共查询到20条相似文献,搜索用时 15 毫秒
1.
The preflare phase of the flare SOL2011-08-09T03:52 is unique in its long duration, in that it was covered by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Nobeyama Radioheliograph, and because it showed three well-developed soft X-ray (SXR) peaks. No hard X-rays (HXR) are observed in the preflare phase. Here we report that no associated radio emission at 17 GHz was found either, despite the higher sensitivity of the radio instrument. The ratio between the SXR peaks and the upper limit of the radio peaks is higher by more than one order of magnitude than the ratio in regular flares. The result suggests that the ratio between acceleration and heating in the preflare phase was different than in regular flares. Acceleration to relativistic energies, if any, occurred with lower efficiency. 相似文献
2.
The dynamic response of the solar atmosphere is examined with the use of self-consistent numerical solutions of the complete set of nonlinear, two-dimensional, hydromagnetic equations. Of particular interest are the magnetic energy build-up and the velocity field established by emerging flux at the base of an existing magnetic loop structure in a stationary atmosphere. For a plasma with a relatively low beta ( = 0.03) the magnetic energy build-up is approximately twice that of the kinetic energy, while the build-up in magnetic energy first exceeds but is eventually overtaken by the kinetic energy for a plasma with an intermediate beta ( = 3). The increased magnetic flux causes the plasma to flow upward near the loop center and downward near the loop edges for the low beta plasma. The plasma eventually flows downward throughout the lower portion of the loop carrying the magnetic field with it for the intermediate beta plasma. It is hypothesized that this latter case, and possibly the other case as well, may provide a reasonable simulation of the disappearance of prominences by flowing down into the chromosphere (a form of disparition brusque).The National Center for Atmospheric Research is sponsored by the National Science Foundation.Now at the School of Science and Engineering, The University of Alabama in Huntsville, Huntsville, Alabama 35807. 相似文献
3.
Jan Olof Stenflo 《Solar physics》1969,8(1):115-118
It is shown how the kinetic energy of the rotational motion of a sunspot can be transferred to electromagnetic energy in filamentary currents. The time needed for preconditioning the solar atmosphere for a flare varies within wide limits. For small flares it may be of the order of minutes; for large flares, of the order of hours or days.Presently Guest Investigator at the Mount Wilson and Palomar Observatories. 相似文献
4.
5.
A circuit model for filament eruptions and two-ribbon flares 总被引:2,自引:0,他引:2
We derive a circuit model for solar filament eruptions and two-ribbon flares which reproduces the slow energy build up and eruption of the filament, and the energy dissipation in a current sheet at the top of post-flare loops during the two-ribbon flare. In our model the free magnetic energy is concentrated in a current through the filament, another current through an underlying current sheet, and surface return currents. The magnetic field configuration, generated by these currents and a general photospheric background field, has a topology similar to the field topology derived from observations.We consider two circuits, that of the filament and its return current, and that of the current sheet and its return current. These circuits are inductively coupled and free energy stored in the filament in the pre-flare phase is found to be transferred to the sheet during the impulsive phase, and rapidly dissipated there. A comparable amount of magnetic energy is converted into kinetic energy of the ejected filament. The basic equations of the model are the momentum equations for the filament and the current sheet, and the induction equations for the filament and sheet circuits. The derivation of the equations is an extension of previous models by Kuperus and Raadu, Van Tend and Kuperus, Syrovatskii, and Kaastra. The set of equations is closed in the sense that only the initial conditions and a number of parameters, all related to pre-flare observables, are needed to calculate the evolution of the system. The pre-flare observations we need to determine these parameters, are: (1) a magnetogram, (2) an picture, (3) a measurement of the coronal density in the region, and (4) estimates of the photospheric velocity fields in the region.In the solutions for the evolution of the filament current sheet system we distinghuish 4 phases: (1) a slow energy build up, lasting for almost two days, during which the filament evolves quasi-statically, (2) a metastable state, lasting for about three hours, during which the filament is susceptible to flare triggers, and during which a current sheet emerges, (3) the eruptive phase, with strong acceleration of the filament, during which a large current is induced and dissipated in the current sheet, and energy is injected in the post-flare loops, and finally (4) a post-flare phase, in which the filament acceleration declines and the current sheet vanishes.From further numerical work we derive the following conclusions: (1) The magnetic flux input into the filament circuit has to surpass a certain threshold for an eruption to occur. Below that threshold we find solutions representing quiescent filaments. (2)Flare triggers are neither necessary nor sufficient for an eruption, but may set off the eruption during the metastable state. (3) The model reproduces the increase in shear in the filament prior to the eruption, through adecline of the filament current, in contrast to most models for filament eruptions. (4) The ratio of energy lost as kinetic energy of ejecta to the energy radiated away in the post-flare loops is sensitively dependent on the resistance of the current sheet. (5) Flare prediction is possible with this model, but the potential for triggering during the metastable state complicates the prediction of the exact moment of eruption.Former NAS/NRC Resident Research Associate.ST Systems Corporation. 相似文献
6.
Solar Physics - Vector magnetograms taken at the Okayama Astrophysical Observatory are studied. A sequence of procedures applied to the data for analysis are explained, and their validity is... 相似文献
7.
T. Sakurai 《Solar physics》1982,113(1-2):137-144
Vector magnetograms taken at the Okayama Astrophysical Observatory are studied. A sequence of procedures applied to the data for analysis are explained, and their validity is studied by examining the global magnetic force balance. 相似文献
8.
Preflare current sheets in the solar atmosphere 总被引:1,自引:0,他引:1
Neutral current sheets are expected to form in the solar atmosphere when photospheric motions or the emergence of new magnetic
flux causes oppositely directed magnetic fields to be pressed together. Magnetic energy may thus be stored slowly in excess
of the minimum energy associated with a purely potential field and released suddenly during a solar flare. For simplicity,
we investigate the neutral sheet which forms between two parallel line dipoles when either the distance between them decreases
or their dipole moments increase. It is found that, when the dipoles have approached by an amount equal to a tenth of their
original separation distance, the stored energy is comparable with that released in a major flare. In addition, a similarity
solution for one-dimensional magnetohydro-dynamic flow within such a neutral sheet is presented; it demonstrates that rapid
conversion of magnetic energy into heat is possible provided conditions at the edge of the neutral sheet are changing sufficiently
quickly. 相似文献
9.
(1) Highly flare-productive new emerging active regions are characterized by numerous small low-lying loops which frequently show a chaotic pattern. (2) Flare activity in such a region subsides as the chaotic loop structures relax and expand into a bipolar configuration. (3) The transition zone in such an active region is highly unstable as shown by broadened and shifted non-thermal line profiles of medium ionized elements like Si iii, Si iv, C iv, etc. (4) These transition zone instabilities which occur as isolated events in active regions of low flare productivity are often observed prior to flares. (5) Transition zone instabilities can be traced to the footpoints of active loops, and seem to be accompanied by heating of the loop. (6) The loops vary in size and show differing degrees of activity, with the brightest and most compact ones seemingly being in a pre-flare state which results in the catastrophic energy release along the loop during a flare. 相似文献
10.
S. W. Kahler 《Solar physics》1979,62(2):347-357
X-ray images from the AS&E telescope on Skylab are used to investigate coronal conditions in solar active regions during the 20-min periods preceding the X-ray onsets of small flares. The preflare or precursor phase is defined as a phase with a characteristic length or time scale significantly different from that of the rise phase. We show that there is no observational evidence of a requirement for a coronal preflare heating phase with a time scale longer than 2 min for small flares characterized by one or two loops. In 18 out of 25 cases the flaring X-ray structure was not the brightest feature in the preflare active region. The electron densities are estimated for preflare loops. 相似文献
11.
The physical state of the photosphere 1 h 50 min before a C1 solar flare on May 24, 2012, was studied. The spectropolarimetric data from the French-Italian THEMIS telescope (Tenerife Island, Spain) were used. The modeling was carried out through the inversion method using SIR [B. Ruiz Cobo and J. C. del Toro Iniesta, Astrophys. J. 398, 375–385 (1992)] code. Height distributions of temperature, magnetic field strength, and line-of-sight velocity were obtained. Nine semiempirical models of the photosphere were constructed. Each model has a two-component (a magnetic field component and nonmagnetic surroundings) structure. According to the obtained models, the magnetic field parameters and thermodynamic parameters did change significantly in the course of observations that lasted for 8 min. The models contain layers with increased and decreased temperature values. The magnetic field strength in these models varied, on average, from 0.2 T (lower photospheric layers) to 0.13 T (upper layers). The line-of-sight velocities did not exceed 2 km/s in lower and middle photospheric layers and rose to 5–6 km/s in the upper layers. The differences in the physical state and its changes occurring at different sites within the active region prior to the flare were revealed. 相似文献
12.
The kink instability may be responsible for compact loop flares since the instability is triggered once the twist in a coronal loop exceeds a critical value. During the non-linear evolution of the instability a large current builds up, reconnection can occur and the magnetic energy released due to reconnection may explain the rapid heating of the flare. However, there has been some debate over the nature of the current concentration and, in particular, whether the current saturates or whether it is a current sheet, and what influences these possible states. In this paper we consider two similar equilibria having a twist function which rises to a peak and then falls off. One is steeper than the other allowing us to investigate whether the steepness of the peak has any effect on the nature of the current. For each profile, we run the code on five different grid resolutions and see how the maximum of the current scales with grid resolution. We also look for behavior in the x-component of the velocity which might be similar to the step-function behavior associated with singularities in the linear kink instability. For both profiles we find that the current scales almost linearly with resolution and that v
x drops steeply at the position of the current concentration. This suggests that, for these particular profiles, there are indications of current sheet formation and that the steepness in the peak of the twist does not affect the nature of the current. 相似文献
13.
The kink instability may be responsible for compact loop flares since the instability is triggered once the twist in a coronal loop exceeds a critical value. During the non-linear evolution of the instability a large current builds up, reconnection can occur and the magnetic energy released due to reconnection may explain the rapid heating of the flare. However, there has been some debate over the nature of the current concentration and, in particular, whether the current saturates or whether it is a current sheet, and what influences these possible states. In this paper we consider two similar equilibria having a twist function which rises to a peak and then falls off. One is steeper than the other allowing us to investigate whether the steepness of the peak has any effect on the nature of the current. For each profile, we run the code on five different grid resolutions and see how the maximum of the current scales with grid resolution. We also look for behavior in the x-component of the velocity which might be similar to the step-function behavior associated with singularities in the linear kink instability. For both profiles we find that the current scales almost linearly with resolution and that v
x drops steeply at the position of the current concentration. This suggests that, for these particular profiles, there are indications of current sheet formation and that the steepness in the peak of the twist does not affect the nature of the current. 相似文献
14.
《Chinese Astronomy and Astrophysics》1981,5(2):123-127
B. C. Low's study on non-linear force-free magnetic field is extended in an effort to explain the preflare low-lying magnetic loops observed by Skylab. Using Low's method of analytical continuation, a revised boundary-value problem is solved analytically. It is shown that high magnetic loops will evolve into low-lying ones when both the shear angle between field line and the neutral line increases with time and the foot-points of the field lines close upon the neutral line. The density, temperature and electric current density are high in these lowlying loops, thus providing conditions for flare (especially proton flare) build-up. 相似文献
15.
《天文和天体物理学研究(英文版)》2016,(1)
Solar active region(AR) 11283 is a very magnetically complex region and it has produced many eruptions. However, there exists a non-eruptive filament in the plage region just next to an eruptive one in the AR, which gives us an opportunity to perform a comparison analysis of these two filaments. The coronal magnetic field extrapolated using our CESE–MHD–NLFFF code reveals that two magnetic flux ropes(MFRs) exist in the same extrapolation box supporting these two filaments, respectively. Analysis of the magnetic field shows that the eruptive MFR contains a bald-patch separatrix surface(BPSS) cospatial very well with a pre-eruptive EUV sigmoid, which is consistent with the BPSS model for coronal sigmoids. The magnetic dips of the non-eruptive MFRs match Hα observation of the non-eruptive filament strikingly well, which strongly supports the MFR-dip model for filaments. Compared with the non-eruptive MFR/filament(with a length of about 200 Mm), the eruptive MFR/filament is much smaller(with a length of about 20 Mm), but it contains most of the magnetic free energy in the extrapolation box and holds a much higher free energy density than the non-eruptive one. Both the MFRs are weakly twisted and cannot trigger kink instability. The AR eruptive MFR is unstable because its axis reaches above a critical height for torus instability, at which the overlying closed arcades can no longer confine the MFR stably. On the contrary, the quiescent MFR is very firmly held by its overlying field, as its axis apex is far below the torus-instability threshold height. Overall, this comparison investigation supports that an MFR can exist prior to eruption and the ideal MHD instability can trigger an MFR eruption. 相似文献
16.
Hα observations, using the Multichannel Subtractive Double Pass (MSDP) spectrograph operating on the Meudon Solar Tower, have been made of an active region filament which undergoes a ‘disparition brusque’. The period of observation was from 10 ∶ 45 to 13 ∶ 30 UT on 22 June, 1981. Velocity and intensity fluctuations in Hα were measured. The proper motions of ejecta were followed allowing their trajectories and vector velocities to be determined. To model the dynamics of ejecta several models using thermal or magnetic driving forces are compared. The most promising model explains the motion as the consequence of magnetic stresses acting on an isolated magnetized plasmoïd in a diverging flux tube. 相似文献
17.
Energy transport in a hot flare plasma is examined with particular reference to the influence of fluid motion. On the basis of dimensional considerations the dynamical timescale of the flare plasma is shown to be comparable to the timescale for energy loss by conduction and radiation. It is argued that mass motion is likely to have a profound influence on the evolution of the flare.The detailed response of a flare filament to a localized injection of energy is then analyzed. Radiative, conductive and all dynamical terms are included in the energy equation. Apart from greatly enhancing the rate of propagation of the thermal disturbance through space, mass motion is found to be significant in transferring energy through the moving fluid.Finally the predicted thermal structure is discussed and it is concluded that the presence of mass motions in the flare may be inferred from the form of the soft X-ray differential emission measure. 相似文献
18.
H observations, using the Multichannel Subtractive Double Pass (MSDP) spectrograph operating on the Meudon Solar Tower, have been made of an active region filament which undergoes a disparition brusque. The period of observation was from 10 45 to 13 30 UT on 22 June, 1981. Velocity and intensity fluctuations in H were measured. The proper motions of ejecta were followed allowing their trajectories and vector velocities to be determined. To model the dynamics of ejecta several models using thermal or magnetic driving forces are compared. The most promising model explains the motion as the consequence of magnetic stresses acting on an isolated magnetized plasmoïd in a diverging flux tube. 相似文献
19.
《New Astronomy》2014
The plasma from solar filament eruptions sometimes falls down to the lower solar atmosphere. These interesting events can help us to understand the properties of downflows, such as the temperature and the conversion between kinetic energy and thermal energy. We analyze the case of a filament eruption in active region NOAA 11283 and brightening caused by the return of filament material on September 7 and 8, 2011, observed by the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory (SDO). Magnetic flux cancellation was observed as a result of the eruption after the eruptive filament started to ascend. Another filament near the eruptive filament was disturbed by an extreme ultraviolet (EUV) wave that was triggered by the eruptive filament, causing it to oscillate. Based on coronal seismology, the mean magnetic field strength in the oscillatory filament was estimated to be approximately 18 ± 2 G. Some plasma separated from the filament and fell down to the solar northwest surface after the filament eruption. The velocities of the downflows increased at accelerations lower than the gravitational acceleration. The main characteristic temperature of the downflows was about 5 × 104 K. When the plasma blobs fell down to lower atmospheric heights, the high-speed downward-travelling plasma collided with plasma at lower atmospheric heights, causing the plasma to brighten. The brightening was observed in all 8 AIA channels, demonstrating that the temperature of the plasma in the brightening covered a wide range of values, from 105 K to 107 K. This brightening indicates the conversion between kinetic energy and thermal energy. 相似文献
20.
H. Zirin 《Solar physics》1976,50(2):399-404
A large surge was observed on September 17, 1971, part of which, after travelling 200 000 km through the corona, returned to the surface to form a filament. The filament lasted about 30 min, then rose up and returned to the source of the surge. We interpret this as the filling of a semi-stable magnetic trap.The energetics of radio, X-ray, and surge expulsion are estimated. The radio spectrum and flux correspond to a thermal source of area 4 (arcmin)2, T 190 000 K, N
e
2
V 7 × 1048, which is optically deep at 8800 MHz.The soft X-ray source has T 12 × 106 K, N
e
2
V 3 × 1048; and if an equal mass is expelled in the surge, the kinetic energy of the surge is similar to the thermal energy of the X-ray source. 相似文献