共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
基于银川高空站2008~2017年的L波段秒级数据和地面观测数据,利用干绝热法计算银川2008~2017年逐时大气混合层高度,分析其变化特征,同时利用银川6种污染物的质量浓度和AQI指数,分析大气混合层高度与空气污染物的关系。结果表明:银川市的大气混合层高度(MLH)大部时间在600 m以下,占比为68%;银川MLH具有明显的单峰型日变化特征,07:00(北京时间,下同)最低,16:00最高;各月MLH值在282~936 m,4~6月MLH值最高,12月MLH值最低;季节变化方面,春季最高,夏季次之,冬季最低;年变化方面,2012年MLH平均值最高为621 m,2015年最低为566 m;银川市6种污染物除O3外,其余5种污染物的质量浓度与MLH值都为负相关,O3与MLH值的相关性最好;四季中,冬季污染物浓度与MLH值的相关性最好,夏季最差,秋季好于春季;银川MLH值与AQI指数呈负相关。 相似文献
3.
4.
6.
7.
8.
一个混合层高度发展的数值模拟试验 总被引:1,自引:0,他引:1
本文利用在HEIFE期间戈壁地区采集的资料,并用一个考虑由地表热力及动力强的害和高空下沉等因子控制的零阶跳跃模式,对该地区白天混层高度增长的机制进行了数值模拟分析,结果表明:白天混合层高的增长受来自祁连山强烈的下沉冷空气的影响较大,使其高度的增长受到抑制,且最大值出现的时间超前,其结果与声雷达回波强度确定的混合层高度吻合较好。 相似文献
9.
基于2018年1月~2020年12月中国气象局陆面数据同化系统(CLDAS)资料,利用罗氏法计算四川省大气混合层高度,分析其时空分布特征,并结合大气环境空气质量监测数据,讨论大气混合层高度变化与空气质量的关系。结果表明:四川省大气混合层高度呈西高东低分布特征。盆地与攀西地区、川西高原大气混合层高度季节变化有显著性差异,盆地春季最高,秋季最低;川西高原和攀西地区秋季最高,夏季最低。四川省各地区大气混合层高度月、日变化趋势基本一致。四川省大气混合层高度与O3质量浓度呈显著正相关关系,与PM2.5质量浓度呈显著负相关关系。 相似文献
10.
根据2007—2013年宁波市每日8次地面观测气象资料,运用罗氏法和统计分析法计算大气混合层高度,分析其在霾日和非霾日的不同日变化特征。结果表明宁波市霾日与非霾日混合层高度均呈白天高,夜晚低的日变化特征,夏季两者差值的日变化波动最明显,波峰时间比其他季节晚 3 h 。混合层高度日变化趋势与风速、气温、能见度趋于一致,霾等级越重,混合层高度越低。霾日与非霾日的气温差值除冬季呈正变温外,其他季节呈负变温,冬季14时差值最小,夜间加大,春夏季凌晨差值最小,14时最大,秋季波动不明显;风速差值除冬季夜间为正值外,其余季节为负值,秋冬季差值最小、夏季最大。大气处于不稳定状态时,混合层高度随着稳定度增加而逐渐处于稳定状态时,随着稳定度增加而降低,中性大气是宁波易致霾的大气层结。霾日与非霾日大气稳定度表现不一致,中午霾日中性大气占多数,非霾日则是不稳定大气;夜间霾日稳定—弱稳定大气和中性大气所占比例相当,非霾日稳定—弱稳定大气占多数。另外,PM 2.5 浓度在霾日和非霾日均为白天低、夜间高的日变化特征,但霾日波动大,波峰时间晚于非霾日 2 h ,峰值浓度也高于非霾日2.7倍;早晨或下午到上半夜是霾日的PM 2.5 浓度两个上升时段,上午为下降时段;非霾日的两个浓度缓升(降)时段分别出现凌晨和下午(上午和前半夜)。研究成果有助于预报员了解大气混合层高度及其对霾的可能影响,从而提高霾预报预警能力。 相似文献
11.
12.
基于1961-2010年安徽省气象台站的定时观测资料,采用国标法计算安徽省近50年大气稳定度、混合层厚度和大气环境容量系数,并结合合肥市空气质量逐日观测数据初步分析了大气环境容量系数对空气质量的影响。结果表明:安徽省大气稳定度以中性类居多,稳定类其次;近50年来,中性类稳定度呈明显下降趋势,不稳定类和稳定类呈显著上升;不稳定类和稳定类有明显的季节差异,中性类不明显。年平均混合层厚度显著下降;春季混合层厚度在2000年左右发生转折,夏、秋、冬三季下降趋势显著;春、夏季混合层厚度高于秋、冬季,冬季最低,春季最高。安徽省大气环境容量系数以沿淮中部、大别山区南部和沿江中西部最大,淮北大部、大别山区北部和江南南部最小,各地均呈现一致的显著下降趋势,并具有明显的年代际变化特征。年内大气环境容量系数呈"双峰型"分布,秋、冬季为低值时段,大气对污染物容纳能力较差,不利于扩散和清除,空气质量较差。总的来看,1961-2010年安徽省大气稳定度显著增加,混合层厚度较明显下降、风速快速减弱是全省大气环境容量系数变小、大气自净能力减弱的最主要原因。 相似文献
13.
邢台市大气稳定度和混合层厚度特征研究 总被引:1,自引:0,他引:1
基于1981—2010年邢台市逐日4个时次地面气象观测资料和2014年的同期逐日空气污染API值及气象观测数据,运用修正的Pasquill稳定度分类法和混合层厚度计算方法得出邢台市近30年大气稳定度和混合层厚度变化特征,结果表明:近30年邢台市大气不稳定类呈1.16%/10a增长,中性类呈-1.40%/10a下降,稳定类变化趋势不明显,月变化以中性类和稳定类为主,日变化受太阳辐射强度的影响明显。混合层厚度主要受风速影响,平均厚度460.09m,月变化呈"单峰型"分布。在02:00、08:00、14:00和20:00四个时次上混合层厚度都具有春季大于夏季大于冬季大于秋季的分布特点。经验证发现混合层厚度和不同稳定度等级的出现频率是影响空气质量的重要因子。 相似文献
14.
基于激光雷达和微波辐射计观测确定混合层高度方法的比较 总被引:2,自引:0,他引:2
利用苏州地区2010年1月4,7,16日和2月4日4天的激光雷达及微波辐射计观测资料,比较了不同遥感手段探测晴天大气混合层高度的差异,发现试验期间该地区的混合层高度在300~1500 m之间。利用梯度法、标准偏差法、小波法从激光雷达数据中提取混合层高度并进行了对比,结果表明三种方法都能较好地反演混合层高度并且一致性较好,三者差异主要存在于大气边界层的发展和消亡阶段;梯度法和小波法结果无明显差异,而标准偏差法结果稍高于其他方法。在此基础上,利用微波辐射计探测的大气温度,使用温度梯度法估算大气混合层高度,并与激光雷达探测结果进行了比较,结果表明,大多数情况下激光雷达探测结果高于微波辐射计观测结果;两种遥感手段有较好的相关性,相关系数为0.76。激光雷达同微波辐射计结果存在差异,尤其是在边界层的发展和消散阶段,这是由两种遥感手段探测原理不同造成的。 相似文献
15.
在t-lnp图上利用08时、14时气压和最低气温、最高气温,经过坐标转换求解早晨、中午混合层的气压和温度,然后根据等温大气压高公式计算混合层高度.该计算方法用VB 6.0编程,可自动从当日报文中读取数据,计算出混合层高度值,也可根据数值预报结果计算次日混合层高度. 相似文献
16.
本文主要进行了两部分工作;1.利用一套描述混合对流层平均状况的控制方程模拟混合层要素随时间的演变过程。对混合层高度的模拟,采用能量学方法,通过把在混合层顶的能量损耗五混合层内对流和机械湍流动能的产生联系起来,和到混合层顶热通量的参数化表达式,从而使模式方程产合。考虑了影响混合层演浮力,风切变及下沉等因子,并探索一种适合于数值天气预报模式的边界参数化方案。 相似文献
17.
本文利用2016年12月至2017年11月期间晴朗少云天气下的成都微脉冲激光雷达观测数据反演的混合层高度,与温江探空资料确定的混合层高度进行了对比和误差分析,结果表明:基于探空资料和激光雷达数据反演的混合层高度具有较好的一致性,两者相关系数达0.75,激光雷达反演的混合层高度略低于基于探空资料确定的值,在混合层高度为1000~2000m时,两种方法计算所得的值偏差幅度最小,约为20%;在1000m以内和2000m以上,偏差幅度略有增大,为26%;两种方法反演的混合层高度变化趋势较为一致,均呈现出12月、1月较低,4月、5月较高的特点;混合层高度具有明显的日变化特征:上午混合层高度迅速增高,午后增长速度减慢并发展到最大高度,日落后迅速降低;混合层内相对湿度的增加、残留层的存在是导致激光雷达反演混合层高度时产生较大误差的原因之一。 相似文献
18.
利用郑州市主城区1961—2020年气象观测资料和2014—2018年空气质量监测数据,分析了郑州主城区大气自净能力指数的长期变化趋势与影响因子以及2014—2018年主城区大气自净能力与PM2.5的关系。结果表明:郑州主城区大气自净能力指数30 a气候均值为4.42 t·(d·km2)-1,春季大气自净能力最强,为5.20 t·(d·km2)-1;秋季大气自净能力最弱,为3.88 t·(d·km2)-1,不利于对大气污染物的清除。1961—2020年郑州主城区大气自净能力呈显著的减弱趋势,其中1969年最强为6.85 t·(d·km2)-1,2020年最弱为3.06 t·(d·km2)-1。影响因子中,1961—1980年混合层厚度与大气自净能力指数呈正相关;日平均风速≥2.5 m·s-1的日数和小风日数与大气自净能力分别呈... 相似文献
20.
大气混合层高度的模式计算和分析 总被引:2,自引:1,他引:2
设计了一套描述混合对流层平均状况的平板模式.模拟了混合层平均要素随时间的演变过程。采用能量学方法,通过考虑影响混合层演变的浮力、风切变及下沉等因子,对混合层高度随时间变化的过程进行数值模拟计算,并与实际观测资料比较。结果表明.模式可以较好地应用于实际业务预报中,同时改进了模式的计算方法.分析了各种物理参数对混合层高度变化的不同影响和物理成因。 相似文献