet transform of electric fields in the polar cap, are power law (μ ∼ s α). Here, μ is the variance of the detail coefficients of the signal discrete wavelet transform, s is the wavelet scale, and index α characterizes the LD slope. The probability density functions PE, s) of the electric field fluctuations δE observed on different scales s are non-Gaussian and have intensified wings. When the probability density functions are renormalized, that is constructed of δE/s γ, where γ is the scaling exponent, they lie near a single curve, which indicates that the studied fields are statistically self-similar. In spite of the fact that the amplitude of electric fluctuations in the polar cap is much smaller than in the auroral zone, the quantitative characteristics of field scaling in the two regions are similar. Two possible causes of the observed turbulent structure of the electric field in the polar cap are considered: (1) the structure is transferred from the solar wind, which is known to have turbulent properties, and (2) the structure is generated by convection velocity shears in the region of open magnetic field lines. The detected dependence of the characteristic distribution of turbulent electric fields over the polar cap region on IMF B y and the correlation of the rms amplitudes of δE fluctuations with IMF B z and the solar wind transfer function (B y 2 + B z 2)1/2sin(θ/2), where θ is the angle between the geomagnetic field and IMF reconnecting on the dayside magnetopause when IMF B z < 0, together with the absence of dependence on the IMF variability are arguments for the second mechanism.  相似文献   

11.
The relationship between the IMF azimuthal angle and plasma velocity has been studied independently for three types of solar wind streams (recurrent and transient high-speed streams and low-speed background wind) based on the interplanetary medium parameters measured in the near-Earth orbits in 1964–1996. The relationships between the IMF azimuthal angle cotangent and plasma velocity are close to linear but strongly differ from one another and from the theoretical relationship for all types of streams. These differences area caused by the magnetic field disturbance on the time scales smaller than a day, and the effect of this disturbance has been studied quantitatively. The effective periods of rotation of the IMF sources on the Sun, depending on the solar cycle phase, have been obtained from the relations between the IMF azimuthal angle cotangent and plasma velocity. During the most part of the solar cycle, the periods of rotation of the IMF sources are close to the period of rotation of the solar equator but abruptly increase to the values typical of the solar circumpolar zones in the years of solar minimums.  相似文献   

12.
The dependence of the zonal geomagnetic indices (AE, Ap, Kp, Kn, and Dst) on the solar wind parameters (the electric field E y component, dynamic pressure P d and IMF irregularity σB) has been studied for two types of events: magnetic clouds and high-speed streams. Based on the empirical relationships, it has been established that the AE, Ap, Kp, and Kn indices are directly proportional to the E y value at E y < 12 mV m?1 and are inversely proportional to this value at E y > 12 mV m?1 for the first-type events. On the contrary, the dependence of Dst on E y is monotonous nonlinear. A linear dependence of all geomagnetic indices on E y is typical of the second-type events. It has been indicated that the specific features of geoeffectiveness of magnetic clouds and high-speed solar wind streams are caused by the dependence of the electric field potential across the polar cap on the electric field, solar wind dynamic pressure, and IMF fluctuations.  相似文献   

13.
磁层相对论电子通量变化与磁暴/亚暴的关系   总被引:3,自引:2,他引:1       下载免费PDF全文
本文分析了1 AU处的行星际磁场、太阳风速度、Kp指数、Dst和AE的变化关系,以及它们和地球同步轨道附近相对论电子通量的变化关系.分析说明,当行星际磁场Bz分量出现南向扰动和太阳风速度增大超过500 km/s时,地球磁层中常常发生磁暴/亚暴活动.在磁暴主相期间,相对论电子(能量E≥1 MeV)通量下降;而在磁暴恢复相期间,相对论电子通量恢复上升.但是,只有在伴随有高强度(AE≥500 nT)的持续性亚暴活动的磁暴恢复相期间,相对论电子的通量才能增长到超过暴前通量值,且能量低于300 keV的亚暴电子的通量越高,相对论电子的通量越高,反之则越低.亚暴注入电子数的多少很大程度上决定了磁暴恢复相期间相对论电子数的多少,这说明亚暴活动注入能量低于300 keV的亚暴电子是磁层相对论电子的一个重要来源.  相似文献   

14.
We consider a model that couples the magnetic field fluctuations in the heliosphere with random shifts of force line footpoints on the Sun. This model generalizes the Giacalone (2001) model by taking into account the large-scale inhomogeneity of the solar wind velocity. This generalization aims to explain a number of specific features of the distribution of IMF directions, such as the change in the asymmetry of the distribution of IMF directions as a function of heliographic latitude and the solar cycle phase and the correlation of azimuthal angles and inclinations of the IMF; the sign of this correlation changes during the solar magnetic cycle. The simulation results have shown that the gradients of the solar wind speed can actually explain these specific features of the distribution of IMF directions, at least qualitatively.  相似文献   

15.
Based on the DMSP F6 and F7 satellite observations, the characteristics of precipitating particles in different auroral precipitation regions of the dayside sector have been studied depending on the solar wind plasma density. Under quiet geomagnetic conditions (|AL| < 100 nT and B z > 0), a considerable increase in the fluxes of precipitating ions is observed in the zones of structured auroral oval precipitation (AOP) and soft diffuse precipitation (SDP). A decrease in the mean energy of precipitating ions is observed simultaneously with the flux growth in these regions. The global pattern of variations in the fluxes of precipitating ions, which shows the regions of effective penetration of solar wind particles into the magnetosphere at a change in the solar wind density from 2 to 20 cm?3, has been constructed. The maximal flux variation (ΔJ i = 1.8 · 107 cm?2 s?1, i.e., 3.5% of an increase in the solar wind particle flux) is observed in the SDP region on the dayside of the Earth. The dependence of precipitating ion fluxes in the low-latitude boundary layer (LLBL), dayside polar cusp, and mantle on the solar wind density at positive and negative values of the IMF B z component has been studied. In the cusp region, an increase in the precipitating ion flux is approximately 17% of an increase in the solar wind density. The IMF southward turning does not result in an appreciable increase in the ion precipitation fluxes either in the cusp or in the mantle. This fact can indicate that the reconnection of the geomagnetic field with southward IMF is not the most effective mechanism for penetration of solar wind particles into these regions.  相似文献   

16.
The distributions of the parameters of the solar wind, IMF, and physical fields (E y component of the SW electric field, compression field DCF) and the rms errors (σ) of measurements, depending on the daily characteristic of geomagnetic disturbance (Cp), are considered. The scatter of parameters in the interplanetary medium (IM) is actually considerable even during a long interval of geomagnetic quiet. It has been indicated that an unambiguous correspondence between the IM parameters and the characteristic of geomagnetic activity on the Earth is absent, and we have only tendencies toward an increase (decrease) in the parameter of the near-Earth medium (physical quantity) with increasing geomagnetic activity. These tendencies are transformed into linear relationships only after the three-fold averaging of values (hourly, daily, annual), which corresponds to numerous equations of relation between IM parameters and different geomagnetic indices, obtained by many researchers based on statistical analyses.  相似文献   

17.
In this work solar wind measurements from several spacecraft were used to investigate the correlations of solar wind plasma parameters. These results provide a test of the concept of predicting space weather by monitoring the condition of the solar wind at a large distance (up to 230Re, the L1 point) upstream from the Earth.We compared the ion flux and bulk velocity time behavior measured by widely-separated spacecraft: the spacecraft pairs INTERBALL-1 and IMP 8 (separations up to 30Re), INTERBALL-1 and WIND, and IMP 8 and WIND (both with separations up to 250Re). The average value of the ion flux correlation coefficient is about 0.73. But in some cases the plasma parameters from two spacecraft are very different in both behavior and value, so correlations are very poor.The technique of multifactorial analysis was used to obtain the physical dependences of the correlations on the spacecraft separation and on different plasma and magnetic field parameters. We found that the correlation values have a weak but significant dependence on the separation perpendicular to the Sun–Earth line (YZse-separations up to 90Re).The most important factors influencing the correlation level are density (or ion flux) variability, the direction of the IMF vector to the Sun–Earth line (cone angle), and the solar wind bulk velocity.  相似文献   

18.
The excitation of long-period irregular pulsations in the 2.0–6.0 mHz range (ipcl pulsation series) in the Earth’s magnetosphere, depending on the set of solar wind plasma and IMF parameters, has been studied experimentally. It has been found that burst regimes are observed when the solar wind dynamic pressure and velocity are higher than V ∼ 320 km/s and P ∼ 1 nPa, respectively. It has been indicated that the dynamics of the ipcl pulsation intensity and fractal structure largely depend on the solar wind plasma velocity and magnetic pressure, respectively. An analysis of the relationship between the appearance of ipcl pulsation burst series and large-scale solar wind streams and polar coronal holes made it possible to identify solar geoeffective regions, which can cause solar wind streams and Alfvén waves that promote the generation of burst regimes. On the basis of the studied conditions of the interplanetary medium, favourable for the excitation of ipcl pulsation burst series, and generalization of morphological patterns, the possible mechanisms of their generation have been considerded. It has been demonstrated that ipcl burst regimes are most probably generated as wind instability in hydrodynamics (the Miles-Phillips mechanism). The Miles-Phillips instability is related to different factors in the solar wind stream, among which turbulence, the threshold velocity value, and pressure fluctuations play a defining role. Precisely these regularities are typical of the ipcl burst regime generation conditions.  相似文献   

19.
Variations in the cosmic-ray vector anisotropy observed on Earth are closely connected with the state of the near-Earth interplanetary medium. Hourly characteristics of vector anisotropy for the period 1957–2013, which were obtained by the global survey method from the data of the worldwide network of neutron monitors, make it possible to study the relationship between the cosmic-ray anisotropy and solar wind parameters. In the present work, we have studied the connection between the equatorial component of anisotropy of cosmic rays with a rigidity of 10 GV and the following parameters: velocity and density of the solar wind; density of the interplanetary magnetic field; and cosmic-ray density variations, in which the spatial gradient of cosmic rays in the interplanetary medium is manifested. The characteristics of cosmic-ray anisotropy at various combinations of the interplanetary medium parameters are compared. The possibility of diagnosing the solar wind state from data on the cosmic-ray anisotropy is discussed.  相似文献   

20.
The relation of the Kp index of geomagnetic activity to the solar wind electric field (E SW) and the projection of this field onto the geomagnetic dipole has been estimated. An analysis indicated that the southward component of the IMF vector (B z < 0) is the main geoeffective parameter, as was repeatedly indicated by many researchers. The presence of this component in any combinations of the interplanetary medium parameters is responsible for a high correlation between such combinations and geomagnetic activity referred to by the authors of different studies. Precisely this field component also plays the main role in the relation between the Kp index and the relative orientation of E SW and the Earth’ magnetic moment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号