首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spread of invasive Australia native Acacia tree species threatens biodiversity and adversely affecting on vegetative structure and function, including plant community composition, quantity and quality worldwide. It is essential to provide researchers and land managers for biological invasion science and management with accurate information of the distribution of invasive alien species and their dynamics. Remotely sensed data that reveal spatial distribution of the earth’s surface features/objects provide great potential for this purpose. Consistent satellite monitoring of alien invasive plants is often difficult because of lack of sufficient spectral contrast between them and co-occurring plants species. Time series analysis of spectral properties of the species can reveal timing of their variations among adjacent species. This information can improve accuracy of invasive species discrimination and mapping using remote sensing data at large scale. We sought to identify and better understand the optimal time window and key spectral features sufficient to detect invasive Acacia trees in heterogeneous forested landscape in South Africa. We explored one-year (January to December 2018) time series spectral bands and vegetation indices derived from optical Copernicus Sentinel-2 data. The attributes correspond to geographical information of invasive Acacia and native species recorded during a field survey undertaken from 21 February to 25 February 2018 over Kwa-Zulu Natal grasslands landscape, in South Africa. The results showed comparable separability prospects between times series of spectral bands and that of vegetation indices.Substantial differences between Acacia species and native species were observed from spectral indices and spectral bands which are sensitive to Leaf Area Index, canopy chlorophyll and nitrogen concentrations. The results further revealed spectral differences between Acacia species and co-occurring native vegetation in April (senescence for deciduous plants), June-July (dry season), September (peak flowering period of Acacia spp) and December (leaf green-up) with vegetation indices (overall accuracy > 80 %). While spectral bands showed the beginning of the growing season (November–January) and peak vegetation productivity (February-March) as the optimal seasons or dates for image acquisition for discriminating Acacias from its co-occurring native species (overall accuracy > 80 %). In general, the use of Sentinel-2 time series spectral bands and vegetation indices has increased our understanding of Australian Acacias spectral dynamics, and proved that the sentinel-2 data is useful for characterization and monitoring Acacias over a large scale. Our results and approach could assist in deriving detailed geographic information of the species and assessment of a spread invasive plant species and severity of invasion.  相似文献   

2.
Vegetation maps are essential tools for the conservation and management of landscapes as they contain essential information for informing conservation decisions. Traditionally, maps have been created using field-based approaches which, due to limitations in costs and time, restrict the size of the area for which they can be created and frequency at which they can be updated. With the increasing availability of satellite sensors providing multi-spectral imagery with high temporal frequency, new methods for efficient and accurate vegetation mapping have been developed. The objective of this study was to investigate to what extent multi-seasonal Sentinel-2 imagery can assist in mapping complex compositional classifications at fine spatial scales. We deliberately chose a challenging case study, namely a visually and structurally homogenous scrub vegetation (known as kwongan) of Western Australia. The classification scheme consists of 24 target classes and a random 60/40 split was used for model building and validation. We compared several multi-temporal (seasonal) feature sets, consisting of numerous combinations of spectral bands, vegetation indices as well as principal component and tasselled cap transformations, as input to four machine learning classifiers (Support Vector Machines; SVM, Nearest Neighbour; NN, Random Forests; RF, and Classification Trees; CT) to separate target classes. The results show that a multi-temporal feature set combining autumn and spring images sufficiently captured the phenological differences between the classes and produced the best results, with SVM (74%) and NN (72%) classifiers returning statistically superior results compared to RF (65%) and CT (50%). The SWIR spectral bands captured during spring, the greenness indices captured during spring and the tasselled cap transformations derived from the autumn image emerged as most informative, which suggests that ecological factors (e.g. shared species, patch dynamics) occurring at a sub-pixel level likely had the biggest impact on class confusion. However, despite these challenges, the results are auspicious and suggest that seasonal Sentinel-2 imagery has the potential to predict compositional vegetation classes with high accuracy. Further work is needed to determine whether these results are replicable in other vegetation types and regions.  相似文献   

3.
Invasive species have been the focus of environmentalists due to their undesired impact on the ecosystem. Spread of Lantana (Lantana camara L.), an invasive plant species, has been found in diverse geophysical environments causing a threat to the native flora. Various eradication programmes have been attempted such as burning, chemical sprays, bio-control agents and physical plugging mechanism for removing such invasive species in India. The efforts and success of these programmes need to be augmented with a correct, quick and cost effective technique of mapping in order to locate them, understand their spatial extent and hence make the process comprehensive. Also Lantana’s appearance as dense vegetation patches in remote sensing data causes problems for estimating forest canopy density. Remote sensing provides a possible solution in qualitatively and quantitatively evaluating terrestrial surface vegetation cover using spectral measure-ments. This research paper addresses issues and techniques adopted to detect and extract Lantana, and can be used for various applications in forestry as well as in eradication programmes. This study attempted to understand the appropriate band combination using Landsat data and generating vegetation indices in order to extract Lantana patches in an accurate manner. Twenty nine different vegetation indices were analyzed for their effectiveness in differentiating Lantana from other classes. The study showed that SAVI (Soil Adjusted Vegetation Index) is most favorable in discriminating Lantana followed by Perpendicular Vegetation Index-3 in the optimum bio-window (February to April).  相似文献   

4.
Reviews     
Abstract

Vegetation and rural land use show some of the greatest variety both in what and in how they are depicted on topographic maps. This paper discusses the various approaches that have been adopted to the selection of information to be shown on non-specialist maps. It also looks at the different ways in which vegetation and rural land use are depicted on a range of published map.  相似文献   

5.
Abstract

The content of topographic and planimetric maps in relation to vegetation is examined with reference to the evaluation of contouring, the degree to which vegetation impedes movement, forestry, recreation, the planning of development projects, route planning, vegetation as base map information, and land use. This is an extension of the paper published in the Cartographic Journal, vol. 2, no. 2, and refers in particular to Africa South of the Sahara.  相似文献   

6.
Wetlands provide habitat for a wide variety of plant and animal species and contribute significantly to overall biodiversity in Ireland. Despite these known ecosystem services, the total wetland area in Ireland has reduced significantly over the past few decades leading to an ongoing need to protect such environments. The EU Habitats Directive (92/43/EEC) has recognised several wetlands types as “priority” habitats. This study concentrates on a subset of the priority habitats focussing on some groundwater dependent terrestrial ecosystems, (in particular calcareous fens and turloughs), as well as raised bogs. Monitoring these sites across the country by field visits is resource-intensive. Therefore, this study has evaluated remote sensing as a potentially cost-effective tool for monitoring the ecological health of the wetlands. Identification and presence of certain vegetation communities can indicate the condition of the wetland, which can be used for monitoring, for example, activities causing degradation or the progress of restoration attempts. The ecological composition of the wetlands has been analysed using open-source Sentinel-2 data. 10 bands of Sentinel-2 Level-2 data and 3 indices, Normalised Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and Normalised Difference Water Index (NDWI) were used to create vegetation maps of each wetland using Bagged Tree (BT) ensemble classifier and graph cut segmentation also known as MAP (maximum a posteriori) estimation. The proposed methodology has been validated on five raised bogs, five turloughs, and three fens at different times during 2017 and 2018 from which three case studies are presented. An overall classification accuracy up to 87% depending on the size of the vegetation community within each wetland has been achieved which suggests that the proposed method is appropriate for wetland health monitoring.  相似文献   

7.
Spatial information of the dominant species of submerged aquatic vegetation (SAV) is essential for restoration projects in eutrophic lakes, especially eutrophic Taihu Lake, China. Mapping the distribution of SAV species is very challenging and difficult using only multispectral satellite remote sensing. In this study, we proposed an approach to map the distribution of seven dominant species of SAV in Taihu Lake. Our approach involved information on the life histories of the seven SAV species and eight distribution maps of SAV from February to October. The life history information of the dominant SAV species was summarized from the literature and field surveys. Eight distribution maps of the SAV were extracted from eight 30 m HJ-CCD images from February to October in 2013 based on the classification tree models, and the overall classification accuracies for the SAV were greater than 80%. Finally, the spatial distribution of the SAV species in Taihu in 2013 was mapped using multilayer erasing approach. Based on validation, the overall classification accuracy for the seven species was 68.4%, and kappa was 0.6306, which suggests that larger differences in life histories between species can produce higher identification accuracies. The classification results show that Potamogeton malaianus was the most widely distributed species in Taihu Lake, followed by Myriophyllum spicatum, Potamogeton maackianus, Potamogeton crispus, Elodea nuttallii, Ceratophyllum demersum and Vallisneria spiralis. The information is useful for planning shallow-water habitat restoration projects.  相似文献   

8.
In remote sensing the identification accuracy of mangroves is greatly influenced by terrestrial vegetation. This paper deals with the use of specific vegetation indices for extracting mangrove forests using Earth Observing-1 Hyperion image over a portion of Indian Sundarbans, followed by classification of mangroves into floristic composition classes. Five vegetation indices (three new and two published), namely Mangrove Probability Vegetation Index, Normalized Difference Wetland Vegetation Index, Shortwave Infrared Absorption Index, Normalized Difference Infrared Index and Atmospherically Corrected Vegetation Index were used in decision tree algorithm to develop the mangrove mask. Then, three full-pixel classifiers, namely Minimum Distance, Spectral Angle Mapper and Support Vector Machine (SVM) were evaluated on the data within the mask. SVM performed better than the other two classifiers with an overall precision of 99.08%. The methodology presented here may be applied in different mangrove areas for producing community zonation maps at finer levels.  相似文献   

9.
Vegetation mapping is a priority when managing natural protected areas. In this context, very high resolution satellite remote sensing data can be fundamental in providing accurate vegetation cartography at species level. In this work, a complete processing methodology has been developed and validated in a complex vulnerable coastal-dune ecosystem. Specifically, the analysis has been carried out using WorldView-2 imagery, which offers spatial and spectral resolutions. A thorough assessment of 5 atmospheric correction models has been performed using real reflectance measures from a field radiometry campaign. To select the classification methodology, different strategies have been evaluated, including additional spectral (23 vegetation indices) and spatial (4 texture parameters) information to the multispectral bands. Likewise, the application of linear unmixing techniques has been tested and abundance maps of each plant species have been generated using the library of spectral signatures recorded during the campaign. After the analysis conducted, a new methodology has been proposed based on the use of the 6S atmospheric model and the Support Vector Machine classification algorithm applied to a combination of different spectral and spatial input data. Specifically, an overall accuracy of 88,03% was achieved combining the corrected multispectral bands plus a vegetation index (MSAVI2) and texture information (variance of the first principal component). Furthermore, the methodology has been validated by photointerpretation and 3 plant species achieve significant accuracy: Tamarix canariensis (94,9%), Juncus acutus (85,7%) and Launaea arborescens (62,4%). Finally, the classified procedure comparing maps for different seasons has also shown robustness to changes in the phenological state of the vegetation.  相似文献   

10.
Mapping the cover of invasive species using remotely sensed data alone is challenging, because many invaders occur as mid-level canopy species or as subtle understorey species and therefore contribute little to the spectral signatures captured by passive remote sensing devices. In this study, two common non-parametric classifiers namely, the neural network and support vector machine were used to map four cover classes of the invasive shrub Lantana camara in a protected game reserve and the adjacent area under communal land management in Zimbabwe. These classifiers were each combined with a geographic information system (GIS) expert system, in order to test whether the new hybrid classifiers yielded significantly more accurate invasive species cover maps than the single classifiers. The neural network, when used on its own, mapped the cover of L. camara with an overall accuracy of 71% and a Kappa index of agreement of 0.61. When the neural network was combined with an expert system, the overall accuracy and Kappa index of agreement significantly increased to 83% and 0.77, respectively. Similarly, the support vector machine achieved an overall accuracy of 64% with a Kappa index of agreement of 0.52, whereas the hybrid support vector machine and expert system classifier achieved a significantly higher overall accuracy of 76% and a Kappa index of agreement of 0.67. These results suggest that integrating conventional image classifiers with an expert system increases the accuracy of invasive species mapping.  相似文献   

11.
The Arctic is experiencing disproportionate warming relative to the global average, and the Arctic ecosystems are as a result undergoing considerable changes. Continued monitoring of ecosystem productivity and phenology across temporal and spatial scales is a central part of assessing the magnitude of these changes. This study investigates the ability to use automatic digital camera images (DCIs) as proxy data for gross primary production (GPP) in a complex low Arctic wetland site. Vegetation greenness computed from DCIs was found to correlate significantly (R2 = 0.62, p < 0.001) with a normalized difference vegetation index (NDVI) product derived from the WorldView-2 satellite. An object-based classification based on a bi-temporal image composite was used to classify the study area into heath, copse, fen, and bedrock. Temporal evolution of vegetation greenness was evaluated and modeled with double sigmoid functions for each plant community. GPP at light saturation modeled from eddy covariance (EC) flux measurements were found to correlate significantly with vegetation greenness for all plant communities in the studied year (i.e., 2010), and the highest correlation was found between modeled fen greenness and GPP (R2 = 0.85, p < 0.001). Finally, greenness computed within modeled EC footprints were used to evaluate the influence of individual plant communities on the flux measurements. The study concludes that digital cameras may be used as a cost-effective proxy for potential GPP in remote Arctic regions.  相似文献   

12.
In many regions, a decrease in grasslands and change in their management, which are associated with agricultural intensification, have been observed in the last half-century. Such changes in agricultural practices have caused negative environmental effects that include water pollution, soil degradation and biodiversity loss. Moreover, climate-driven changes in grassland productivity could have serious consequences for the profitability of agriculture. The aim of this study was to assess the ability of remotely sensed data with high spatial resolution to estimate grassland biomass in agricultural areas. A vegetation index, namely the Normalized Difference Vegetation Index (NDVI), and two biophysical variables, the Leaf Area Index (LAI) and the fraction of Vegetation Cover (fCOVER) were computed using five SPOT images acquired during the growing season. In parallel, ground-based information on grassland growth was collected to calculate biomass values. The analysis of the relationship between the variables derived from the remotely sensed data and the biomass observed in the field shows that LAI outperforms NDVI and fCOVER to estimate biomass (R2 values of 0.68 against 0.30 and 0.50, respectively). The squared Pearson correlation coefficient between observed and estimated biomass using LAI derived from SPOT images reached 0.73. Biomass maps generated from remotely sensed data were then used to estimate grass reserves at the farm scale in the perspective of operational monitoring and forecasting.  相似文献   

13.
Abstract

The rapid and accurate grasp of changes in residences is crucial for urban planning and urbanisation. However, the traditional methods for extracting residences exists several problems, which lead to inaccurate extraction results. In this study, the Landsat image is used to establish a new method for extracting the residences quickly and accurately. The specific steps are as follows: (1) We calculate surface albedo to exclude the interference of waters and shadows; (2) Using single-band threshold method, we eliminate the interference of shadows; (3) Normalized Difference Vegetation Index is calculated to exclude the effects of vegetation; (4) Roads are removed by calculating the shape index. Verification shows that the accuracy of this extraction method is 92.81%, which is more accurate than the traditional methods and solves the problems existed in the traditional methods. This novel method is a new reference for other land cover research on the technical aspect.  相似文献   

14.
High difference between dielectric constant of water (dielectric constant about 80) and dielectric constant of dried soil (dielectric constant about 2–3) makes Synthetic Aperture Radar (SAR) highly capable in soil moisture estimation. However, there are other factors which affect on radar backscattering coefficient. The most important parameters are vegetation cover, surface roughness and sensor parameters (frequency, polarization and incidence angle). In this paper, the importance of considering the effects of these parameters on SAR backscatter coefficients is shown by comparing different soil moisture estimation models. Moreover, an experimental soil moisture estimation model is developed. It is shown that this model can be used to estimate soil moisture under a variety of vegetation cover densities. The new developed model is based on combination of different indices derived from Landsat5-Thematic Mapper and AIRSAR images. The AIRSAR image is used for extraction of backscattering coefficient and incidence angle while TM image is used for calculation of Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Normalized Difference Water Index (NDWI) and Brightness Temperature. Then a soil moisture estimation model which is named as Hybrid model is developed based on integration of all of these parameters. The accuracies of this model are assessed in the NDVI ranges of 0–0.2, 0.2–0.4 and 0.4–0.7 by using SAR data in C band and L band frequencies and also in different polarizations of HH, HV, VV and TP. The results show that for instance in L band with HV polarization, R-square values of 0.728, 0.628 and 0.527 are obtained between ground measured soil moisture and estimated soil moisture values using the Hybrid model for NDVI ranges of 0–0.2, 0.2–0.4 and 0.4–0.7, respectively.  相似文献   

15.
We evaluate three approaches to mapping vegetation using images collected by an unmanned aerial vehicle (UAV) to monitor rehabilitation activities in the Five Islands Nature Reserve, Wollongong (Australia). Between April 2017 and July 2018, four aerial surveys of Big Island were undertaken to map changes to island vegetation following helicopter herbicide sprays to eradicate weeds, including the creeper Coastal Morning Glory (Ipomoea cairica) and Kikuyu Grass (Cenchrus clandestinus). The spraying was followed by a large scale planting campaign to introduce native plants, such as tussocks of Spiny-headed Mat-rush (Lomandra longifolia). Three approaches to mapping vegetation were evaluated, including: (i) a pixel-based image classification algorithm applied to the composite spectral wavebands of the images collected, (ii) manual digitisation of vegetation directly from images based on visual interpretation, and (iii) the application of a machine learning algorithm, LeNet, based on a deep learning convolutional neural network (CNN) for detecting planted Lomandra tussocks. The uncertainty of each approach was assessed via comparison against an independently collected field dataset. Each of the vegetation mapping approaches had a comparable accuracy; for a selected weed management and planting area, the overall accuracies were 82 %, 91 % and 85 % respectively for the pixel based image classification, the visual interpretation / digitisation and the CNN machine learning algorithm. At the scale of the whole island, statistically significant differences in the performance of the three approaches to mapping Lomandra plants were detected via ANOVA. The manual digitisation took a longer time to perform than others. The three approaches resulted in markedly different vegetation maps characterised by different digital data formats, which offered fundamentally different types of information on vegetation character. We draw attention to the need to consider how different digital map products will be used for vegetation management (e.g. monitoring the health individual species or a broader profile of the community). Where individual plants are to be monitored over time, a feature-based approach that represents plants as vector points is appropriate. The CNN approach emerged as a promising technique in this regard as it leveraged spatial information from the UAV images within the architecture of the learning framework by enforcing a local connectivity pattern between neurons of adjacent layers to incorporate the spatial relationships between features that comprised the shape of the Lomandra tussocks detected.  相似文献   

16.
Remote sensing technologies are an ideal platform to examine the extent and impact of fire on the landscape. In this study we assess that capacity of the RapidEye constellation and Landsat (Thematic Mapper and Operational Land Imager to map fine-scale burn attributes for a small, low severity prescribed fire in a dry Western Canadian forest. Estimates of burn severity from field data were collated into a simple burn index and correlated with a selected suite of common spectral vegetation indices. Burn severity classes were then derived to map fire impacts and estimate consumed woody surface fuels (diameter ≥2.6 cm). All correlations between the simple burn index and vegetation indices produced significant results (p < 0.01), but varied substantially in their overall accuracy. Although the Landsat Soil Adjusted Vegetation Index provided the best regression fit (R2 = 0.56), results suggested that RapidEye provided much more spatially detailed estimates of tree damage (Soil Adjusted Vegetation Index, R2 = 0.51). Consumption estimates of woody surface fuels ranged from 3.38 ± 1.03 Mg ha−1 to 11.73 ± 1.84 Mg ha−1, across four derived severity classes with uncertainties likely a result of changing foliage moisture between the before and after fire images. While not containing spectral information in the short wave infrared, the spatial variability provided by the RapidEye imagery has potential for mapping and monitoring fine scale forest attributes, as well as the potential to resolve fire damage at the individual tree level.  相似文献   

17.
Airborne laser scanning (ALS) is increasingly being used for the mapping of vegetation, although the focus so far has been on woody vegetation, and ALS data have only rarely been used for the classification of grassland vegetation. In this study, we classified the vegetation of an open alkali landscape, characterized by two Natura 2000 habitat types: Pannonic salt steppes and salt marshes and Pannonic loess steppic grasslands. We generated 18 variables from an ALS dataset collected in the growing (leaf-on) season. Elevation is a key factor determining the patterns of vegetation types in the landscape, and hence 3 additional variables were based on a digital terrain model (DTM) generated from an ALS dataset collected in the dormant (leaf-off) season. We classified the vegetation into 24 classes based on these 21 variables, at a pixel size of 1 m. Two groups of variables with and without the DTM-based variables were used in a Random Forest classifier, to estimate the influence of elevation, on the accuracy of the classification. The resulting classes at Level 4, based on associations, were aggregated at three levels — Level 3 (11 classes), Level 2 (8 classes) and Level 1 (5 classes) — based on species pool, site conditions and structure, and the accuracies were assessed. The classes were also aggregated based on Natura 2000 habitat types to assess the accuracy of the classification, and its usefulness for the monitoring of habitat quality. The vegetation could be classified into dry grasslands, wetlands, weeds, woody species and man-made features, at Level 1, with an accuracy of 0.79 (Cohen’s kappa coefficient, κ). The accuracies at Levels 2–4 and the classification based on the Natura 2000 habitat types were κ: 0.76, 0.61, 0.51 and 0.69, respectively. Levels 1 and 2 provide suitable information for nature conservationists and land managers, while Levels 3 and 4 are especially useful for ecologists, geologists and soil scientists as they provide high resolution data on species distribution, vegetation patterns, soil properties and on their correlations. Including the DTM-based variables increased the accuracy (κ) from 0.73 to 0.79 for Level 1. These findings show that the structural and spectral attributes of ALS echoes can be used for the classification of open landscapes, especially those where vegetation is influenced by elevation, such as coastal salt marshes, sand dunes, karst or alluvial areas; in these cases, ALS has a distinct advantage over other remotely sensed data.  相似文献   

18.
Crop monitoring using remotely sensed image data provides valuable input for a large variety of applications in environmental and agricultural research. However, method development for discrimination between spectrally highly similar crop species remains a challenge in remote sensing. Calculation of vegetation indices is a frequently applied option to amplify the most distinctive parts of a spectrum. Since no vegetation index exist, that is universally best-performing, a method is presented that finds an index that is optimized for the classification of a specific satellite data set to separate two cereal crop types. The η2 (eta-squared) measure of association – presented as novel spectral separability indicator – was used for the evaluation of the numerous tested indices. The approach is first applied on a RapidEye satellite image for the separation of winter wheat and winter barley in a Central German test site. The determined optimized index allows a more accurate classification (97%) than several well-established vegetation indices like NDVI and EVI (<87%). Furthermore, the approach was applied on a RapidEye multi-spectral image time series covering the years 2010–2014. The optimized index for the spectral separation of winter barley and winter wheat for each acquisition date was calculated and its ability to distinct the two classes was assessed. The results indicate that the calculated optimized indices perform better than the standard indices for most seasonal parts of the time series. The red edge spectral region proved to be of high significance for crop classification. Additionally, a time frame of best spectral separability of wheat and barley could be detected in early to mid-summer.  相似文献   

19.
Governments compile their agricultural statistics in tabular form by administrative area, which gives no clue to the exact locations where specific crops are actually grown. Such data are poorly suited for early warning and assessment of crop production. 10-Daily satellite image time series of Andalucia, Spain, acquired since 1998 by the SPOT Vegetation Instrument in combination with reported crop area statistics were used to produce the required crop maps. Firstly, the 10-daily (1998–2006) 1-km resolution SPOT-Vegetation NDVI-images were used to stratify the study area in 45 map units through an iterative unsupervised classification process. Each unit represents an NDVI-profile showing changes in vegetation greenness over time which is assumed to relate to the types of land cover and land use present. Secondly, the areas of NDVI-units and the reported cropped areas by municipality were used to disaggregate the crop statistics. Adjusted R-squares were 98.8% for rainfed wheat, 97.5% for rainfed sunflower, and 76.5% for barley. Relating statistical data on areas cropped by municipality with the NDVI-based unit map showed that the selected crops were significantly related to specific NDVI-based map units. Other NDVI-profiles did not relate to the studied crops and represented other types of land use or land cover. The results were validated by using primary field data. These data were collected by the Spanish government from 2001 to 2005 through grid sampling within agricultural areas; each grid (block) contains three 700 m × 700 m segments. The validation showed 68%, 31% and 23% variability explained (adjusted R-squares) between the three produced maps and the thousands of segment data. Mainly variability within the delineated NDVI-units caused relatively low values; the units are internally heterogeneous. Variability between units is properly captured. The maps must accordingly be considered “small scale maps”. These maps can be used to monitor crop performance of specific cropped areas because of using hypertemporal images. Early warning thus becomes more location and crop specific because of using hypertemporal remote sensing.  相似文献   

20.
When crops senescence, leaves remain until they fall off or are harvested. Hence, leaf area index (LAI) stays high even when chlorophyll content degrades to zero. Current LAI approaches from remote sensing techniques are not optimized for estimating LAI of senescent vegetation. In this paper a two-step approach has been proposed to realize simultaneous LAI mapping over green and senescent croplands. The first step separates green from brown LAI by means of a newly proposed index, ‘Green Brown Vegetation Index (GBVI)’. This index exploits two shortwave infrared (SWIR) spectral bands centred at 2100 and 2000 nm, which fall right in the dry matter absorption regions, thereby providing positive values for senescent vegetation and negative for green vegetation. The second step involves applying linear regression functions based on optimized vegetation indices to estimate green and brown LAI estimation respectively. While the green LAI index uses a band in the red and a band in the red-edge, the brown LAI index uses bands located in the same spectral region as GBVI, i.e. an absorption band located in the region of maximum absorption of cellulose and lignin at 2154 nm, and a reference band at 1635 nm where the absorption of both water and dry matter is low. The two-step approach was applied to a HyMap image acquired over an agroecosystem at the agricultural site Barrax, Spain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号