共查询到20条相似文献,搜索用时 15 毫秒
1.
A depth-averaged two-phase model is proposed for debris flows over fixed beds, explicitly incorporating interphase and particle-particle interactions, fluid and solid fluctuations and multi grain sizes. A first-order model based on the kinetic theory of granular flows is employed to determine the stresses due to solid fluctuations, while the turbulent kinetic energy - dissipation rate model is used to determine the stresses from fluid fluctuations. A well-balanced numerical algorithm is applied to solve the governing equations. The present model is benchmarked against USGS experimental debris flows over fixed beds. Incorporating the stresses due to fluid and solid fluctuations and properly estimating the bed shear stresses are shown to be crucial for reproducing the debris flows. Longitudinal particle segregation is resolved, demonstrating coarser sediments around the fronts and finer grains trailing the head. Based on extended modeling exercises, debris flow efficiency is shown to increase with initial volume, which is underpinned by observed datasets. 相似文献
2.
Infiltration losses may be significant and warrant proper incorporation into mathematical models for river floods in arid and semi-arid areas, rainfall-induced surface runoffs in watersheds and swashes on beaches. Here, a depth-averaged two-dimensional hydrodynamic model is presented for such processes based on the cell-centred finite volume method on unstructured meshes, with the full Green-Ampt equation evaluating the infiltration rate. A local time stepping strategy is employed along with thread parallelization with Open Multi-processing and high-performance computing to reduce model run time and therefore facilitate applications for large-scale processes. The numerical solutions generally agree with the experimental and field-measured data for typical cases with significant infiltration losses. The case study shows that neglecting infiltration leads to an overestimated discharge hydrograph, which cannot be compensated by means of varied bed resistance as estimated by Manning roughness, and the infiltration parameters play disparate roles in modifying shallow flows compared with Manning roughness. In addition, infiltration affects bed shear stress, which in turn modifies the critical bed sediment size that could be initiated for incipient motion by the flow and therefore needs to be properly accounted for when sediment transport and morphological evolution are to be resolved. 相似文献
3.
W. E. H. Culling 《地球表面变化过程与地形》1988,13(5):431-440
Particle aggregates can be regarded as a fourth state of matter which with differing energy levels can display behaviour associated with the other three. This provides the basis for a unified theory of particulate flow in the land scape, ranging from the solid-like soil creep, through plastic flows like solifluction to fluidized phenomena exemplified by fluvial sediment flows wherein bed and suspended loads relate to dense and dilute phases of fluidized beds and therefore to liquids and gases respectively. The theory of the liquid state is central to any unified theory and this is presented with the aid of Eyring's rate process theory and Frenkel's theory of holes. Applications to geomorphology are noted, to be given detailed treatment on a subsequent occasion. 相似文献
4.
《Advances in water resources》2003,26(6):635-647
A kinetic flux vector splitting (KFVS) scheme for shallow water flows based on the collisionless Boltzmann equation is formulated and applied. The scheme is explicit and first order in space and time with stability governed by the Courant condition. The consistency of the KFVS scheme with the shallow water equations is proven using the equivalent differential equations approach. The accuracy and efficiency of the KFVS scheme in modeling complex flow features are compared to those of the Boltzmann Bhatnagar–Gross–Krook (BGK) scheme as well as a Riemann-based scheme. In particular, all schemes are applied to (i) strong shock waves, (ii) extreme expansion waves, (iii) a combination of strong shock waves and extreme expansion waves, and (iv) a one-dimensional dam break problem. Additionally, the KFVS, BGK and Riemann schemes are applied to a one-dimensional dam break problem for which laboratory data is available. These test cases reveal that all three schemes provide solutions of comparable accuracy, but the KFVS model is 1.5–2 times faster to execute than the BGK scheme and 2–3 times faster than the Riemann-based scheme. The absence of the collision term from the Boltzmann equation not only makes the mathematical formulation of KFVS easy but also helps elucidate this approach to the novice. The accuracy, efficiency, and simplicity of the KFVS scheme indicate its potential in modeling an array of water resources problems. Due to the scalar nature of the Boltzmann equation, the extension of the KFVS scheme to 2-D surface water flows is straightforward. 相似文献
5.
A robust well-balanced finite volume model for shallow water flows with wetting and drying over irregular terrain 总被引:2,自引:0,他引:2
An unstructured Godunov-type finite volume model is developed for the numerical simulation of geometrically challenging two-dimensional shallow water flows with wetting and drying over convoluted topography. In the framework of sloping bottom model, a modified formulation of shallow water equations is used to preserve mass conservation during flooding and recession. The key ingredient of the model is the use of this combination of the sloping bottom model and the modified shallow water equations to provide a robust technique for wet/dry fronts tracking and, together with centered discretization of the bed slope source term, to exactly preserve the static flow on irregular topographies. The variable reconstruction technique ensures nonnegative reconstructed water depth and reasonable reconstructed velocity, and the friction terms are solved by semi-implicit scheme that does not invert the direction of velocity components. The robustness and accuracy of the proposed model are assessed by comparing numerical and reference results of extensive test cases. Moreover, the results of a dam-break flooding over real topography are presented to show the capability of the model on field-scale application. 相似文献
6.
《Advances in water resources》2001,24(8):899-911
A new computational method for the calculation of shallow water flows with moving physical boundaries is presented. The procedure can cope with shallow water problems having arbitrarily complex geometries and moving boundary elements. Although the method provides a fully boundary-fitted capability, no mesh generation is required in the conventional sense. Solid regions are simply cut out of a background Cartesian mesh with their boundaries represented by different types of cut cell. Moving boundaries are accommodated by up-dating the local cut cell information on a stationary background mesh as the boundaries move. No large-scale re-meshing is required. For the flow calculations, a multi-dimensional high resolution upwind finite volume scheme is used in conjunction with an efficient approximate Riemann solver at flow interfaces, and an exact Riemann solution for a moving piston at moving boundary elements. The method is validated for test problems that include a ship's hull moving at supercritical velocity and two hypothetical landslide events where material plunges laterally into a quiescent shallow lake and a fiord. 相似文献
7.
M. Todd Walter Tammo S. Steenhuis Vishal K. Mehta Dominique Thongs Mark Zion Elliot Schneiderman 《水文研究》2002,16(10):2041-2046
The TOPMODEL framework was used to derive expressions that account for saturated and unsaturated flow through shallow soil on a hillslope. The resulting equations were the basis for a shallow‐soil TOPMODEL (STOPMODEL). The common TOPMODEL theory implicitly assumes a water table below the entire watershed and this does not conceptually apply to systems hydrologically controlled by shallow interflow of perched groundwater. STOPMODEL provides an approach for extending TOPMODEL's conceptualization to apply to shallow, interflow‐driven watersheds by using soil moisture deficit instead of water table depth as the state variable. Deriving STOPMODEL by using a hydraulic conductivity function that changes exponentially with soil moisture content results in equations that look very similar to those commonly associated with TOPMODEL. This alternative way of conceptualizing TOPMODEL makes the modelling approach available to researchers, planners, and engineers who work in areas where TOPMODEL was previously believed to be unsuited, such as the New York City Watershed in the Catskills region of New York State. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
8.
This paper presents a full 2-D X/Z numerical model for sediment transport in open channels and estuaries using a two-phase (fluid–solid particle) approach. The physical concept and the mathematical background of the model are given and test-cases have been carried out to validate the proposed model. In order to illustrate its feasibility for a real estuary, the model has been applied to simulate the suspended-sediment transport and the formation of turbidity maximum in the Seine estuary. The numerical results show that the main characteristics of estuarine hydro-sediment dynamics in the Seine estuary are in fact reproduced by the proposed model. A qualitative agreement between the numerical results and the actual observations has been obtained and is presented in this paper. 相似文献
9.
A stochastic model for synthetic data generation is not available in the literature for daily flows of intermittent streams. Such a model is required in the planning and operation of structures on an intermittent stream for purposes where short time flow fluctuations are important. In this study a model is developed for such a case. The model consists of four steps: determination of the days on which flow occurs, determination of the days on which a flow increment occurs, determination of the magnitude of the flow increment, and calculation of the flow decrement on days when the flow is reduced. The first two steps are modelled by a three‐state Markov chain. In the third step, flow increments on the rising limb of the hydrograph are assumed to be gamma distributed. In the last step an exponential recession is used with two different coefficients. Parameters of the model are estimated from the observed daily stream flow data for each month of the year. The model is applied to a daily flow series of 35 years' length. It is seen that the model can preserve the short‐term characteristics (the ascension and recession curves and peaks) of the hydrograph in addition to the long‐term characteristics (mean, variance, skewness, lag‐one and higher lag autocorrelation coefficients, and zero flow percentage). The number of parameters of the model can be decreased by fitting Fourier series to their annual variation. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
10.
《Advances in water resources》2005,28(5):523-539
Most available numerical methods face problems, in the presence of variable topographies, due to the imbalance between the source and flux terms. Treatments for this problem generally work well for structured grids, but most of them are not directly applicable for unstructured grids. On the other hand, despite of their good performance for discontinuous flows, most available numerical schemes (such as HLL flux and ENO schemes) induce a high level of numerical diffusion in simulating recirculating flows. A numerical method for simulating shallow recirculating flows over a variable topography on unstructured grids is presented. This mass conservative approach can simulate different flow conditions including recirculating, transcritical and discontinuous flows over variable topographies without upwinding of source terms and with a low level of numerical diffusion. Different numerical tests cases are presented to show the performance of the scheme for some challenging problems. 相似文献
11.
A three-dimensional non-hydrostatic numerical model for simulation of the free-surface stratified flows is presented. The model is a non-hydrostatic extension of free-surface primitive equation model with a general vertical coordinate and horizontal orthogonal curvilinear coordinates. The model equations are integrated with mode-splitting technique and decomposition of pressure and velocity fields on hydrostatic and non-hydrostatic components. The model was tested against laboratory experiments on the steep wave transformation over the longshore bar, solitary wave impact on the vertical wall, the collapse of the mixed region in the thin pycnocline, mixing in the lock-exchange flows and water exchange through the sea strait. The agreement is generally fair.Responsible Editor: Hans Burchard 相似文献
12.
《Advances in water resources》2002,25(8-12):1105-1117
Macroscopic differential equations of mass and momentum balance for two immiscible fluids in a deformable porous medium are derived in an Eulerian framework using the continuum theory of mixtures. After inclusion of constitutive relationships, the resulting momentum balance equations feature terms characterizing the coupling among the fluid phases and the solid matrix caused by their relative accelerations. These terms, which imply a number of interesting phenomena, do not appear in current hydrologic models of subsurface multiphase flow. Our equations of momentum balance are shown to reduce to the Berryman–Thigpen–Chen model of bulk elastic wave propagation through unsaturated porous media after simplification (e.g., isothermal conditions, neglect of gravity, etc.) and under the assumption of constant volume fractions and material densities. When specialized to the case of a porous medium containing a single fluid and an elastic solid, our momentum balance equations reduce to the well-known Biot model of poroelasticity. We also show that mass balance alone is sufficient to derive the Biot model stress–strain relations, provided that a closure condition for porosity change suggested by de la Cruz and Spanos is invoked. Finally, a relation between elastic parameters and inertial coupling coefficients is derived that permits the partial differential equations of the Biot model to be decoupled into a telegraph equation and a wave equation whose respective dependent variables are two different linear combinations of the dilatations of the solid and the fluid. 相似文献
13.
S. A. Lawal W. E. Watt D. G. Watts 《Stochastic Environmental Research and Risk Assessment (SERRA)》1997,11(4):303-321
A model is developed for annual low flow hydrographs. Its two primary components reflect the fact that hydrologic processes
during streamflow rise (function of water input) and recession (function of basin storage) are different. Durations of periods
of rise (wet intervals) and recession (dry intervals) are modelled by discrete probability distributions — negative binomial
for dry intervals and negative binomial or modified logarithmic series for wet intervals depending on goodness of fit. During
wet intervals, the total inflow is modelled by the lognormal distribution and daily amounts are allocated according to a pattern-averaged
model. During dry intervals, the flow recedes according to a deterministic-stochastic recession model.
The model was applied to three Canadian basins with drainage area ranging from 2210 to 22000 km2 to generate 50 realizations of low flow hydrographs. The resulting two standard-error confidence band for the simulated probability
distribution of annual minimum 7-day flows enclosed the probability distribution estimated from the observed record. A sensitivity
analysis for the three basins revealed that in addition to the recession submodel, the most important submodel is that describing
seasonality. The state of the basin at the beginning of the low flow period is of marginal importance and the daily distribution
of input is unimportant. 相似文献
14.
A model is developed for annual low flow hydrographs. Its two primary components reflect the fact that hydrologic processes
during streamflow rise (function of water input) and recession (function of basin storage) are different. Durations of periods
of rise (wet intervals) and recession (dry intervals) are modelled by discrete probability distributions — negative binomial
for dry intervals and negative binomial or modified logarithmic series for wet intervals depending on goodness of fit. During
wet intervals, the total inflow is modelled by the lognormal distribution and daily amounts are allocated according to a pattern-averaged
model. During dry intervals, the flow recedes according to a deterministic-stochastic recession model.
The model was applied to three Canadian basins with drainage area ranging from 2210 to 22000 km2 to generate 50 realizations of low flow hydrographs. The resulting two standard-error confidence band for the simulated probability
distribution of annual minimum 7-day flows enclosed the probability distribution estimated from the observed record. A sensitivity
analysis for the three basins revealed that in addition to the recession submodel, the most important submodel is that describing
seasonality. The state of the basin at the beginning of the low flow period is of marginal importance and the daily distribution
of input is unimportant. 相似文献
15.
Sediment transport models require appropriate representation of near-bed processes. We aim here to explore the parameterizations of bed shear stress, bed load transport rate and near-bed sediment erosion rate under the sheet flow regime. To that end, we employ a one-dimensional two-phase sheet flow model which is able to resolve the intrawave boundary layer and sediment dynamics at a length scale on the order of the sediment grain. We have conducted 79 numerical simulations to cover a range of collinear wave and current conditions and sediment diameters in the range 210–460 μm. The numerical results confirm that the intrawave bed shear stress leads the free stream velocity, and we assess an explicit expression relating the phase lead to the maximum velocity, wave period and bed roughness. The numerical sheet flow model is also used to provide estimates for the bed load transport rate and to inspect the near-bed sediment erosion. A common bed load transport rate formulation and two typical reference concentration approaches are assessed. A dependence of the bed load transport rate on the sediment grain diameter is observed and parameterized. Finally, the intrawave near-bed vertical sediment flux is further investigated and related to the time derivative of the bed shear stress. 相似文献
16.
17.
A two-dimensional lattice Boltzmann model (LBM) is presented for transient shallow water flows. The model is based on the shallow water equations coupled with the large eddy simulation model. In order to obtain accurate results efficiently, a multi-block lattice scheme is applied at the area where a local finer grid is needed for strong change in physical variables. The model is verified by applying to five cases with transient processes: (a) a tidal wave over steps; (b) a perturbation over a submerged hump; (c) partial dam break flow; (d) circular dam break flow; (e) interaction between a dam break surge and four square cylinders. The objectives of this study are to validate the two-dimensional LBM in transient flow simulation and provide the detailed transient processes in shallow water flows. 相似文献
18.
This paper reviews a model, developed by Shiono and Knight [Shiono K, Knight DW. Two-dimensional analytical solution for a compound channel. In: Proceedings of the 3rd international symposium on refined flow modelling and turbulence measurements, Tokyo, Japan, July 1988. p. 503–10; Shiono K, Knight DW. Turbulent open channel flows with variable depth across the channel. J Fluid Mech 1991;222:617–46 [231:693]], which yields analytical solutions to the depth-integrated Navier–Stokes equations, and includes the effects of bed friction, lateral turbulence and secondary flows. Some issues about the original model developed by Shiono and Knight (1988, 1991) are highlighted and discussed. Based on the experimental data concerning the secondary flow, two assumptions are proposed to describe the contribution of the streamwise vorticity to the flow. Two new analytical solutions are compared with the conventional solution for three simple channel shapes and one trapezoidal compound channel to highlight their differences and the importance of the secondary flow and planform vorticity term. Comparison of the analytical results with the experimental data shows that the general SKM predicts the lateral distributions of depth-averaged velocity well. 相似文献
19.
20.
This present paper proposes a two-dimensional lattice Boltzmann model coupled with a Large Eddy Simulation (LES) model and applies it to flows around a non-submerged groyne in a channel. The LES of shallow water equations is efficiently performed using the Lattice Boltzmann Method (LBM) and the turbulence can be taken into account in conjunction with the Smagorinsky Sub-Grid Stress (SGS) model. The bounce-back scheme of the non-equilibrium part of the distribution function is used to determine the unknown distribution functions at inflow boundary, the zero gradient of the distribution function is set normal to outflow boundary to obtain the unknown distribution functions here and the bounce-back scheme, which states that an incoming particle towards the boundary is bounced back into fluid, is applied to the solid wall to ensure non-slip boundary conditions. The initial flow field is defined firstly and then is used to calculate the local equilibrium distributions as initial conditions of the distribution functions. These coupled models successfully predict the flow characteristics, such as circulating flow, velocity and water depth distributions. The comparisons between the simulated results and the experimental data show that the model scheme has the capacity to solve the complex flows in shallow water with reasonable accuracy and reliability. 相似文献