首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural characteristics of humic acids (HAs) from two different depths of a sedimentary sequence representing the last 13 kyr in the valley of Guadiana river estuary (SW Portugal/Spain border) have been approached using a combination of spectroscopic techniques, wet chemical degradation methods (sequential oxidation with sodium persulfate followed by KMnO4, and oxidation with RuO4) and analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) in the presence and absence of tetramethylammonium hydroxyde (TMAH). The aim was to obtain complementary information on the sources and alteration of the organic matter (OM) provided by a previous study on the vertical distribution of terrestrial and phytoplankton biogeochemical markers in the sequence. Both the FT-IR (Fourier transformed infrared) and 13C NMR (nuclear magnetic resonance) spectra showed a close similarity with the structural characteristics of the HA samples. NMR signals in the alkyl region (0–45 ppm) as well as FT-IR band patterns typical for methoxyl-substituted aromatic rings pointed to the presence of an important aliphatic domain, as well as to lignin-derived compounds. This finding was confirmed using analytical pyrolysis. In addition, the main TMAH thermochemolysis products were typical lignin-derived methoxyphenols with both guaicyl and syringyl nuclei. The detection of methoxyphenol units with three to six carbon atom (C3–C6) side chains suggests that lignin and possibly suberin were only partially degraded. Compounds arising from proteins and polysaccharides were also detected, although in lesser and varying amount. The major products from persulfate oxidation were series of n-alkanes (C16–C33 with clear odd/even predominance) and n-fatty acids, both saturated (C10–C26 with strong even/odd predominance) and unsaturated, which may arise from the above aliphatic biomacromolecules. The major products from permanganate oxidation of the persulfate residue were α,ω-diacids (C6–C11) originating from oxidation of the ether bonds linking the building blocks constituting the core of the HA structure. Aromatic compounds (phenols, methoxy-dimethoxybenzene carboxylic acid and benzene di-, tri-, tetra- and pentacarboxylic acids), most probably derived from the aromatic backbone of the HAs, that may also include lignin moieties as well as other polyphenols (flavonoids and tannins) were also detected. The RuO4 oxidation also released series of n-alkanes (C16–C33), linear saturated fatty acids (C10–C28) and α,ω-diacids (C7–C25), as well as traces of benzene polycarboxylic acids. Regarding the usefulness of the various techniques used, they provide complementary information. Indeed, spectroscopic techniques and analytical pyrolysis provide information on the backbone of the HAs, and on their origin, whereas the oxidative degradations provide different information on the structural features of the HA, particularly the nature of the linking between the building blocks. In general, the data support the idea that the HAs still contain information about the signature of aliphatic and aromatic biomacromolecules contributing to the OM deposited. The presence of lignin-derived residues suggests a large input from terrestrial carbon throughout the core.  相似文献   

2.
The ability of six humic acids (HAs) to form pseudomicellar structures in aqueous solution was evaluated by five techniques: size exclusion chromatography; pyrene fluorescence enhancement; the pyrene I1/I3 ratio; the cloud point of dilute HA solutions; and the fluorescence anisotropy of HAs. Soil HAs were found to aggregate most easily, both on microscopic and macroscopic scales. The formation of amphiphilic structures was chiefly related to HA-solvent interactions: highly solvated HAs aggregated poorly, while a lignite derived material underwent intermolecular, rather than intramolecular, rearrangements. A newly discovered algal HA was found to have minimal aggregative properties.  相似文献   

3.
1H NMR spectra of humic (HA) and fulvic (FA) acids and their oxidative degradation products are reported. The HA shows the presence of -(CH2)n - CH3 (n > 6) chemical fragments belonging to n-alkanes and/or n-fatty acids physically adsorbed onto the macromolecule structure. These fragments are absent in the FA fraction. Both humic fractions reveal the presence of similar amounts of aromatic protons which partly undergo exchange phenomena. The importance of this experimental observation is discussed. Oxidative degradation seems to cause partial cleavage of aromatic rings, more pronounced in the FA than in the HA. The degraded FA shows a higher total acidity and a higher phenolic OH content than the degraded HA. Both degraded fractions display some sharp singlet signals at 1.9 and 3.9 ppm arising from protons belonging to repetitive chemical fragments probably formed during the oxidation reaction. Tentative assignments of these signals are given. A general analysis of the HA and FA degraded spectra seems to indicate that the chemical fragments which undergo peracetic oxidation are substantially similar. The extent of oxidation of the two humic fractions is different. The HA degradation products reveal the presence of oligomeric structures, whereas the degraded FA appears less resistant to the oxidizing agent.  相似文献   

4.
It is generally accepted that the compositions and properties of soil organic matter (SOM) are influenced by many factors. In order to reveal the effects of soil texture on characteristics and dynamics of SOM and its sub-fraction, humic acid (HA), along two soil profiles, a yellow soil profile and a purplish soil profile, under the same climate and vegetation conditions were determined. Results indicate that the decomposition and humification degrees of SOM and HA of the purplish soils are higher than those of the corresponding yellow soils indicated by A/O–A ratios of HAs, TOCs and HA yields of bulk soil samples, nevertheless, the development degree of the purplish soil is lower than that of the yellow soil. The variations of E4/E6 ratios of HAs along the soil profiles indicate the overall molecular sizes of HAs decreased downward along the soil profiles. A/O–A ratios of HAs decreased downward along both the soil profiles indicate that humification processes decrease downward along both the soil profiles. Leaching of SOM shows significant effects on the distribution and characteristics of HAs in the yellow soil profile but the purplish soil profile, which is consistent with the higher hydrophobicity of HAs in purplish soils, shows that the distribution characteristics of SOM along the soil profiles are a complex result of the combination of soil texture and characteristics of SOM itself. The remarkably different sand contents are concluded tentatively as one of reasons to the different distributions and dynamics of HAs along the soil profiles, however, to profoundly understand the evolution and transport of SOM along soil profiles needs more researches.  相似文献   

5.
《Applied Geochemistry》2005,20(3):537-544
Thermal analyses (TG–DTA), elemental composition and isotope analyses (13C and 15N) were performed on humic acids (HA) from peats, leonardites and lignites, in order to investigate their structure and the changes taking place during the humification process. Thermal analyses showed structural differences between HA samples in relation to their coalification rank. In particular the lignite HA were characterized by a more stable chemical composition at high temperatures.The δ13C and δ15N values can provide information on the biogeochemical processes involved in HA formation. In particular, peat HA were linked to anoxic environments that enable plant residues to persist in their structure. In contrast, leonardite and lignite HA formation seems to be governed by different biogeochemical processes from those responsible for peat diagenesis. However, the isotopic analyses did not provide any distinction between leonardite and lignite HA. On the basis of the data presented in this study, it may be concluded that TG–DTA and isotope ratio measurements are powerful tools for investigating the formation pathway of humic substances from coals.  相似文献   

6.
Results of chemical treatments to isolate a pool of biochemically resistant soil organic matter (SOM) remain equivocal because they do not exhibit the expected relative increase in the proportion of resistant material with decrease in total SOM during long term biological mineralization. On the other hand, certain OM (considered to be enriched in aliphatic compounds) resists H2O2 oxidation as a result of association with minerals as well as its specific chemical recalcitrance, thereby protecting it against microbial degradation. Clay fractions isolated from soils under long term cultivation or long term bare fallow were examined using preparative thermochemolysis with TMAH (tetramethylammonium hydroxide, an alkylating agent) before and after peroxide treatment to characterise the molecular structure of the hydrophobic part (e.g. lipids). Results showed an increase in the proportion of some of the lipids after peroxide treatment, the lipids identified being mainly fatty acids (FAs) and hydrocarbons. The H2O2-resistant pools of lipids have an exclusively microbial signature but their quantity and relative distributions differed depending on land use. In the case of acids (as methyl esters), peroxide treatment appeared to mimic long term microbial oxidation, but this was not the case for n-alkanes. Chemical methods, such as H2O2, may not effectively mimic long term biological oxidation of clay-associated OM because, in isolation, they cannot account for the strong interaction between biochemical recalcitrance and physical protection, which exists even within the clay size fraction.  相似文献   

7.
Knowledge of the structural changes that particulate organic matter (POM) undergoes in natural systems is essential for determining its reactivity and fate. In the present study, we used advanced solid-state NMR techniques to investigate the chemical structures of sinking particulate matter collected at different depths as well as humic acids (HAs) extracted from these samples and underlying sediments from the Saguenay Fjord and the St. Lawrence Lower Estuary (Canada). Compared to bulk POM, HAs contain more non-polar alkyls, aromatics, and aromatic C-O, but less carbohydrates (or carbohydrate-like structures). In the two locations studied, the C and N contents of the samples (POM and HAs) decreased with depth and after deposition onto sediments, leaving N-poor but O-enriched HAs and suggesting the involvement of partial oxidation reactions during POM microbial degradation. Advanced NMR techniques revealed that, compared to the water-column HAs, sedimentary HAs contained more protonated aromatics, non-protonated aromatics, aromatic C-O, carbohydrates (excluding anomerics), anomerics, OCq, O-Cq-O, OCH, and OCH3 groups, but less non-polar alkyls, NCH, and mobile CH2 groups. These results are consistent with the relatively high reactivity of lipids and proteins or peptides. In contrast, carbohydrate-like structures were selectively preserved and appeared to be involved in substitution and copolymerization reactions. Some of these trends support the selective degradation (or selective preservation) theory. The results provide insights into mechanisms that likely contribute to the preservation of POM and the formation of molecules that escape characterization by traditional methods. Despite the depletion of non-polar alkyls with depth in HAs, a significant portion of their general structure survived and can be assigned to a model phospholipid. In addition, little changes in the connectivities of different functional groups were observed. Substituted and copolymerized carbohydrates and fused-ring aromatics detected in the present study likely represented an important part of molecularly uncharacterized components (MUC).  相似文献   

8.
The structural, spectroscopic and phenanthrene binding characteristics were compared for humic acids (HA) extracted from two different sources: eight soils and six lake sediments. The elemental analysis revealed that HA from sediments had higher H/C, N/C, and (N + O)/C ratios compared to HA from soils, reflecting a lower degree of humification and more autochthonous organic input upon the formation of the HA for lake sediments versus soil environments. HA from soils exhibited a higher content of aromatic carbon structures than the sediment HA based on 13C NMR results. The source of HA was easily distinguished by comparing the synchronous fluorescence spectra of each HA group. The presence of a protein like fluorescence was prominent for the HA from sediment while it was minor for the HA from soil. Irrespective of the HA source, however, humification index (HIX) exhibited a common positive correlation with the aromatic content, and a negative correlation with O-alkyl carbon structures of the HA. The correlations were consistent with the general structural trends of humification processes, suggesting that HIX may serve as a source independent predictor to describe the structural information and humification degree of terrigenous HA. Aromatic carbon structures did contribute to enhancing the phenanthrene binding for both sources of HA. However, the primary structures associated with non-ideal phenanthrene binding (i.e., non-linear sorption isotherm) appear to differ by the HA source because the opposed correlations were obtained between aromaticity and the isotherm linearity for the two HA groups. Our results suggest that the HA structural function associated with specific non-linear sorption for hydrophobic organic contaminants (HOCs) may be more strongly governed by the HA source than by the apparent physico-chemical properties.  相似文献   

9.
Ruthenium tetroxide oxidation was used to examine the macromolecular insoluble organic matter (IOM) from the Orgueil and Murchison meteorites and especially to characterize the aliphatic linkages. Already applied to various terrestrial samples, ruthenium tetroxide is a selective oxidant which destroys aromatic units, converting them into CO2, and yields aliphatic and aromatic acids. In our experiment on chondritic IOM, it produces mainly short aliphatic diacids and polycarboxylic aromatic acids. Some short hydroxyacids are also detected.Aliphatic diacids are interpreted as aliphatic bridges between aromatic units in the chemical structure, and polycarboxylic aromatic acids are the result of the fusion of polyaromatic units. The product distribution shows that aliphatic links are short with numerous substitutions. No indigenous monocarboxylic acid was detected, showing that free aliphatic chains must be very short (less than three carbon atoms). The hydroxyacids are related to the occurrence of ester and ether functional groups within the aliphatic bridges between the aromatic units. This technique thus allows us to characterize in detail the aliphatic linkages of the IOMs, and the derived conclusions are in agreement with spectroscopic, pyrolytic, and degradative results previously reported.Compared to terrestrial samples, the aliphatic part of chondritic IOM is shorter and highly substituted. Aromatic units are smaller and more cross-linked than in coals, as already proposed from NMR data. Orgueil and Murchison IOM exhibit some tiny differences, especially in the length of aliphatic chains.  相似文献   

10.
11.
《Applied Geochemistry》1993,8(2):127-139
Ligand adsorption on δ-Al2O3 at pH 8 was examined for a series of organic ligands (aromatic acids, monochlorophenols and aliphatic acids) including both monodentate and bidentate ligands. Adsorption isotherms for the aromatic acids exhibited saturation at high dissolved ligand concentrations; saturation was not observed (over the concentration range examined) for the chlorophenols. Small, though measurable, amounts of heat were evolved on reaction of the aromatic acids, the monochlorophenols and propionate (but not of the longer chain fatty acids) with the oxide surface; overall ligand adsorption reactions wereexothermic (ΔHobs < O). For adsorption of (partially or fully) protonated ligands, the favorable ΔHobs was due largely to the exothermic proton transfer reaction between phenolic hydroxyl groups of the ligands and hydroxide ions displaced from the oxide surface. The enthalpy corresponding to the ligand-exchange reaction of surface hydroxyl groups for the various ligands (as fully deprotonated species), ΔHcorr, appeared to be related to the ligand structure. The surface ligand-exchange reaction was more exothermic for the dicarboxylic acid phthalate than for the monocarboxylic acids benzoate or propionate or for salicylate and was endothermic for the chlorophenols.  相似文献   

12.
Three Australian brown coals have been separated into humin and humic acid fractions and studied by high resolution solid state 13C NMR spectroscopy and Fourier transform IR spectroscopy. The aromatic rings of the humic acids are highly substituted showing that extensive cross linking must have occurred during formation from wood lignin and tannin. However, the humins contain more aliphatic carbon and hydrogen than the corresponding humic acids. This shows that little cross linking has occurred with other components of the brown coal such as resins, waxes cutin and algal detritus, and cross linking has not rendered the aromatics alkali insoluble. The kinetics of extraction are complex and not simple first order. This is reflected in the chemical composition of the humic acid which is extraction temperature dependent. We also observed that there is a conversion of aromatic carbon to aliphatic carbon and gas during extraction, probably by alkaline oxidation, resulting in ring opening. A range of suitable model compounds have been studied to confirm this finding. Such a mechanism may account for the modification of lignin in oxidising environments such as those occurring in the initial stages of coalification (lignite or brown coal formation) and in soils.  相似文献   

13.
The oxidation of Fe(II) by H2O2 has been studied in the presence of Suwannee River fulvic acid, a standard form of natural organic matter, by adding inorganic Fe(II) to solutions containing both H2O2 and fulvic acid and monitoring the total Fe(II) concentration using a luminol chemiluminescence method. At pH 8.4 and in the absence of competing metals, Suwannee River fulvic acid significantly retards the rate of Fe(II) oxidation due to gradual formation of a species that is oxidized more slowly than inorganic Fe(II) by both O2 and H2O2. It is suggested that rapid formation of a weak Fe(II)-fulvic acid complex that is not readily oxidized by H2O2 is the cause of the reduction in the initial oxidation rate, and that the subsequent further reduction in oxidation rate is a result of the formation of a second type of Fe(II)-fulvic acid complex that is resistant to both O2 and H2O2 oxidation. A kinetic model has been developed that supports this conceptual model. The results demonstrate that, under certain conditions, natural organic matter may stabilize Fe(II) in the presence of elevated H2O2 concentrations, significantly increasing the lifetime of ferrous iron and reducing the flux of hydroxyl radicals produced through this oxidation pathway.  相似文献   

14.
Characteristics and distributions of humic acid (HA) and soil organic matter (SOM) in a yellow soil profile and a limestone soil profile of the southwest China Karst area were systematically investigated to reveal their evolutions in different soils of the study area. The results showed that characteristics and distribution of SOM along the two soil profiles were notably different. Total organic carbon (TOC) contents of soil samples decreased just slightly along the limestone soil profile but sharply along the yellow soil profile. TOCs of the limestone soils were significantly higher than those of the corresponding yellow soils, and C/N ratios of SOMs showed a similar variation trend to that of TOCs, indicating that SOM can be better conserved in the limestone soil than in the yellow soil. The soil humic acids were exhaustively extracted and further fractionated according to their apparent molecular weights using ultrafiltration techniques to explore underlying conservation mechanisms. The result showed that C/N ratios of HAs from different limestone soil layers were relatively stable and that large molecular HA fractions predominated the bulk HA of the top soil, indicating that HA in the limestone profile was protected while bio and chemical degradations were retarded. Combined with organic elements contents and mineral contents of two soils, we concluded that high calcium contents in limestone soils may play a key role in SOM conservation by forming complexation compounds with HAs or/and enclosing SOMs with hypergene CaCO3 precipitation.  相似文献   

15.
Two samples of Pliocene lignites from the Ptolemais basin of Greece, one from the upper and one from the lower lignite seams, were heated and dried in air at 50°C intervals from 50 to 1200°C. The two lignite samples initially contained the same minerals, namely calcite, dolomite, quartz, kaolinite, illite, pyrite and gypsum, but in different proportions. The lignite sample from the upper lignite seam is rich in Fe2O3, CaO and SO3, while that from the lower lignite seam is rich in SiO2 and Al2O3.Hematite, periclase, melilites, calcium ferrite and brownmillerite are constituents of the 1200°C lignite ash from both samples. The heating conditions and the chemistry of the samples lowered the formation temperatures of brownmillerite, which appeared in both samples at 950°C. In the Fe2O3, CaO- and SO3-rich sample, magnesioferrite is present from 850 to 1100°C and hematite appears at 300°C. In the SiO2- and Al2O3-rich sample, magnesioferrite was not detected at any temperature and hematite appeared at 600°C.Anhydrite, which normally decomposes in air at 1638°C, is the main constituent at 1150°C, on heating the lignite sample that was rich in Fe2O3, CaO and SO3. Anhydrite diminishes at 1200°C. In the SiO2- and Al2O3-rich lignite sample, anhydrite is main constituent at 1100°C, but diminishes considerably at 1150°C and decomposes at 1200°C.  相似文献   

16.
A detailed experimental study was conducted to investigate mechanisms of pyrite oxidation by determining product yields and oxygen isotopic fractionation during reactions between powdered pyrite (FeS2) with aqueous hydrogen peroxide (H2O2). Sealed silica-tube experiments utilized aliquots of pyrite that were reacted with 0.2 M H2O2 for 7 to 14 days at 4 to 150 °C. No volatile sulfur species were detected in any experiment. The only gaseous product recovered was elemental oxygen inferred to result from decomposition of H2O2. Aqueous sulfate (Saq) was the only sulfur product recovered from solution. Solid hydrated ferric iron sulfates (i.e., water-soluble sulfate fraction, Sws) were recovered from all experiments. Ferric oxide (hematite) was detected only in high temperature experiments.Reactants were selected with large differences in initial δ18O values. The oxygen isotopic compositions of oxygen-bearing reactants and products were analyzed for each experiment. Subsequent isotopic mass-balances were used to identify sources of oxygen for reaction products and to implicate specific chemical reaction mechanisms. δ18O of water did not show detectable change during any experiment. δ18O of sulfate was similar for Saq and Sws and indicated that both H2O and H2O2 were sources of oxygen in sulfate. Low-temperature experiments suggest that H2O-derived oxygen was incorporated into sulfate via Fe3+ oxidation, whereas H2O2-derived oxygen was incorporated into sulfate via oxidation by hydroxyl radicals (HO). These two competing mechanisms for oxygen incorporation into sulfate express comparable influences at 25 °C. With increasing reaction temperatures from 4 to 100 °C, it appears that accelerated thermal decomposition and diminished residence time of H2O2 limit the oxygen transfer from H2O2 into sulfate and enhance the relative importance of H2O-derived oxygen for incorporation into sulfate. Notably, at temperatures between 100 and 150 °C there is a reversal in the lower temperature trend resulting in dominance of H2O2-derived oxygen over H2O-derived oxygen. At such high temperatures, complete thermal decomposition of H2O2 to water and molecular oxygen (O2) occurs within minutes in mineral-blank experiments and suggests little possibility for direct oxidation of pyrite by H2O2 above 100 °C. We hypothesize that a Fe-O2 mechanism is responsible for oxygenating pyrite to sulfate using O2 from the preceding thermal decomposition of H2O2.  相似文献   

17.
煤系共伴生非金属矿产开发及综合利用难度大。本文针对先锋褐煤共伴生硅藻土高有机质、高铁的特点,提出硅藻土原矿经提纯处理后,在N2作为保护气氛下,高温煅烧形成硅藻土-无定形碳-氧化铁三元复合材料,在类Fenton体系下,去除TNT污染物的开发利用技术路线。本文考察了硅藻土处理条件、反应时间、H2O2浓度、三元复合硅藻土投加量、pH值等因素对TNT降解效能的影响。研究表明三元复合硅藻土对TNT吸附降解的最佳工艺条件为:硅藻土用量为2 g/L,H2O2(30%)4 m L/L,pH值1,反应时间2.5 h。该工艺条件下,50 mg/L TNT去除率为98%。  相似文献   

18.
Thermodynamic and Kinetic Properties of Natural Brines   总被引:4,自引:0,他引:4  
The physical chemistry of natural brines made up of mostly NaCl has been studied over the years. In this article, the work on the thermodynamics and kinetics of processes in NaCl brines will be examined. The importance of ionic interactions of the processes will be stressed. This will include the pressure–volume–temperature and physical–chemical properties of NaCl and other brine salts from 0 to 6 m, 0 to 200°C, and 0 to 1,000 bar applied pressures. Acid–base, gas–liquid, solid–liquid, and ion–complex formation processes in NaCl are examined. Equations that can be used to estimate the equilibria in NaCl are given. Pitzer models are discussed that can be used to estimate ionic equilibria in brines. The oxidation of Fe(II) and Cu(I) with O2 and H2O2 and the reduction of Cu(II) with H2O2 in NaCl are examined in terms of ionic complexes of metals with OH? and CO3 2?. The oxidation of H2S with O2 and H2O2 is also examined in NaCl media. Equations are given that can be used to estimate the effect of ionic interactions on kinetic processes in NaCl.  相似文献   

19.
Hydrothermal experiments were conducted to evaluate the kinetics of H2(aq) oxidation in the homogeneous H2-O2-H2O system at conditions reflecting subsurface/near-seafloor hydrothermal environments (55-250 °C and 242-497 bar). The kinetics of the water-forming reaction that controls the fundamental equilibrium between dissolved H2(aq) and O2(aq), are expected to impose significant constraints on the redox gradients that develop when mixing occurs between oxygenated seawater and high-temperature anoxic vent fluid at near-seafloor conditions. Experimental data indicate that, indeed, the kinetics of H2(aq)-O2(aq) equilibrium become slower with decreasing temperature, allowing excess H2(aq) to remain in solution. Sluggish reaction rates of H2(aq) oxidation suggest that active microbial populations in near-seafloor and subsurface environments could potentially utilize both H2(aq) and O2(aq), even at temperatures lower than 40 °C due to H2(aq) persistence in the seawater/vent fluid mixtures. For these H2-O2 disequilibrium conditions, redox gradients along the seawater/hydrothermal fluid mixing interface are not sharp and microbially-mediated H2(aq) oxidation coupled with a lack of other electron acceptors (e.g. nitrate) could provide an important energy source available at low-temperature diffuse flow vent sites.More importantly, when H2(aq)-O2(aq) disequilibrium conditions apply, formation of metastable hydrogen peroxide is observed. The yield of H2O2(aq) synthesis appears to be enhanced under conditions of elevated H2(aq)/O2(aq) molar ratios that correspond to abundant H2(aq) concentrations. Formation of metastable H2O2 is expected to affect the distribution of dissolved organic carbon (DOC) owing to the existence of an additional strong oxidizing agent. Oxidation of magnetite and/or Fe++ by hydrogen peroxide could also induce formation of metastable hydroxyl radicals (•OH) through Fenton-type reactions, further broadening the implications of hydrogen peroxide in hydrothermal environments.  相似文献   

20.
To obtain information on the contribution of aromatic fragments to the chemical structure of humic substances, we carried out a study on the [1H]NMR and [13C]NMR spectra of humic and fulvic acids and their oxidative degradation products extracted from an Andosol soil.[1H]NMR spectra of all organic fractions present considerable adsorption between 7.4 and 8.8 ppm, due to the presence of aromatic protons.The percentages of aromatic protons in respect to the total amount of protons are as follows: FA 20%, HA 19%, degraded FA < 12%, degraded HA 14%. The values indicate that the contribution of aromatic structures to the humic substances is significant, also considering that they are highly substituted.The degraded fractions contain smaller amounts of aromatic protons, because degradation causes the opening of the aromatic rings. Thus results obtained from the degradation do not seem to be reliable for defining the importance of aromatic structures in humic substances.Also the [13C]NMR spectra show signals in the aromatic region which derive from unsubstituted carbon atoms, while signals originating from tertiary carbon atoms merge with the noise. We believe that, at present, [1H]NMR spectroscopy is more suited for studying the role played by aromatic compounds in organic soil fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号