首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This is a comprehensive study of the composition, origin and sources of specific polycyclic aromatic hydrocarbons (PAHs) in sediments of mangrove estuary in the western part of Peninsular Malaysia. Mangrove sediments were analyzed for 17 PAHs by gas chromatography–mass spectrometry. Total PAH concentrations in the sediments ranged from 20 to 112 ng/g on a dry-weight basis. High molecular weight PAHs were abundant in the sediments. Parent PAH ratios revealed that pyrogenic input has important contribution to the sedimentary PAHs. Ratios of alkylated PAHs indicate that the sedimentary PAHs were influenced by petrogenic PAHs, which implies that petrogenic input has contribution to the sedimentary PAHs but that it is not a major factor in distribution of PAHs within the estuary. Combustion-derived PAHs show a positive and very strong correlation with total PAHs (R 2 = 0.926, p < 0.05). Total methylphenanthrenes show very weak correlation with total PAHs (R 2 = 0.0928, p < 0.05). The PAH concentrations were found to increase with distance from the upstream of the estuary to the coastal area of the Straits of Malacca. For the assessment of sediment contamination using biological thresholds, none of the individual studied PAH compounds exceeded the values of the effect range low–effect range median guideline and the threshold effects level–probable effects level guideline. This study demonstrates that the sediments of the mangrove ecosystem facing the Straits of Malacca and Sumatra are influenced by anthropogenic PAH inputs as a result of human activities such as biomass burning, vehicle emissions and boating activities.  相似文献   

2.
《Organic Geochemistry》1999,30(8):937-945
The anaerobic degradation of the polycyclic aromatic hydrocarbons (PAHs) naphthalene and phenanthrene was investigated in several marine harbor sediments. In sediments from Boston Harbor that were heavily contaminated with petroleum, [14C]-naphthalene and [14C]-phenanthrene were oxidized to 14CO2 without a lag, suggesting that the microbial community was adapted for anaerobic PAH oxidation in situ. The addition of molybdate, a specific inhibitor of sulfate-reducing microorganisms, inhibited PAH mineralization which suggested that sulfate reducers were involved in the anaerobic oxidation of the PAHs. PAHs were also anaerobically oxidized at another site in Boston Harbor that was less heavily contaminated, but at a slower rate than in the most heavily contaminated sediments. Sediments not contaminated with petroleum did not significantly oxidize the PAHs. A similar correspondence between rates of anaerobic PAH oxidation and the degree of PAH contamination was observed in sediments from Tampa Bay and San Diego Bay. When relatively pristine sediments from San Diego Bay that did not have a significant capacity for anaerobic PAH oxidation were exposed to high concentrations of naphthalene, they developed a potential for naphthalene degradation that was comparable to that in sediments that had a history of PAH contamination. The increase in potential for naphthalene degradation in the sediments exposed to naphthalene was associated with an increase in naphthalene-degrading microorganisms. These results suggest that many marine harbor sediments contain microorganisms capable of anaerobically oxidizing PAHs under sulfate-reducing conditions and that these microorganisms will respond with an increase in their activity when PAHs are introduced into the sediments. Thus, if PAH inputs into harbor sediments from petroleum can be reduced there may be a widespread potential for microorganisms to remove this PAH contamination from the sediments, despite anaerobic conditions.  相似文献   

3.
The analysis of PAHs (polycyclic aromatic hydrocarbons) in karst environments has provided an assessment of the vulnerability of karst water and the study of PAH records in stalagmites. The major source of PAHs has generally been considered to be the soil. In this study, we report the quantification of PAHs in the ecosystem compartments of a mountain karst system over a snow-melting period and the spring to summer dry period. PAH profiles in karst seepage waters were consistently similar to those in wet deposits, following the change in PAH profiles between winter and summer periods. However, PAH signatures of atmospheric wet deposits were modulated by a loss of the high molecular weight PAHs, which appear to accumulate in soils. A PAH mass balance was calculated during a summer storm event. This mass balance suggests that dry deposits and canopy throughfall could account for the PAH abundance in karst seepage waters. This study demonstrates the ability of organic hydrophobic compounds to be directly transferred from the atmosphere or canopy into seepage waters, giving new emphasis to the study of PAHs recorded in stalagmites.  相似文献   

4.
To examine the role of physical disturbance on the long-term preservation of polycyclic aromatic hydrocarbons (PAHs) in sediments, cores were collected from two sites removed from point sources of PAHs and representing contrasting seabed mixing regimes. Although ΣPAH concentrations in sediments over the past 50 years were not significantly different between the two sites, several PAH isomer ratios were significantly different (P<0.05) between the two sites. Downcore changes in PAH isomer ratios resulted from preferential losses of the more linear PAH isomers. Thus, episodic, intense seabed mixing contributes to more efficient removal of selected PAHs. However, PAHs are still sufficiently stable relative to mixing events that historical PAH profiles can be used to reconstruct major resuspension events.  相似文献   

5.
Oyster and sediment samples collected from six sites in Galveston Bay from 1986 to 1998 were analyzed for polynuclear aromatic hydrocarbons (PAHs). Total concentrations of parent PAHs in oysters ranged from 20 ng g−1 at one site to 9,242 ng g−1 at another and varied randomly with no clear trend over the 13 year period at any site. Concentrations of alkylated PAHs, which are indications of petroleum contamination, varied from 20 to 80,000 ng g−1 in oysters and were in higher abundance than the parent PAHs, indicating that one source of the PAH contaminants in Galveston Bay was petroleum and petroleum products. Four to six ring parent PAHs, which are indicative of combustion source , were higher than those of 2–3 ring parent PAHs, suggesting incomplete combustion generated PAHs was another source of PAHs into Galveston Bay. Concentrations of parent PAHs in sediments ranged from 57 to 670 ng g−1 and were much lower than those in oysters. Sediments from one site had a high PAH concentration of 5,800 ng g−1. Comparison of the compositions and concentrations of PAHs between sediment and oysters suggests that oysters preferentially bioaccumulate four to six ring PAHs. PAH composition in sediments suggests that the sources of PAH pollution in Galveston Bay were predominantly pyrogenic, while petroleum related PAHs were secondary contributions into the Bay.  相似文献   

6.
The concentrations of total polycyclic aromatic hydrocarbons (??PAHs) and 16 individual PAH compounds in 6 surface water and 44 soil samples collected from the vicinity of spilled fuel from a pipeline which carries fuel from a jetty to the tank farm were analyzed. The ??PAHs concentrations in surface water ranged from 0.37 to 99.30?mg/l with a mean concentration of 57.83?mg/l. The ??PAHs concentrations in water are of several orders of magnitude higher than in unpolluted water and some national and international standards including in some surface water in other parts of the world. This suggests that the surface water of the area were heavily polluted by anthropogenic PAHs possibly from the spills. The total PAH concentrations in soil ranged from 16.06 to 25,547.75???g/kg with a mean concentration of 2,906.36???g/kg. ??PAH concentrations of the seven carcinogenic PAH compounds in soil varied between 0.02 and 97,954???g/kg. In terms of composition of patterns in surface water and soil, the PAHs were dominated by four and three rings. The distribution pattern showed marked predominance by low molecular weight compounds. In comparison with ??PAHs concentrations in other part of the world, the total PAH concentrations of this area were higher than those reported for some urban soils in some regions of the world. The ratios of Phe/Ant, Flu/Pyr, Flu/(Flu?+?Pyr), and BaA/(BaA?+?Chyr) in both water and soil indicated various sources of PAH in the area. These sources include fuel spills, burning of motor tyres and vegetation, vehicle repairs and washing, motor exhaust and fire wood burning from cooking.  相似文献   

7.
An extensive soil survey was carried out in Shanghai to investigate the spatial distribution and possible sources of polycyclic aromatic hydrocarbons (PAHs) in urban soils. Soil samples were collected from highways, iron-smelting plants, steel-smelting plants, shipbuilding yards, coking plants, power plants, chemical plants, urban parks, university campuses and residential areas and were analyzed for 16 PAHs by gas chromatography with mass detection. High PAH concentrations were found in all locations investigated, with mean values of soil total PAH concentrations in the range 3,279–38,868 μg/kg DM, and the PAH concentrations were significantly influenced by soil organic matter content. Soil PAH profiles in all districts were dominated by PAHs with 4–6 rings. Principal components analysis and diagnostic ratios of PAHs indicate that they were mainly derived from coal combustion and petroleum but in soils from highways the PAHs were derived largely from vehicle exhaust emissions. The high concentrations of PAHs found indicate that many urban soils in Shanghai represent a potential hazard to public health.  相似文献   

8.
Oil fields present a potential ecological risk to nearby farmland soil. Here we present a new method designed to evaluate the ability of winter wheat (Triticum aestivum) to contribute to the dissipation of polycyclic aromatic hydrocarbons (PAHs), which are priority pollutants in soils contaminated by oily sludge. The influence of different doses of oily sludge on the dissipation of PAHs was studied along with individual PAH profiles in soils after different periods of plant growth. Five soil samples were artificially contaminated with different percentages of oily sludge (0 %, 5 %, 10 %, 15 % and 20 %). Winter wheat grew in the oily sludge–amended soils for 265 days. PAH content in the soils was monitored over the course of the study. The rate of PAH dissipation is related to the properties of different PAHs, period of winter wheat growth, and oily sludge application dose. Analysis for treated soils indicates that the dissipation of PAHs increased significantly over the first 212 days, followed by minimal changes over the final 53 days of treatment. In contrast, PAH dissipation slowed with increasing oily sludge application. For each PAH, the experimental results showed a significant compound-dependent trend. Winter wheat in the present study significantly enhanced the dissipation of PAHs in oily sludge–contaminated soil.  相似文献   

9.
Concentration, distribution, and sources of 16 polycyclic aromatic hydrocarbons (PAHs) were investigated in surface sediments of Laizhou Bay, China. Total PAH concentrations ranged from 97.2 to 204.8 ng/g, with a mean of 148.4 ng/g. High concentrations of PAHs were found in the fine-grained sediments on both sides of the Yellow River estuary (YRE). In contrast, low levels of PAHs were observed in relatively coarse grain sediments, suggesting hydrodynamics influence the accumulation of sedimentary PAHs. The YRE and its adjacent area is the main sink for Yellow River-derived PAHs. Both PAH isomer ratios and principal component analysis (PCA) with multivariate linear regression (MLR) were applied to apportion sources of PAHs. Results indicated that both pyrogenic and petrogenic PAH sources were important. Further PCA/MLR analysis showed that the contributions of coal combustion, petroleum combustion and a combined source of spilled oil and biomass burning were 41, 15 and 44%, respectively. From an ecotoxicological viewpoint, the studied area appears to have low levels of PAH pollution.  相似文献   

10.
《Organic Geochemistry》1999,30(8):891-900
The fate of polycyclic aromatic hydrocarbon (PAH) mixtures in marine sediments can be difficult to determine due to extraction, analytical and matrix barriers. The purpose of this work was to develop and validate methods to kill indigenous microorganisms in marine sediments, to spike the sediments with a mixture of PAHs in a minimally invasive fashion and to age the treated sediments while following the effects of the treatments on the PAHs and several groups of microorganisms. Following gamma irradiation (0.0, 2.5, 3.5 and 5.0 Mrad), the sediments were mixed with known amounts of PAHs that had been coated onto fine-grained sand. During the subsequent ageing process, levels of extractable PAHs and numbers of microorganisms were monitored. The addition of PAHs to the unirradiated sediment seemed to rapidly induce the degradation of phenanthrene, fluoranthene and pyrene, while these PAHs decreased to a much smaller extent in the irradiated sediments in the 376 days of the experiment. The heavier PAHs, chrysene and benzo(a)pyrene, showed slight decreases in extractable concentrations at all irradiation levels, suggesting PAH sequestration/ageing over time. While some microbial populations recovered rapidly, culturable PAH degraders did not recover at any irradiation level tested and concentrations of light molecular weight PAHs in sediments irradiated at all levels dropped only slightly. This suggests that even the lowest dose (2.5 Mrad) may inhibit PAH degradation sufficiently to permit ageing of the spiked sediments for 6 months to a year. The methods described show promise for the generation of realistic, well-characterized spiked sediments for use in biodegradation and bioavailability experiments.  相似文献   

11.
《Applied Geochemistry》2001,16(11-12):1429-1445
Polycyclic aromatic hydrocarbons (PAHs) were measured in surface sediments and dated core sediments from the Pearl river and estuary, China, to investigate the spatial and temporal variability of anthropogenic pollutants. The sediments from the sampling stations at the Guangzhou channel have the highest concentrations of PAHs, owing to contributions from the large amount of urban/industrial discharges from the city of Guangzhou. The significant decrease of PAHs concentrations in sediments from the Shiziyang channel is mainly attributed to the increasing degradation and desorption of low molecular weight PAHs and alkyl PAHs, and the dilution by less contaminated water and particles from the East river. The PAH contaminants were concentrated on the western side in the Lingding bay of the Pearl river estuary because of the hydrodynamic and sedimentation conditions. Based on the characteristics of the parent compound distributions (PCDs) and the alkyl homologue distributions (AHDs) of PAHs, the potential source of PAHs in sediments from each sampling station was identified. Results indicated that the pyrogenic (combustion) source, characterized by the abundance of parent PAHs, were predominant in the heavily contaminated station (ZB01) near the aging industrial area, and the petrogenic (petroleum- derived) PAHs were more abundant in the stations (ZB02, ZB03) adjacent to the petrochemical plant and shipping harbor. Sediments from Lingding bay show variable distributions of PAH composition and variety in the proportion of combustion and petrogenic sources for the PAHs in different stations. Perylene, a naturally derived PAH, was found to be highly abundant in less contaminated stations. Analysis of the dated sediments (210Pb) indicates that higher PAH concentrations occurred in the sediments deposited after 1980, and higher fluxes of PAHs discharged to the Pearl river are found after 1990.  相似文献   

12.
Concentrations and sources of polycyclic aromatic hydrocarbons (PAHs) were investigated in surface sediments of the Yellow River Estuary (YRE). The isobath-parallel tidal and residual currents play important roles in the variation of PAH distribution, such that the contamination level of PAHs in fine-grained sediments is significantly higher than in the relatively coarse grain size sediments. Both diagnostic ratios and principal component analysis (PCA) with multivariate linear regression (MLR) were used to apportion sources of PAHs. The results revealed that pyrogenic sources are important sources of PAHs. Further analysis indicated that the contributions of coal combustion, traffic-related pollution and mixed sources (spills of oil products and vegetation combustion) were 35, 29 and 36 %, respectively, using PCA/MLR. Pyrogenic sources (coal combustion and traffic-related pollution) contribute 64 % of anthropogenic PAHs in sediments, which indicates that energy consumption could be a predominant factor in PAH pollution of YRE. Acenaphthylene and acenaphthene are the two main species of PAHs with more ecotoxicological concern in YRE.  相似文献   

13.
Previous studies have suggested that coal from the 1891 shipwreck of a collier off Victoria, BC, Canada is responsible for elevated parent (unsubstituted) PAH concentrations in sediments near deep marine outfalls from Esquimalt and Victoria in the Strait of Juan de Fuca. To resolve this question, we analysed a comprehensive suite of resolved and unresolved complex mixture (UCM) alkanes, tricyclic terpane, hopane and sterane biomarkers, and parent and alkyl polycyclic aromatic hydrocarbons (PAHs) in samples of coal, wastewater and sediments. Composition patterns, principal components analysis (PCA) models and PAH and biomarker ratios all indicate that coal from the collier does not make a dominant contribution to any sediment sample. Mass balance calculations based on the n-C24 content and 24/4 tetracyclic terpane to 26/3R tricyclic terpane ratio in coal provide a particularly good match between predicted and observed alkyl PAH concentrations for sediments with high alkyl naphthalenes and phenanthrene/anthracenes and low UCM, but the predicted coal contribution substantially underestimates the measured parent PAHs for all sediment samples. Methylbenz[a]anthracene/chrysene profiles for sediments with a dominance of parent PAHs are very close to coal tar, with a marked predominance of methylbenz[a]anthracenes and the possible 10-methylbenz[a]anthracene as a major constituent, while the methylchrysenes predominate in coal. Hence, coal from the collier could account for most alkyl PAHs in the sediments, but dredged sediment containing pyrolised coal waste from a former coal gas plant in Victoria Harbour is a more likely source for the samples with elevated parent PAHs. PAH ratios indicate that these sources are superimposed on combustion PAHs introduced by a combination of atmospheric deposition and delivery via stormwater and the outfalls. Parent PAH distributions also suggest that PAHs in wastewater that originate from oils and soot in liquid fossil fuel combustion are dispersed and degraded, while the larger wood char particles (containing PAHs more protected from degradation) settle closer to the outfalls. Overall, results suggest that PAHs have predominant sources in wood combustion, coal and possibly coke, with a likelihood of much lower bioavailability than would be expected from wastewater dominated by oils and soot from vehicle combustion.  相似文献   

14.
Sediments are considered as suitable matrices to study the contamination levels of aquatic environment since they represent a sink for multiple contaminant sources. In this study, the influence of sediment characteristics on the distribution of polycyclic aromatic hydrocarbons (PAHs) and its potential risk in euryhaline, freshwater and humic aquatic bodies of Douglas/Stubbs creek, Ikpa River and Eniong River, respectively, were investigated. The level of PAHs in sediment was quantified using GC–MS, while sediment properties including total organic carbon (TOC) content and grain size were determined by the wet oxidation and hydrometer methods, respectively. The results revealed that the total levels of PAHs in sediment varied significantly between the euryhaline, freshwater and humic freshwater ecosystems. In Ikpa River freshwater ecosystem, a total PAHs load of 1055.2 ng/g was recorded with the suites concentration ranging from 13.0 ng/g (for acenaphthylene) to 161 ng/g (for pyrene). The humic ecosystem of Eniong River had a total PAH load of 11.06 ng/g, while the suites level recorded ranged from 0.04 ng/g for acenaphthene to 2.65 ng/g for chrysene. The total level of PAHs detected in the euryhaline Douglas/Stubbs creek was 14.47 ng/g, and suite concentrations varied between 4.27 ng/g for naphthalene and 5.13 ng/g for acenaphthylene. This shows variation in quantity and quality of PAH contaminants with the nature of ecosystems. It implies complex and diverse contamination sources as well as different capabilities to recover from PAH contamination. Correlation analysis has shown that sediment particle and TOC content influenced PAHs burden in bottom sediments, but the effects varied with the molecular weight of PAHs and the nature of the ecosystems. The TOC was the most significant determinant of PAHs load and distribution in sediment of the freshwater Ikpa River and euryhaline Douglas/Stubbs but had little or no influence in the humic sediment of Eniong River, while the influence of particle size was generally indefinite but slightly associated with PAHs accumulation in the euryhaline sediment. Generally, the total PAH levels (11.0–1055.2 ng/g) recorded were low and below the allowable limit for aquatic sediments. The ecological risk assessment revealed that these levels were lower than the effects range low and effects range medium values. This indicates no acute adverse biological effect although the accumulation of PAHs in freshwater ecosystem of Ikpa River may pose ecological risks as most of the carcinogenic PAH suites had relatively high pollution indices compared to other ecosystem types studied.  相似文献   

15.
Polycyclic aromatic hydrocarbons (PAHs) are a group of aromatic hydrocarbons with high toxicity to human health. PAH emissions from industrial activities have become the primary sources of PAH contamination in Chinese watersheds. Here, we analyzed 10 individual priority PAHs in 120 water samples taken from middle reach of Huaihe River, China. The results show that the PAH levels in studied watershed are significantly lower as compared to other Chinese watersheds, approaching or slightly exceeding the PAH levels in watersheds from selected European and North American countries. We observe rather large variation in spatial and vertical PAH distributions, pointing to PAH inputs from local industrial emissions, and PAH cycle among atmosphere, water and sediment. Individual PAH ratios (i.e., phenanthrene/anthracene and fluorene/pyrene) and principal components analysis suggest a primarily pyrolytic PAH sources (combustion of coal and coke) in water column. Other accompanying PAH sources include emissions from steel industry and gasoline. Total toxic benzo[a]pyrene equivalent of PAHs in studied water column indicates that PAHs in watershed of middle reach of Huaihe River pose limited toxicity to the environment.  相似文献   

16.
Urban and suburban storm water runoff from ten locations in eastern Massachusetts was analyzed for 39 polycyclic aromatic hydrocarbons (PAHs) compounds. Similar profiles in PAH composition were observed for groups of samples and appear to reflect land use. The largest group includes, urban storm water from areas with a mix of industrial, commercial, and residential use. Fluoranthene, phenanthrene, pyrene, chrysene, and benzo (b) fluoranthene were the predominant compounds in this group, but lighter molecular weight PAHs were also present. Sources of PAHs to storm water include a combination of petroleum and combustion. The profile of PAH compounds in local atmospheric deposition was similar to urban storm water, but differed in several of the predominant compounds. PAHs in storm water could increase the levels of these compounds in nearshore sediments and may be the most important source of high molecular weight PAHs to these environments.  相似文献   

17.
Sediment cores from two locations in Green Bay and two in lake Michigan were analyzed for 12 polycyclic aromatic hydrocarbons (PAHs), loss-on-ignition (LOI),210Pb,137Cs, and7Be to study differences in deposition patterns between the freshwater estuary Green Bay, with several local sources, and the open Lake Michigan, dominated by atmospheric inputs. We found that the remote sites receive relatively less high-molecular weight PAHs such as ideno(1,2,3-cd)pyrene and dibenz(ah)anthracene and are more depleted in anthracene and pyrene. This may be related to a low Henry’s law constant for the high molecular compounds and to selective photo-oxidation of anthracene and pyrene during transport. While sedimentation rates are higher in Green Bay than in the open lake, the PAH levels are generally comparable (0.3–8.5 μg g?1) in the two areas. However, the highest PAH levels are found in a core from Green Bay (GB88G). The two Green Bay cores have total PAH concentration maxima in 1985, which appear to be related to the combustion of petroleum. Also, one Green Bay core (GB88G) and the two from Lake Michigan exhibit PAH maxima in the early 1950s in agreement with observations from other study areas. There is a significant correlation between total PAH and LOI, and thus total organic carbon, for the Green Bay cores, but little or no such correlation for the Lake Michigan cores. This may indicate that PAHs in Green Bay are effectively scavenged by settling detritus.  相似文献   

18.
Using microprobe laser-desorption, laser-ionization mass spectrometry (μL2MS), we measured the distributions of alkylated and unalkylated polycyclic aromatic hydrocarbons (PAHs) in the free organic material of 20 carbonaceous chondrites. These meteorites represent a variety of meteorite classes and alteration histories, including CI, CK, CM, CO, CR, CV, and Tagish Lake. This work provides information on free organic compounds that is complementary to studies of the structure and composition of meteoritic macromolecular content.For the nine CM2 meteorites analyzed, we observe that higher relative abundances of alkylated PAHs correlate with more intense aqueous activity. We attribute this correlation to the differences in solubility and volatility between unalkylated and alkylated PAHs. Naphthalene and its alkylation series are more susceptible to the effects of aqueous exposure than the less-soluble PAH phenanthrene and its alkylated derivatives. These observations are consistent with the possibility of chromatographic separations on the meteorite parent bodies. We identify six CM2 meteorites with similar PAH distributions that may represent the original, unaltered organic composition of the parent body.Increased metamorphic intensity reduces the abundance of all PAHs. The thermally metamorphosed CK chondrites had no detectable levels of typical meteoritic PAHs. This observation might be explained either by a loss of PAHs caused by volatilization or by a significantly different organic content of the CK parent body.  相似文献   

19.
孔祥胜  苗迎 《地球学报》2014,35(2):239-247
为证实大气干湿沉降物是岩溶地下河中多环芳烃(PAHs)的来源,研究选择了某城市典型的岩溶地下河水源地作为研究地点,采用大气干湿采样器、聚氨酯泡沫(PUF)大气被动采样器分别采集大气及其干湿沉降物样品,同时采集地下河水样和分层采集流域土壤,利用气相色谱-质谱联用仪(GC-MS)测定了16种PAHs优先控制污染物。结果表明,地下河流域大气干湿沉降中PAHs的干湿沉降通量为147.26 ng·(m2·d)-1,流域PAHs沉降量为1943.8 g;大气中的PAHs浓度为45.33 ng·m-3;地下河水中PAHs浓度平均值为220.98 ng·L-1;土壤中PAHs浓度为38.72 ng·g-1;大气、降雨和土壤中PAHs组成以2~3环的萘、芴、菲、荧蒽、芘5种为主,地下河水中以芴、菲、荧蒽、芘、苯并[a]蒽、苯并[a]芘6种为主。利用地下河多介质中的16种PAHs成分谱、特征比值结合它们的物理化学性质进行PAHs的源解析,研究显示大气干湿沉降是岩溶地下河水中多环芳烃的主要污染源之一,这归因于岩溶地区防污性能的脆弱性。  相似文献   

20.
Polycyclic aromatic hydrocarbons (PAHs) content and distribution was studied in the northern part of modern rift zone. All samples analysed represent slightly altered clastic deposits and hot water discharging in springs and from wells. To study PAH in present-day gas emission traps with diatomite absorbent were installed in the Skógalón geothermal field. All samples were analysed by the method of Shpol'sky spectroscopy. Hydrothermally altered deposits show the highest amount of PAH. Data obtained allow to believe that the distribution of PAH is closely associated with the dynamics of the hydrothermal environment. The fissure formation and temperature fluctuation in hydrothermal systems can govern both the processes of PAH synthesis and sorption. The evidences of PAH migration up through the Skjálfandi and Öxarfjörður sedimentary basins show that hydrocarbons associate mainly with hydrothermal minerals and deep ground waters. Studying PAH associations can be used as an indicator of hydrocarbons distribution, ways of migration and possible zones of accumulation in the land and marine sedimentary basins in active and ancient rift zones of Iceland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号