首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Glacial bedform patterns and sediments deposited by the temperate and polythermal Late Devensian ice sheet in north-central Ireland record changes in the processes, location, and magnitude of subglacial meltwater throughout the last full glacial cycle (21–14 14C kyear BP). Meltwater characteristics are related directly to basal ice thermal regime and ice dynamics, including ice velocity and shifts in the location of ice centres. Therefore, reconstructed meltwater characteristics may provide insight into wider controls on dynamic ice behaviour. A range of meltwater-related features are present across north-central Ireland. These include tunnel valleys, drumlin leeside sequences, eskers, and boulder lags. Other bedforms including Rogen moraines were modified by meltwater activity along ice streams. Meltwater was stored subglacially in two contrasting regions located beneath or near ice centres in north-central Ireland. (1) The Lough Erne Basin is developed in a lowland depression occupied partly by subglacial Rogen moraine ridges which were formed around the time of the last glacial maximum. Meltwater was stored between Rogen ridge crests and released by hydraulic jacking associated with drumlinisation (16.6 14C kyear BP) and ice streaming (13.8 14C kyear BP). (2) The Lough Neagh Basin occupies a similar lowland depression and was the location of an ice sheet centre throughout the last glacial cycle. No bedforms are present beneath or immediately surrounding Lough Neagh. A larger, more continuous meltwater lake existed in the Lough Neagh depression, probably sealed by a region of cold-based ice outside lake margins. Water escaped through regional-scale tunnel valleys, particularly the Poyntzpass channel which was active during the Carlingford ice readvance (Killard Stadial, correlated with Heinrich event 1 at 14.5 14C kyear BP). Overall, reconstructed subglacial lake characteristics and drainage mechanisms are related closely to basal ice thermal regime and substrate relief (controlling lake geometry), and provide insight into controls on overall ice sheet dynamics.  相似文献   

2.
Sedimentological investigations in Pålamalm, one of the few elongated, flat-topped, raised glaciofluvial deposits of the Stockholm area, show that the deposit was formed in a subglacial tunnel environment during the early Preboreal. The study provides evidence for dynamic links between the morphology of a subglacial conduit, the regional subglacial discharge, and the regional ice-sheet dynamics. The general morphology of the deposit and the lateral esker displacement are parts of a regional pattern.The development and interrelations of the eight distinguished lithofacies at Pålamalm provides evidence for the triggering mechanism responsible for the deposition of this 3-km-long glaciofluvial deposit. Strongly deformed gravels occur close to large dead-ice structures. The occurrence of another elongated and flat-topped glaciofluvial deposit, Jordbromalm, further to the east suggests a sudden regional subglacial outburst (jökulhlaup) in the area. The sudden, intensive enhancement of water discharge in Pålamalm is probably due to the same outburst. This is assumed to have caused the ice roof of the conduit to collapse. The high meltwater-pressure gradient caused the diameter of the conduit to increase rapidly. In addition, the subglacial tunnel took a new route because the original course became blocked by large ice blocks that had fallen from the roof.The steep flanks of the deposit, the presence of large dead-ice depressions along the central part of the deposit and the appearance of two different tunnel-core facies in the main cross-section of the Pålamalm deposit support the hypothesis of a course change after the jökulhlaup. A probable late-glacial crustal rebound in response to the rapid deglaciation in the area may have been the triggering mechanism for the abrupt discharge of the subglacial lake.  相似文献   

3.
At the beginning of a subglacial flood, storage of floodwater in bed depressions is very important. Storage delays the extension of a channel and forces the flood into a water sheet mode everywhere except upstream from the first depression encountered by the flood. In order for a grounded R-channel to evolve, it must extend its length continuously downstream by incorporating many subglacial ponds in its path. Simultaneous with R-channel extension, water sheet elimination works its way downstream. It is likely that limitations on the length of R-channels leading from the flood lake exist under ice sheets. In addition, volume discharge from a lake might be severely limited if a second lake exists downstream and close by.Bed depressions and humps are shown to delay the evacuation of water from the bed after a water sheet flood. Both channel and water-sheet flows are can exist beneath ice sheets. Ice displacement by uplift is important in creating cavities for water storage.Subglacial floods under ice sheets are likely to have a duration of years as compared to the 1972 Grimsvötn flood of 10 days. Any flood to the bed from a supraglacial lake has a duration of less than 3 days. Flood volumes are reduced for lakes located in the interior of ice sheets, particularly near ice divides.  相似文献   

4.
We suggest that the regions of smooth terrain which were observed on Comet 9P/Tempel 1 by the Deep Impact spacecraft were formed by blowing ice grains in an outburst of gas from the comet interior. When gas is released from 10 to 20 m deep layers which were heated to 135 K, it is released quiescently onto the surface by individual conduits. If large amounts of gas are released, the drainage system cannot release them fast enough and wider interconnected channels are formed, leading to sudden outburst of gas. Instability triggering a sudden shift of flow is well known in subglacial drainage of water. The ballistic trajectory of the ice particles reach a distance of 3 km in the atmosphereless comet, whose gravity is 0.034 cm s−1, if ejected at an angle of 45° at a speed of 95 cm s−1. This speed is close to the speeds measured in laboratory experiments: 167, 140×sini and 167 cm s−1, for particles of 0.3, 1000 and 14-650 μm, respectively. Blowing of ice grains can overcome the 1650 m long horizontal section of smooth terrain i1 (Fig. 1), whereas simple flow of material downhill would stop close to the foot of the hill. The ice particles at the end of their trajectory have a horizontal velocity component and this low velocity ballistic sedimentation would lead to formation of lineaments on the smooth terrain, like in solid-particulate volcanic eruptions.  相似文献   

5.
Global recharge of the martian hydrologic system has traditionally been viewed as occurring through basal melting of the south polar cap. We conclude that regional recharge of a groundwater system at the large volcanic provinces, Elysium and Tharsis, is also very plausible and has several advantages over a south polar recharge source in providing a more direct, efficient supply of water to the outflow channel source regions surrounding these areas. This recharge scenario is proposed to have operated concurrently with and within the context of a global cryosphere–hydrosphere system of the subsurface characteristic of post-Noachian periods. To complement existing groundwater flow modeling studies, we examine geologic evidence and possible mechanisms for accumulation of water at high elevations on the volcanic rises, such as melting snow, infiltration, and increased effective permeability of the subsurface between the recharge zone and outflow source. Evidence for the presence of large Amazonian-aged cold-based piedmont glaciers on the Tharsis Montes has been well documented. Climate modeling predicts snow accumulation on high volcanic rises at obliquities thought to be typical over much of martian history. Thermal gradients causing basal melting of snowpack over 1 km thick could provide several kg m−2 yr−1 of water, charging a volume equivalent to the pore space in a square meter column of subsurface in less than 1.5×105 yr. In order to account for estimated outflow channel volumes, the subsurface volume above the elevation of the outflow channels must be charged several times over the area of Tharsis. Complete aquifer recharge can be accomplished in ∼0.3–2 My through the snowpack melting mechanism at Tharsis and in ∼5×104 years for channel requirements at Elysium. Abundant radial dikes emanating from large martian volcanic rises can crack and/or melt the cryosphere, initiating water outflow and creating anisotropies that can channel subsurface water from a high-elevation groundwater reservoir to outflow sources. In this model, snow accumulation, infiltration of meltwater, and increased effective permeabilities are a consequence of the geologic, thermal, and climatic environment at Elysium and Tharsis, and may have had a genetic influence on the preferential distribution of outflow channels around volcanic rises on Mars.  相似文献   

6.
Sediment has accumulated in Isfjorden, a deep fjord in Spitsbergen, at a rate of 1.7 km3/k.y. during the past 13 k.y. Between 200 ka and 13 ka the fjord was free of ice for 120 k.y. Assuming a similar sediment delivery rate during this ice-free time, 200 km3 of sediment would have accumulated in the fjord. An alternative calculation based on erosion rates suggests that 400 km3 could have been delivered to Isfjorden during this 120 k.y.Seismic studies have identified a 330 km3 package of sediment on the continental shelf and slope west of Isfjorden. This sediment is believed to have accumulated between 200 ka and 13 ka. Herein we argue that this is sediment that was originally deposited in the fjord, and that it was transferred to the shelf by glaciers in the 70 ka during which the fjord was occupied by ice. Calculations using a steady-state numerical model suggest that the sediment could have been moved in a deforming layer of subglacial till and in subglacial melt streams at rates of 7.6 × 106 m3 a−1 and 0.3 × 106 m3 a−1, respectively, resulting in a total flux of 7.9 × 106 m3 a−1. It is unlikely that much sediment was moved in a basal layer of dirty ice, as intense basal melting would have inhibited sediment entrainment.Of the time that glaciers occupied the fjord, 60% would have been required to evacuate the accumulated sediment. During the remaining time, the ice could have been deepening the fjord.  相似文献   

7.
Paleoceanographic changes since the Late Weichselian have been studied in three sediment cores raised from shelf depressions along a north–south transect across the central Barents Sea. AMS radiocarbon dating offers a resolution of several hundred years for the Holocene. The results of lithological and micropaleontological study reveal the response of the Barents Sea to global climatic changes and Atlantic water inflow. Four evolutionary stages were distinguished. The older sediments are moraine deposits. The destruction of the Barents Sea ice sheet during the beginning of the deglaciation in response to climate warming and sea level rise resulted in proximal glaciomarine sedimentation. Then, the retreat of the glacier front to archipelagoes during the main phase of deglaciation caused meltwater discharge and restricted iceberg calving. Fine-grained distal glaciomarine sediments were deposited from periodic near-bottom nepheloid flows and the area was almost permanently covered with sea ice. The dramatic change in paleoenvironment occurred near the Pleistocene/Holocene boundary when normal marine conditions ultimately established resulting in a sharp increase of biological productivity. This event was diachronous and started prior to 10 14C ka BP in the southern and about 9.2 14C ka in the northern Barents Sea. Variations in sediment supply, paleoproductivity, sea-ice conditions, and Atlantic water inflow controlled paleoenvironmental changes during the Holocene.  相似文献   

8.
Throughout the northern equatorial region of Mars, extensive areas have been uniformly stripped, roughly to a constant depth. These terrains vary widely in their relative ages. A model is described here to explain this phenomenon as reflecting the vertical distribution of H2O liquid and ice in the crust. Under present conditions the Martian equatorial regions are stratified in terms of the stability of water ice and liquid water. This arises because the temperature of the upper 1 or 2 km is below the melting point of ice and liquid is stable only at greater depth. It is suggested here that during planetary outgassing earlier in Martian history H2O was injected into the upper few kilometers of the crust by subsurface and surface volcanic eruption and lateral migration of the liquid and vapor. As a result, a discontinuity in the physical state of materials developed in the Martian crust coincident with the depth of H2O liquid-ice phase boundary. Material above the boundary remained pristine; material below underwent diagenetic alteration and cementation. Subsequently, sections of the ice-laden zone were erosionally stripped by processes including eolian deflation, gravitational slump and collapse, and fluvial transport due to geothermal heating and melting of the ice. The youngest plains which display this uniform stripping may provide a minimum stratigraphic age for the major period of outgassing of the planet. Viking results suggest that the total amount of H2O outgassed is less than half that required to fill the ice layer, hence any residual liquid eventually found itself in the upper permafrost zone or stored in the polar regions. Erosion stopped at the old liquid-ice interface due to increased resistance of subjacent material and/or because melting of ice was required to mobilize the debris. Water ice may remain in uneroded regions, the overburden of debris preventing its escape to the atmosphere. Numerous morphological examples shown in Viking and Mariner 9 images suggest interaction of impact, volcanic, and gravitational processes with the ice-laden layer. Finally, volcanic eruptions into ice produces a highly oxidized friable amorphous rock, palagonite. Based on spectral reflectance properties, these materials may provide the best analog to Martian surface materials. They are easily eroded, providing vast amounts of eolian debris, and have been suggested (Toulmin et al., 1977) as possible source rocks for the materials observed at the Viking landing sites.  相似文献   

9.
Currently, and throughout much of the Amazonian, the mean annual surface temperatures of Mars are so cold that basal melting does not occur in ice sheets and glaciers and they are cold-based. The documented evidence for extensive and well-developed eskers (sediment-filled former sub-glacial meltwater channels) in the south circumpolar Dorsa Argentea Formation is an indication that basal melting and wet-based glaciation occurred at the South Pole near the Noachian–Hesperian boundary. We employ glacial accumulation and ice-flow models to distinguish between basal melting from bottom-up heat sources (elevated geothermal fluxes) and top-down induced basal melting (elevated atmospheric temperatures warming the ice). We show that under mean annual south polar atmospheric temperatures (?100 °C) simulated in typical Amazonian climate experiments and typical Noachian–Hesperian geothermal heat fluxes (45–65 mW/m2), south polar ice accumulations remain cold-based. In order to produce significant basal melting with these typical geothermal heat fluxes, the mean annual south polar atmospheric temperatures must be raised from today’s temperature at the surface (?100 °C) to the range of ?50 to ?75 °C. This mean annual polar surface atmospheric temperature range implies lower latitude mean annual temperatures that are likely to be below the melting point of water, and thus does not favor a “warm and wet” early Mars. Seasonal temperatures at lower latitudes, however, could range above the melting point of water, perhaps explaining the concurrent development of valley networks and open basin lakes in these areas. This treatment provides an independent estimate of the polar (and non-polar) surface temperatures near the Noachian–Hesperian boundary of Mars history and implies a cold and relatively dry Mars climate, similar to the Antarctic Dry Valleys, where seasonal melting forms transient streams and permanent ice-covered lakes in an otherwise hyperarid, hypothermal climate.  相似文献   

10.
The occurence within Elysium Planitia of meltwater deposits, possible pseudocraters, collapse features within troughs, and outflow channels indicates that a layer of subsurface volatiles existed at the time of volcanic activity within this area. The pseudocraters are interpreted to be indicators of near-surface volatiles, while meltwater deposits and the degree of preservation of trough walls and floors are thought to signify greater volatile depths. A latitudinal variation in the distribution of these features indicates either that the depth to the volatile layer increased from less than about 50 m at 35°N to greater than 600 m at 24°N, or that an ice wedge that existed at 35°N thinned to nonexistence at 24°N. Braided distributary channel systems within the chaotic terrain north of Elysium Planitia show that ephemeral lakes were repeatedly created and drained at this locality. The existence of volatiles contemporaneous with volcanic activity permits a search to be made for explosively generated landforms predicted to exist by previous theoretical models. Morphological evidence for strombolian, vulcanian and plinian eruptions is lacking within western Elysium Planitia; there are no identifiable cinder cones, pyroclastic flow deposits, or mantled areas indicative of large airfall deposits at an image resolution of 50–150 m/pixel. However, the pseudocraters indicate that small-scale phreatomagmatic activity may have taken place.  相似文献   

11.
The Pyoza River area in the Arkhangelsk district exposes sedimentary sequences suitable for study of the interaction between consecutive Valdaian ice sheets in Northern Russia. Lithostratigraphic investigations combined with luminescence dating have revealed new evidence on the Late Pleistocene history of the area. Overlying glacigenic deposits of the Moscowian (Saalian) glaciation marine deposits previously confined to three separate transgression phases have all been connected to the Mikulinian (Eemian) interglacial. Early Valdaian (E. Weichselian) proglacial, lacustrine and fluvial deposits indicate glaciation to the east or north and consequently glacier damming and meltwater run-off in the Pyoza area around 90–110 ka BP. Interstadial conditions with forest-steppe tundra vegetation and lacustrine and fluvial deposition prevailed at the end of the Early Valdaian around 75–95 ka BP. A terrestrial-based glaciation from easterly uplands reached the Pyoza area at the Early to Middle Valdaian transition around 65–75 ka BP and deposited glaciofluvial strata and subglacial till (Yolkino Till). During deglaciation, laterally extensive glaciolacustrine sediments were deposited in ice-dammed lakes in the early Middle Valdaian around 55–75 ka BP. The Barents–Kara Sea ice sheet deposited the Viryuga Till on the lower Pyoza from northerly directions. The ice sheet formed the Pyoza marginal moraines, which can be correlated with the Markhida moraines further east, and proglacial lacustrine deposition persisted in the area during the first part of the Middle Valdaian. Glacio-isostatic uplift caused erosion followed by pedogenesis and the formation of a deflation horizon in the Middle Valdaian. Widely dispersed periglacial river plains were formed during the Late Valdaian around 10–20 ka BP. Thus, the evidence of a terrestrial-based ice sheet from easterly uplands in the Pyoza area suggests that local piedmont glaciers situated in highlands such as the Timan Ridge or the Urals could have developed into larger, regionally confined ice sheets. Two phases of ice damming and development of proglacial lakes occurred during the Early and Middle Valdaian. The region did not experience glaciation during the Late Valdaian.  相似文献   

12.
Niels Hovius 《Icarus》2008,197(1):24-38
Formation of chasms in the polar ice caps of Mars has been attributed to meltwater outburst floods, but the cause of melting has remained uncertain. In a cap re-entrant enveloping Abalos Colles, west of Casma Boreale in the north polar cap, we have found possible evidence of recent volcano-ice interaction and outburst flooding. In this paper we demonstrate that these two mechanisms can have acted together to form or expand the Abalos re-entrant. Flat-topped ridges and circular rims protruding above the ice cap surface in the re-entrant apex may be lava ridges and volcano craters, and can have caused melting of 3.3 to 7.7×103 km3 of ice. The surrounding cap surface appears to have subsided and the likely volume of missing ice matches the melt estimate. Outburst flooding from this area may have reached peak discharges of 0.3 to according to scour patterns in one of the re-entrant channels. This required ponding of melt water during lava eruption and catastrophic release through a sub- or englacial melt water tunnel, the collapse of which has left a chasm in the ice cap margin. The flood features are geologically recent, and volcano-ice interaction may have occurred within the last 20,000 years.  相似文献   

13.
《Icarus》1987,70(3):385-408
The process of volcano-ground ice interaction on Mars is investigated by thermodynamic calculations and observations of Viking Orbiter images. We develop a numerical model of volcano-ground ice interaction that includes heat transport by conduction, radiation from the surface, heat transfer to the atmosphere, and H2O phase changes in an ice-rich permafrost. We consider eruption of lava flows over permafrost, and intrusion of sills into permafrost. For eruption of lava over permafrost, most of the heat in the flow is lost by radiation and atmospheric effects. The amount of H2O liquid and vapor produced is small, and its removal would not be sufficient to cause collapse that would lower the surface of the lava flow below the surrounding terrain. For intrusion of a sill, most of the heat in the sill eventually goes into H2O phase changes, producing much larger amounts of water that could have profound geomorphic and geochemical effects. Approximate meltwater discharge rates are calculated for both extrusive and intrusive interactions. We examine two large regions of large-scale volcano-ground ice interactions. Near Aeolis Mensae, intrusion of a complex of dikes and sills into ice-rich ground has produced substantial melting, with mobilization and flow of material. This interaction probably also produced large quantities of palagonite tuff and breccia. Morphologic evidence for progressive fluidization implies that meltwater was stored beneath the surface for some time, and that most of the release of water and volcanic mudflow took place late in the interaction. Northeast of Hellas, several large channels emanate from the area near the volcano Hadriaca Patera. If genetically related to the volcanic activity, large collapse features at the sources of some channels must have originated due to heat from large buried magma bodies. A channel emerging directly from the base of Hadriaca Patera may have originated from release of heat from thick extruded material. Other small channels in the region results from heat released from surface lava flows. Inferred channel discharges may be compared to discharge rates calculated for lava-ground ice interactions. Such comparisons show that meltwater probably accumulated beneath the surface and then was released rapidly, with a discharge rate limited by soil permeability. Volcano-ground ice interaction has been a widespread and important geologic process on Mars, and may be the primary source of palagonites making up the ubiquitous Martian dust.  相似文献   

14.
Past and present glacier changes have been studied at Cordón Martial, Cordillera Fueguina Oriental, Tierra del Fuego, providing novel data for the Holocene deglaciation history of southern South America and extrapolating as well its future behavior based on predicted climatic changes. Regional geomorphologic and stratigraphic correlations indicate that the last glacier advance deposited the ice-proximal (“internal”) moraines of Cordón Martial, around 330 14C yr BP, during the Late Little Ice Age (LLIA). Since then glaciers have receded slowly, until 60 years ago, when major glacier retreat started. There is a good correspondence for the past 100 years between the surface area variation of four small cirque glaciers at Cordón Martial and the annual temperature and precipitation data of Ushuaia. Between 1984 and 1998, Martial Este Glacier lost 0.64 ± 0.02 × 106 m3 of ice mass (0.59 ± 0.02 × 106 m3 w.e.), corresponding to an average ice thinning of 7.0 ± 0.2 m (6.4 ± 0.2 m w.e), according to repeated topographic mapping. More detailed climatic data have been obtained since 1998 at the Martial Este Glacier, including air temperature, humidity and solar radiation. These records, together with the monthly mass balance measured since March 2000, document the annual response of the Martial Este Glacier to the climate variation. Mass balances during hydrological years were positive in 2000, negative in 2001 and near equilibrium in 2002. Finally, using these data and the regional temperature trend projections, modeled for different future scenarios by the Atmosphere-Ocean Model (GISS-NASA/GSFC), potential climatic-change effects on this mountain glacier were extrapolated. The analysis shows that only the Martial Este Glacier may survive this century.  相似文献   

15.
16.
Climatic changes of the 20th century have altered the water cycle in the Andean basins of central Argentina. The most visible change is seen in the mountain glaciers, with loss of part of their mass due to decreasing thickness and a substantial recession in the last 100 years. This paper briefly describes the results of glacier mass balance research since 1979 in the Piloto Glacier at the Cajón del Rubio, in the headwaters of Las Cuevas River, presenting new results for the period 1997–2003. Very large interannual variability of net annual specific balance is evident, due largely to variations in winter snow accumulation, with a maximum net annual value of + 151 cm w.e. and a minimum value of - 230 cm w.e. Wet El Niño years are normally associated with positive net annual balances, while dry La Niña years generally result in negative balances. Within the 24-year period, 67% of the years show negative net annual specific balances, with a cumulative mass balance loss of - 10.50 m water equivalent (w.e.). Except for exceptions normally related to El Niño events, a general decreasing trend of winter snow accumulation is evident in the record, particularly after 1992, which has a strong effect in the overall negative mass balance values. The glacier contribution to Las Cuevas River runoff is analysed based on the Punta de Vacas River gauge station for a hypothetical year without snow precipitation (YWSP), when the snowmelt component is zero. Extremely dry years similar to a YWSP have occurred in 1968–1969, 1969–1970 and 1996–1997. The Punta de Vacas gauge station is located 62 km downstream from Piloto Glacier, and the basin contains 3.0% of uncovered glacier ice and 3.7% of debris-covered ice. The total glacier contribution to Las Cuevas River discharge is calculated as 82 ± 8% during extremely dry years. If glacier wastage continues at the present trend as observed during the last 2 decades, it will severely affect the water resources in the arid central Andes of Argentina.  相似文献   

17.
Fine-grained glaciomarine and glacial deposits on the outer Mid Norwegian continental shelf show complex variations in shear strength and degree of consolidation. At the Smørbukk Sør field (approx. 65°N, 7°E) about 80 m of variably overconsolidated clayey till is found on top of normally- or possibly underconsolidated glaciomarine and marine sediments. A high gas content is found below 60 m, and the porewater in the rather soft sediments in the lower part of the borehole may have been partly trapped by gas hydrates when the overlying hard till was deposited. The variations in geotechnical properties of the 80 m thick till section are suggested to result mainly from compaction below grounded ice during the last glaciation, and we interpret the strength variations in the till to reflect shifts between freeze of sediment porewater onto the base of the ice causing highly overconsolidated intervals, and thermal equilibrium or melting at the ice sole resulting in intervals of softer till.A large ridge northwest of Smørbukk (Skjoldryggen) is probably partly formed by ice push during ice flow oscillations at the same time as the described till at Smørbukk was deposited. This ridge retarded the ice flow and hence the frictional heating at the end of surges, creating pulses of net freezing base ice and consolidation of the substratum. The described process has possibly affected a wide area up-ice of Skjoldryggen, and may be common in areas with a complex glacial history and a fine-grained substratum.  相似文献   

18.
An extensive region of low, sinuous ridges occupies the Hesperian plateau above Echus Chasma in the upper Kasei Valles, Mars. The ridges have lengths of up to 270 km, heights of 100 m and widths of 10 km. The total volume of the ridge material is 6×1011 m3. In this paper, volcanic flows, depositional and erosional features are discussed using Mars Observer Laser Altimeter (MOLA), THEMIS and Mars Orbiter Camera (MOC) imagery and a chronology that places the ridge formation in the Late Hesperian is developed.The plateau is bounded to the north and west by more recent Late Hesperian and Amazonian lava flows. The plateau floor suddenly changes from being relatively smooth, to elevated, rough, hummocky terrain that extends eastwards to Echus Chasma. This rough terrain is penetrated by 2 km broad, shallow entrant channels that join with the canyons of Echus Chasma. The sinuous ridges appear to control the surface drainage associated with the entrant channels.The sinuous ridges’ size and morphology are similar to those associated with volcanic ridge eruptions. Their degraded structure is reminiscent of Moberg ridges. The rough, hummocky terrain is interpreted as glacial outwash, subsequently eroded by short-lived floods associated with ridge eruptions. The presence of both volcanic and glacial structures on the Echus Plateau raises the possibility that the ridge system arose from subglacial, volcanic events. The resulting jokulhlaups eroded the broad, entrant channels. As surface flow declined, groundwater flows dominated and canyon heads eroded back along the entrant channels, by sapping.  相似文献   

19.
The Gran Campo Nevado (GCN) forms an isolated ice cap on the Península Muñoz Gamero (PMG) located 200 km to the south of the Southern Patagonia Icefield (SPI). We present a glacier inventory of the GCN made up by 27 drainage basins (in total 199.5 km2) and other small cirque and valley glaciers of the southern part of PMG (in total 53 km2). The glacier inventory is based on a digital elevation model (DEM) and ortho-photos. Contour lines from maps, relief information derived from Landsat TM satellite imagery from 1986 and 2002 and stereoscopic data from aerial photos were combined in a knowledge-based scheme to obtain a DEM of the area. A digital ortho-photo map based on aerial photos from 1998 and several ortho-photos based on aerial photos from 1942 and 1984 could be produced from the initial DEM. A geographical information system (GIS) served to outline the extent of the present glaciation. All major glaciers of the GCN show a significant glacier retreat during the last 60 yr. Some of the outlet glaciers lost more than 20% of their total area during this period. Overall glacier retreat amounts to 2.8% of glacier length per decade and the glacier area loss is 2.4% per decade in the period from 1942 to 2002. We hypothesise that GCN glaciers may have reacted faster and more synchronously with the observed warming trend during recent decades when compared with the SPI.  相似文献   

20.
We have studied a terraced fan deposit with unique characteristics located within a trough of Coprates Catena. The fan has an average length of 6.8 km, and is approximately 44 km2 in area and 18 km3 in volume. The fan's broad contributing valley is approximately 35 km long and it noticeably increases in depth about 12.8 km before it intersects the trough, where a rounded knickpoint marks the transition between flat-floored upstream and V-shaped downstream cross-sections. A 14-km-long channel with no apparent source enters the contributing valley from the south. A much smaller sinuous channel has incised along a smaller V-shaped valley in the uppermost eastern portion of the fan deposit. We explored several possible origins for the terraced fan, including mass wasting, volcanic flow, alluvial fan, and delta. We propose that water sourced from volcanic melting of ice eroded and transported material along the contributing valley. This material was then deposited as a delta in a lake within the trough. The concentric terraces are most likely the result of shoreline or ice cover erosion during drops in lake level. A light-toned layered deposit to the east of the fan deposit along the floor of the trough may represent a sedimentary unit formed during the terminal stages of the lake. Although other terraced fans have been identified on Mars, the Coprates Catena fan is unique because it has many more terraces and its surface was incised by a channel and associated valley. The identification of several other valleys to the east suggests that volcanic melting of volatiles during the Hesperian Period created favorable conditions for water flow along the plains in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号