首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
西伯利亚高压对亚洲大陆的气候影响分析   总被引:36,自引:16,他引:36  
西伯利亚高压是冬季影响亚洲大陆地区的重要环流因子 ,本文用冬季 (1~ 3月 ) 70°~ 12 0°E ,40°~ 6 0°N区域平均海平面气压值代表其强度 ,分析其变化特征。结果表明 ,从 192 2年到 1970年代中期 ,西伯利亚高压略有增强趋势 ,但并不显著。但近 2 0多年来的显著减弱非常突出。用NCAR资料计算的线性趋势是 - 1.78hPa/ 10a(1976— 2 0 0 0年 ) ,用CRU气压资料计算的趋势是 - 2 .15hPa/ 10a(1976— 1995年 )。西伯利亚高压对中高纬亚洲大陆平均 (30°~ 140°E ,30°~ 70°N)温度和降水都有显著影响 ,与两个要素的相关系数分别达到 - 0 .5 8和 - 0 .44。如果同时考虑其他的影响因子 (如北极涛动、欧亚遥相关型等 ) ,72 %的温度变化及 2 6 %的降水变化能得到解释。其中北极涛动对亚洲大陆的温度贡献最高达到 30 % ,西伯利亚高压的贡献为 2 4%。而区域平均降水变化的 9.8%与西伯利亚高压有关  相似文献   

2.
In this study, regional climate changes for seventy years (1980–2049) over East Asia and the Korean Peninsula are investigated using the Special Reports on Emission Scenarios (SRES) B1 scenario via a high-resolution regional climate model, and the impact of global warming on extreme climate events over the study area is investigated. According to future climate predictions for East Asia, the annual mean surface air temperature increases by 1.8°C and precipitation decreases by 0.2 mm day?1 (2030–2049). The maximum wind intensity of tropical cyclones increases in the high wind categories, and the intra-seasonal variation of tropical cyclone occurrence changes in the western North Pacific. The predicted increase in surface air temperature results from increased longwave radiations at the surface. The predicted decrease in precipitation is caused primarily by northward shift of the monsoon rain-band due to the intensified subtropical high. In the nested higher-resolution (20 km) simulation over the Korean Peninsula, annual mean surface air temperature increases by 1.5°C and annual mean precipitation decreases by 0.2 mm day?1. Future surface air temperature over the Korean Peninsula increases in all seasons due to surface temperature warming, which leads to changes in the length of the four seasons. Future total precipitation over the Korean Peninsula is decreased, but the intensity and occurrence of heavy precipitation events increases. The regional climate changes information from this study can be used as a fruitful reference in climate change studies over East Asia and the Korean peninsula.  相似文献   

3.
The limited length and spatial coverage of instrumental climate data for many areas of the Southern Hemisphere impedes the study of atmosphere-ocean dynamics prior to the past century. Such analyses are important for understanding interannual to decadal variation of the Southern Hemisphere circulation and whether recent changes are related to anthropogenic effects rather than natural variability. We use a middle- to high-latitude tree-ring width data set (from Tasmania, New Zealand and Tierra del Fuego) to reconstruct sea-level pressure (SLP) variability spanning the Tasman Sea and vicinity since ad 1740. The variables reconstructed are austral summer (November–March) SLP for Hobart, Tasmania (43°S, 147°E) and the Chatham Islands, New Zealand (44°S, 177°E), as well as a meridional circulation index (Hobart-Chatham Islands index) which measures the pressure gradient between these two stations. The three reconstructions are well verified statistically and capture between 40 and 48% of the variance in the SLP data. The instrumental and estimated SLP show similar spatial patterns of correlation with the sea surface temperature (SST) field for the Pacific. Statistically significant (above 95% level) 3–3.5 year spectral peaks are identified in the three reconstructions using multitaper spectral analysis, and a significant 4–5 year peak is found in both the Chatham Islands and Hobart-Chatham Islands SLP reconstructions. These two modes are within the bandwidth of the El Nino-Southern Oscillation. Although very speculative, they may also correspond to a proposed Antarctic circumpolar wave of SLP, SST, wind and sea-ice extent, believed to play a key role in atmosphere-ocean circulation for the Southern Hemisphere. Received: 30 November 1998 / Accepted: 13 December 1999  相似文献   

4.
中高纬林区具有得天独厚的气候资源,在兼顾环境保护、生态平衡、结构调整和绿色产业等方面的同时,提出了大兴安岭地区应以“天然林保护工程+冷凉型农业+生态旅游”综合型产业为主,以北药、山野产品为辅的可持续发展建议。  相似文献   

5.
6.
While time-slice simulations with atmospheric general circulation models (GCMs) have been used for many years to regionalize climate projections and/or assess their uncertainties, there is still no consensus about the method used to prescribe sea surface temperature (SST) in such experiments. In the present study, the response of the Indian summer monsoon to increasing amounts of greenhouse gases and sulfate aerosols is compared between a reference climate scenario and three sets of time-slice experiments, consisting of parallel integrations for present-day and future climates. Different monthly mean SST boundary conditions have been tested in the present-day integrations: raw climatological SST derived from the reference scenario, observed climatological SST, and observed SST with interannual variability. For future climate, the SST forcing has been obtained by superimposing climatological monthly mean SST anomalies derived from the reference scenario onto the present-day SST boundary conditions. None of these sets of time-slice experiments is able to capture accurately the response of the Indian summer monsoon simulated in the transient scenario. This finding suggests that the ocean–atmosphere coupling is a fundamental feature of the climate system. Neglecting the SST feedback and variability at the intraseasonal to interannual time scales has a significant impact on the projected monsoon response to global warming. Adding interannual variability in the prescribed SST boundary conditions does not mitigate the problem, but can on the contrary reinforce the discrepancies between the forced and coupled experiments. The monsoon response is also shown to depend on the simulated control climate, and can therefore be sensitive to the use of observed rather than model-derived SSTs to drive the present-day atmospheric simulation, as well as to any approximation in the prescribed radiative forcing. While such results do not challenge the use of time-slice experiments for assessing uncertainties and understanding mechanisms in transient scenarios, they emphasize the need for high-resolution coupled atmosphere-ocean GCMs for dynamical downscaling, or at least for high-resolution atmospheric GCMs coupled with a slab or a regional ocean model.  相似文献   

7.
This study assesses future climate change over East Asia using the Global/Regional Integrated Model system—Regional Model Program (RMP). The RMP is forced by two types of future climate scenarios produced by the Hadley Center Global Environmental Model version 2 (HG2); the representative concentration pathways (RCP) 4.5 and 8.5 scenarios for the intergovernmental panel on climate change fifth assessment report (AR5). Analyses for the current (1980–2005) climate are performed to evaluate the RMP’s ability to reproduce precipitation and temperature. Two different future (2006–2050) simulations are compared with the current climatology to investigate the climatic change over East Asia centered in Korea. The RMP satisfactorily reproduces the observed seasonal mean and variation of precipitation and temperature. The spatial distribution of the simulated large-scale features and precipitation by the RMP is generally less reflective of current climatic conditions than that is given by the HG2, but their inter-annual variations in East Asia are better captured by the RMP. Furthermore, the RMP shows higher reproducibility of climate extremes including excessive heat wave and precipitation events over South Korea. In the future, strong warming is distinctly coupled with intensified monsoonal precipitation over East Asia. In particular, extreme weather conditions are increased and intensified over South Korea as follows: (1) The frequency of heat wave events with temperature greater than 30 °C is projected to increase by 131 and 111 % in the RCP 8.5 and 4.5 downscaling, relative to the current climate. (2) The RCP 8.5 downscaling shows the frequency and variability of heavy rainfall to increase by 24 and 31.5 %, respectively, while the statistics given by the RCP 4.5 downscaling are similar to those of the current climate.  相似文献   

8.
Rana  Arun  Nikulin  Grigory  Kjellstr&#;m  Erik  Strandberg  Gustav  Kupiainen  Marco  Hansson  Ulf  Kolax  Michael 《Climate Dynamics》2020,54(5):2883-2901
Climate Dynamics - Two ensembles of climate simulations, one global and one regional, are used to investigate model errors and projected climate change in seasonal mean temperature and...  相似文献   

9.
A global atmospheric model is used to calculate the monthly river flow for nine of the world's major high latitude rivers for the present climate and for a doubled CO2 climate. The model has a horizontal resolution of 4° × 5°, but the model's runoff from each grid box is quartered and added to the appropriate river drainage basin on a 2° × 2.5° resolution. A routing scheme is used to move runoff from a grid box to its neighboring downstream grid box and ultimately to the mouth of the river. In a model simulation in which atmospheric carbon dioxide is doubled, mean annual precipitation and river flow increase for all of these rivers, increased outflow at the river mouths begins earlier in the spring, and the maximum outflow occurs approximately one month sooner due to an earlier snow melt season. In the doubled CO2 climate, snow mass decreases for the Yukon and Mackenzie rivers in North America and for rivers in northwestern Asia, but snow mass increases for rivers in northeastern Asia.  相似文献   

10.
11.
A continuous 10-year simulation in Asia for the period of 1 July 1988 to 31 December 1998 was conducted using the Regional Integrated Environmental Model System (RIEMS) with NCEP Reanalysis II data as the driving fields. The model processes include surface physics state package (BATS 1e), a Holtslag explicit planetary boundary layer formulation, a Grell cumulus parameterization, and a modified radiation package (CCM3). Model-produced surface temperature and precipitation are compared with observations from 1001 meteorology stations distributed over Asia and with the 0.5 × 0.5 CRU gridded dataset. The analysis results show that: (1) RIEMS reproduces well the spatial pattern and the seasonal cycle of surface temperature and precipitation; (2) When regionally averaged, the seasonal mean temperature biases are within 1–2C. For precipitation, the model tends to give better simulation in winter than in summer, and seasonal precipitation biases are mostly in the range of ?12%–50%; (3) Spatial correlation coefficients between observed and simulated seasonal precipitation are higher in north of the Yangtze River than in the south and higher in winter than in summer; (4) RIEMS can well reproduce the spatial pattern of seasonal mean sea level pressure. In winter, the model-simulated Siberian high is stronger than the observed. In summer, the simulated subtropical high is shifted northwestwards; (5) The temporal evolution of the East Asia summer monsoon rain belt, with steady phases separated by more rapid transitions, is reproduced.  相似文献   

12.
Regional variability of climate change hot-spots in East Asia   总被引:2,自引:0,他引:2  
The regional climate change index (RCCI) is employed to investigate hot-spots under 21st century global warming over East Asia. The RCCI is calculated on a 1-degree resolution grid from the ensemble of CMIP3 simulations for the B1, A1B, and A2 IPCC emission scenarios. The RCCI over East Asia exhibits marked sub-regional variability. Five sub-regional hot-spots are identified over the area of investigation: three in the northern regions (Northeast China, Mongolia, and Northwest China), one in eastern China, and one over the Tibetan Plateau. Contributions from different factors to the RCCI are discussed for the sub-regions. Analysis of the temporal evolution of the hot-spots throughout the 21st century shows different speeds of response time to global warming for the different sub-regions. Hot-spots firstly emerge in Northwest China and Mongolia. The Northeast China hot-spot becomes evident by the mid of the 21st century and it is the most prominent by the end of the century. While hot-spots are generally evident in all the 5 sub-regions for the A1B and A2 scenarios, only the Tibetan Plateau and Northwest China hot-spots emerge in the B1 scenario, which has the lowest greenhouse gas (GHG) concentrations. Our analysis indicates that sub-regional hot-spots show a rather complex spatial and temporal dependency on the GHG concentration and on the different factors contributing to the RCCI.  相似文献   

13.
How well the climate models simulate extreme temperature over East Asia and how the extreme indices would change under anthropogenic global warming are investigated. The indices studied include hot days (HD), tropical nights (TN), growing degree days (GDD), and cooling degree days (CDD) in summer and heating degree days (HDD) and frost days (FD) in winter. The representative concentration pathway 4.5 (RCP 4.5) experiments for the period of 2075–2099 are compared with historical simulations for the period of 1979–2005 from 15 coupled models that are participated in phase 5 of the Coupled Model Intercomparison Project (CMIP5). To optimally estimate future change and its uncertainty, groups of best models are selected based on Taylor diagrams, relative entropy, and probability density function (PDF) methods previously suggested. Overall, the best models’ multi-model ensemble based on Taylor diagrams has the lowest errors in reproducing temperature extremes in the present climate among three methods. Selected best models in three methods tend to project considerably different changes in the extreme indices from each other, indicating that the selection of reliable models are of critical importance to reduce uncertainties. Three groups of best models show significant increase of summerbased indices but decrease of the winter-based indices. Over East Asia, the most significant increase is seen in the HD (336 ± 23.4% of current climate) and the most significant decrease is appeared in the HDD (82 ± 4.2%). It is suggested that the larger future change in the HD is found over in the Southeastern China region, probably due to a higher local maximum temperature in the present climate. All of the indices show the largest uncertainty over Southeastern China, particularly in the TN (~3.9 times as large as uncertainty over East Asia) and in the HD (~2.4). It is further noted that the TN reveals the largest uncertainty over three East Asian countries (~1.7 and 1.4 over Korea and Japan, respectively). These future changes in extreme temperature events have an important implication for energy-saving applications and human molarity in the future.  相似文献   

14.
Theoretical and Applied Climatology - In this article, we employ statistical bias-correction to examine the changing climate of the latest 18 Coupled Model Intercomparison Project Phase 6 (CMIP6)...  相似文献   

15.
Two integrated assessment models, one for climate change on a global scale (IMAGE 2) and another for the regional analysis of the impacts of acidifying deposition (RAINS), have been linked to assess the impacts of reducing sulphur emission on ecosystems in Asia and Europe. While such reductions have the beneficial effect of reducing the deposition of acidifying compounds and thus the exceedance of critical loads of ecosystems, they also reduce the global level of sulphate aerosols and thus enhance the impact of increased emissions of greenhouse gases, and consequently increase the risk of potential vegetation changes. The calculations indicate that about 70% of the ecosystems in Asia would be affected by either acid deposition or climate change in the year 2100 (up from 20% in 1990) for both sulphur emission scenarios (controlled and uncontrolled), whereas in Europe the impacted area would remain at a level of about 50%, with a dip early next century. More generally, the effects of reducing sulphur emissions and thus enhancing climate change would about balance for the Asian region, whereas for Europe the desirable impact of sulphur emission reductions would greatly outweigh its undesirable effects.  相似文献   

16.
Variability of modeled runoff over China and its links to climate change   总被引:1,自引:0,他引:1  
Runoff is a key component of the water cycle over land, with direct impact on regional ecosystems and water resources. This study investigates historical runoff variability and change over China in 1951–2008 using the Community Land Model and in situ observations of atmospheric forcing fields. Model simulations are first evaluated against in situ observations of streamflow for four major rivers, as well as soil moisture and water table depths, before further analysis is conducted. Then, quantile regression is used to analyze runoff variability and its relation to precipitation and temperature. The spatial pattern of monthly climatological runoff over China is characterized by maxima in the humid south and a gradual decrease toward the arid northwest. Runoff increases in the humid south, slightly decreases in the transition zone, and shows nonsignificant trends in the arid northwest. The footprint of decadal variability can be seen from 1951 to 2008. The annual precipitation advances the spatiotemporal variability of runoff despite locally distinct runoff–precipitation responses. The runoff-temperature relationship shows complex spatiotemporal characteristics that depend on the feedback from precipitation.  相似文献   

17.
Three AMIP-type 10 year simulations have been performed with climate versions of the ARPEGE-IFS model in order to simulate the European climate. The first one uses the standard T42 truncation. The second one uses a high resolution T106 truncation. The horizontal resolution of the third one varies between about T200 over Europe and T21 over the southern Pacific. The winter time general circulation improves in the Atlantic sector as the resolution increases. This is true for the time-mean pattern and for the transient and low-frequency variability. In summer time and in the southern hemisphere, the 3 versions of the model produce reasonable climatologies. When restricted to the European continent, the model verification against the observed climatology shows a reduction of the biases in temperature and, to a lesser extent, in precipitation with the increase in resolution. The use of a variable resolution GCM is a valid alternative to model nesting. The model is too warm in winter and too cold in summer, too wet in northern Europe and too dry in southern Europe.  相似文献   

18.
The use of a relatively high resolution general circulation model (the Meteorological Office 5-layer model) to determine climate changes for impact studies is evaluated. The simulation of present day climate over Western Europe is assessed by comparing not only different seasons with climatological data, but also the mean annual cycle and the frequency of extreme events. It is found that while the broad features of the simulation are satisfactory, the model produces too many cold episodes in spring, and an excessive number of wet days over northern Europe. When atmospheric CO2 concentrations are quadrupled, and sea surface temperatures and sea ice extents changed appropriately, the number of cold episodes is reduced and precipitation is less frequent in summer and autumn over much of Europe, and throughout the year in the south. The relevance of both the model data and the statistical tests to climate impact studies is discussed.  相似文献   

19.
西伯利亚高压与冬季欧亚大陆热力变化的关系   总被引:1,自引:1,他引:1  
金燕  晏红明  杨素雨  朱勇 《气象科学》2012,32(5):542-549
主要应用EOF方法和相关、合成、小波等分析方法,初步分析了冬季欧亚大陆北部区域地面热力变化特征和西伯利亚高压(SH)的相互联系,结果表明:冬季欧亚大陆北部与南部不同区域间存在反向的热力差异,其中北部区域变化最为强烈,其地面气温存在2~4a为周期的年际振荡和准10 a为周期的年代际变化特征.SH与欧亚大陆北部区域热力变化有着紧密联系,当SH位置偏南(北),则该区域地面温度偏高(低),即SH平均纬度位置南北移动1.0°时,该区域的平均气温就变化0.65℃.进一步分析表明欧亚大陆北部区域热力异常和SH中心纬度位置的南北摆动与中高纬度环流经向度异常所激发的冷、暖平流的活动有密切联系.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号