首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
We analyze complex zebra patterns and fiber bursts during type-IV solar radio bursts on August 1, 2010. It was shown that all of the main details of sporadic zebra patterns can be explained within the model of zebra patterns and fiber bursts during the interaction of plasma waves with whistlers. In addition, it was shown that the major variations in the stripes of the zebra patterns are caused by the scattering mechanism of fast particles on whistlers, which leads to the transition of whistler instability from the normal Doppler effect to an anomalous one.  相似文献   

2.
Solar radio emission records received at the IZMIRAN spectrograph (25–270 MHz) during the solar flare event of February 12, 2010 are analyzed. Different fine structures were observed in three large groups of type III bursts against a low continuum. According to data from the Nancay radioheliograph, sources of all three groups of bursts were located in one active region, 11046, and their emissions were accompanied by soft X-ray bursts (GOES satellite): C7.9 at 0721 UT, B9.6 at 0940 UT, and M8.3 at 1125 UT. After the first group of bursts, classical fiber bursts were observed in combination with reverse-drift fiber bursts with unusual arc drift. After the third (the most powerful) group, stable second-length pulsations and slow-drift fiber bursts were observed, the instantaneous frequency bands of which were an order of magnitude larger than the frequency band of classical fiber bursts, and the frequency drift was several times lower. More complex fiber bursts were observed in the weakest group in the time range 0940:39–0942:00 UT. They were narrow-band (~0.5 MHz) fiber bursts, periodically recurring in a narrow frequency band (5–6 MHz) during several seconds. The presence of many chaotically drifting ensembles of fibers, crossing and superimposing on one another, is a feature of this event. It is assumed that occurrence of these structures can be connected with the existence of many small shock fronts behind the leading edge of a coronal mass ejection.  相似文献   

3.
We investigate the features of the planetary distribution of wave phenomena (geomagnetic pulsations) in the Earth’s magnetic shell (the magnetosphere) during a strong geomagnetic storm on December 14–15, 2006, which is untypical of the minimum phase of solar activity. The storm was caused by the approach of the interplanetary magnetic cloud towards the Earth’s magnetosphere. The study is based on the analysis of 1-min data of global digital geomagnetic observations at a few latitudinal profiles of the global network of ground-based magnetic stations. The analysis is focused on the Pc5 geomagnetic pulsations, whose frequencies fall in the band of 1.5–7 mHz (T ~ 2–10 min), on the fluctuations in the interplanetary magnetic field (IMF) and in the solar wind density in this frequency band. It is shown that during the initial phase of the storm with positive IMF Bz, most intense geomagnetic pulsations were recorded in the dayside polar regions. It was supposed that these pulsations could probably be caused by the injection of the fluctuating streams of solar wind into the Earth’s ionosphere in the dayside polar cusp region. The fluctuations arising in the ionospheric electric currents due to this process are recorded as the geomagnetic pulsations by the ground-based magnetometers. Under negative IMF Bz, substorms develop in the nightside magnetosphere, and the enhancement of geomagnetic pulsations was observed in this latitudinal region on the Earth’s surface. The generation of these pulsations is probably caused by the fluctuations in the field-aligned magnetospheric electric currents flowing along the geomagnetic field lines from the substorm source region. These geomagnetic pulsations are not related to the fluctuations in the interplanetary medium. During the main phase of the magnetic storm, when fluctuations in the interplanetary medium are almost absent, the most intense geomagnetic pulsations were observed in the dawn sector in the region corresponding to the closed magnetosphere. The generation of these pulsations is likely to be associated with the resonance of the geomagnetic field lines. Thus, it is shown that the Pc5 pulsations observed on the ground during the magnetic storm have a different origin and a different planetary distribution.  相似文献   

4.
The characteristics of low-damping high-frequency waves in hot magnetized solar and stellar coronal plasmas under the conditions when the electron gyrofrequency ωHe is equal to or higher than the electron plasma frequency ωpe have been analyzed using the numerical solution of the dispersion equation. It is shown that the wave branches corresponding to the Z mode and ordinary waves approach each other when the magnetic field increases and become almost indistinguishable in a wide frequency range at all angles between the wave vector and magnetic field. A branch with anomalous dispersion appears at angles close to 90°. A new interpretation of broadband pulsations and spikes is suggested on the basis of the results.  相似文献   

5.
Day-time Pc 3–4 (≃5–60 mHz) and night-time Pi 2 (≃5–20 mHz) ULF waves propagating down through the ionosphere can cause oscillations in the Doppler shift of HF radio transmissions that are correlated with the magnetic pulsations recorded on the ground. In order to examine properties of these correlated signals, we conducted a joint HF Doppler/magnetometer experiment for two six-month intervals at a location near L = 1.8. The magnetic pulsations were best correlated with ionospheric oscillations from near the F region peak. The Doppler oscillations were in phase at two different altitudes, and their amplitude increased in proportion to the radio sounding frequency. The same results were obtained for the O- and X-mode radio signals. A surprising finding was a constant phase difference between the pulsations in the ionosphere and on the ground for all frequencies below the local field line resonance frequency, independent of season or local time. These observations have been compared with theoretical predictions of the amplitude and phase of ionospheric Doppler oscillations driven by downgoing Alfvén mode waves. Our results agree with these predictions at or very near the field line resonance frequency but not at other frequencies. We conclude that the majority of the observations, which are for pulsations below the resonant frequency, are associated with downgoing fast mode waves, and models of the wave-ionosphere interaction need to be modified accordingly.  相似文献   

6.
The results of studying the distribution character of the amplitudes and time intervals between wave packets of Pi2 geomagnetic pulsations, observed during the nighttime development of magnetospheric substorms and in the absence of these phenomena, have been presented. The analog records from the midlatitude Borok Geophysical Observatory (geographic coordinates φ = 58.03°; λ = 38.97°) for 1995 and 1997 have been used to analyze Pi2 pulsations. Three groups of pulsations have been analyzed: Pi2 observed during sub-storms related to the external impact on the magnetosphere, Pi2 spontaneously originating during substorms, and Pi2 observed in the absence of substorms on the nightside of the magnetosphere. Interplanetary magnetic field B y and B z components and the solar wind dynamic pressure (ρV 2) have been considered as possible triggers of magnetospheric substorms. It has been indicated that the distributions of the amplitude and the duration of time intervals between Pi2 bursts are approximated by the power and exponential functions, respectively, which is typical of intermittent processes. The hypothesis that the processes of magnetospheric plasma turbulization can be among the Pi2 pulsation burst sources has been put forward. It is assumed that the obtained characteristic values can be used to qualitatively estimate the degree of plasma turbulence on the nightside of the magnetosphere when a sequence of Pi2 wave packets is excited.  相似文献   

7.
The analysis of simultaneous observations of 128 cases of high-latitude magnetic impulse events (MIEs), as well as geomagnetic pulsations in the Pc1–2 band observed in the area of the dayside cusp, was carried out. We investigated magnetograms from the Mirny Observatory, Antarctica. As a result of the examination, three groups of impulses were identified: (1) impulses accompanied by impulsive bursts of intervals of pulsations with rising periods (IPRPs)-type geomagnetic pulsations—16% of all events, (2) impulses accompanied by impulsive bursts of the Pi1B type (bursts of irregular magnetic pulsations)—48% of all events, and (3) impulses which were not accompanied by geomagnetic pulsations within a high-frequency band—36% of all events.It was found that the maximum frequency of occurrence of the impulses accompanied by impulsive bursts of the IPRP and Pi1B types was observed between 1200 and 1300 MLT. The events of the first two groups were observed predominantly when Bz>0. It was shown that the filling frequency of impulsive bursts that accompany the occurrence of impulses depends on the amplitude of the bursts. The maximum frequency of the occurrence of impulses which were not accompanied by impulsive bursts is between 1000 and 1100 MLT. The events of the third group were observed predominantly when Bz<0. In most cases, the occurrence of impulsive bursts coincided with the leading edge of the MIE.It is supposed that the MIE generation is stimulated by intensification of the plasma turbulence level at the dayside magnetopause in consequence of modulation instability development or reconnection processes.  相似文献   

8.
When solar cosmic rays (SCRs) can be observed with ground-based equipment (ground-level enhancements, GLEs), events are often characterized by a rapid increase in the relativistic proton intensity during the initial phase, which makes it possible to estimate the time of particle escape from the solar corona. This phase attracts attention of researchers owing to its closeness in time to the instant of particle acceleration. It is known that the observed SCR characteristics bear traces of many physical processes, including different acceleration mechanisms the relative role of which is still unclear. Flare processes and acceleration by a shock, related to coronal mass ejection (CME), are the main pretenders to the role of SCR accelerator. Several powerful solar proton events during cycle 23 are considered in the work, and the release time of the first particles from the corona and the dynamics of CMEs have been estimated. The time series of the X-ray and radio bursts, close in time to particle escape, are analyzed. The conclusion have been drawn that the first relativistic particles were most probably accelerated during flare processes.  相似文献   

9.
High temporal resolution solar observations in the decimetric range (1–3 GHz) can provide additional information on solar active regions dynamics and thus contribute to better understanding of solar geoeffective events as flares and coronal mass ejections. The June 6, 2000 flares are a set of remarkable geoeffective eruptive phenomena observed as solar radio bursts (SRB) by means of the 3 GHz Ondrejov Observatory radiometer. We have selected and analyzed, applying detrended fluctuation analysis (DFA), three decimetric bursts associated to X1.1, X1.2 and X2.3 flare-classes, respectively. The association with geomagnetic activity is also reported. DFA method is performed in the framework of a radio burst automatic monitoring system. Our results may characterize the SRB evolution, computing the DFA scaling exponent, scanning the SRB time series by a short windowing before the extreme event. For the first time, the importance of DFA in the context of SRB monitoring analysis is presented.  相似文献   

10.
Recent work suggests that the quasi-periodic (QP) modulation \sim10-50 s of naturally occurring ELF-VLF radio emissions (\sim0.5-5 kHz) is produced by the compressional action of Pc3 magnetic pulsations on the source of the emissions. Whilst it is generally accepted that these magnetic pulsations have an exogenic source, it is not clear what the mechanism of their generation is. A study of QP emissions observed during 1988 at Halley, Antarctica, in conjunction with IMP-8 satellite solar wind data, shows that the occurrence and modulation frequency of the emissions are strongly dependent upon the direction and strength of the IMF, respectively. The observed relationships are very similar to those previously reported for Pc3 pulsations associated with upstream ion-cyclotron resonance, involving proton beams reflected at the bowshock. In comparing the observed QP modulation frequencies with upstream wave theory, agreement was found by considering wave excitation exclusively associated with a proton beam reflected from a position on the bowshock at which the shock normal is parallel to the ambient IMF direction. Other geometries were found to be either impropitious or uncertain. The work indicates the useful diagnostic role QP emissions could play in the study of compressional ULF waves in the upstream solar wind and in monitoring the IMF conditions responsible for their generation.  相似文献   

11.
Geomagnetism and Aeronomy - A number of phenomena with radio bursts in the decimeter and centimeter wavelength ranges similar to type-II bursts in the meter range have been considered. In all...  相似文献   

12.
Pulsations in the electron fluxes and magnetic field on two geosynchronous satellites and at several ground-based observatories have been studied. Relativistic electron flux pulsations with a period of 6 min originated after the shock arrival from the solar wind at 0258 UT on February 11, 2000, had a regular character, and propagated from the dayside to the nightside at a velocity of about 60 deg min?1. Magnetic field oscillations on the satellites and on the Earth had a more complicated structure. Field oscillations morphologically similar to electron oscillations are observed only on one satellite in one component and at one-two ground-based stations, where a periodicity of 10–12 min was mainly observed. It is assumed that magnetic pulsations are Alfvén resonances generated by a fast magnetosonic wave.  相似文献   

13.
Precipitation of electrons with energies of 0.3–1.5 MeV has been analyzed based on the CORONAL-F satellite data at polar latitudes of the Northern Hemisphere on December 13, 2003. The instants of electron precipitation have been compared with the ground-based observations of geomagnetic disturbances and auroras near the satellite orbit projection. It has been indicated that precipitation of energetic electrons in the high-latitude nightside sector is accompanied by the simultaneous development of bay-like magnetic field disturbances on the Earth’s surface and the appearance of riometer absorption bursts and Pi3 geomagnetic pulsations, and auroras.  相似文献   

14.
Ground-based geomagnetic Pc5 (2–7 mHz) pulsations, caused by the passage of dense transients (density disturbances) in the solar wind, were analyzed. It was shown that intensive bursts can appear in the density of the solar wind and its fluctuations, up to Np ~ 30–50 cm3, even during the most magnetically calm year in the past decades (2009). The analysis, performed using one of the latest methods of discrete mathematical analysis (DMA), is presented. The energy functional of a time-series fragment (called “anomaly rectification” in DMA terms) of two such events was calculated. It was established that fluctuations in the dynamic pressure (density) of the solar wind (SW) cause the global excitation of Pc5 geomagnetic pulsations in the daytime sector of the Earth’s magnetosphere, i.e., from polar to equatorial latitudes. Such pulsations started and ended suddenly and simultaneously at all latitudes. Fluctuations in the interplanetary magnetic field (IMF) have turned up to be less geoeffective in exciting geomagnetic pulsations than fluctuations in the SW density. The pulsation generation mechanisms in various structural regions of the magnetosphere were probably different. It was therefore concluded that the most probable source of ground-based pulsations are fluctuations of the corresponding periods in the SW density.  相似文献   

15.
On the basis of data from the Radio Solar Telescope Network (RSTN), as well as the Geostationary Operational Environmental Satellite (GOES) and the WIND spacecraft, for the period from 1989 to 2006 covering 107 flare events, we investigated the relationship between the intensity of solar cosmic rays and parameters of continuum radio bursts (25?C15400 MHz), as well as type II radio bursts in the meter and decahectometer wavelength ranges. Proton fluxes with energies E p > 1?100 MeV were calculated with regard to a reduced heliolongitude. The maximum correlation between solar cosmic rays and solar parameters of microwave bursts was 0.80. Its value was no more than 0.40 for the drift rate of type II bursts and 0.70 for the compression rate of coronal shock waves. Based on linear regression equations, we estimated the contribution of coronal shock waves to the acceleration of protons. We found that major acceleration processes occur in the area of burst energy release and complimentary processes occur at the fronts of coronal shock waves. The contribution of the latter to the acceleration process increases significantly with proton energy.  相似文献   

16.
About 100 breakups of different types and intensities are studied on the basis of Lovozero Observatory data. Magnetic pulsations in different frequency ranges, VLF emissions, and auroral activity are analyzed using the TV data. It is found that magnetic pulsations in all frequency ranges lag behind the moment of breakup by 0.5–2.0 min, and bursts of low-intensity broadband VLF emission hiss are observed 3–10 min before breakup. Hiss leading breakup corresponds to feeble auroras located northward of a pre-breakup arc.  相似文献   

17.
Results of the spectral measurements of ionospheric noise in the meter band are presented. The events lasting several milliseconds (the emission maximum of which drifts upward (in frequency), is reflected (stops), and drifts downward) have been distinguished. Moreover, multiple harmonics are observed. The frequency-time structure of such events have been considered from the viewpoint of registration of the electron beam synchrotron emission harmonics at ionospheric altitudes in the geomagnetic field. The model calculations of the frequency-time structure of ionospheric radio noise bursts drifting in frequency have been performed taking into account the measurement conditions. It has been indicated that the model electron radio noise bursts agree with the measured bursts reflecting from the ionosphere at altitudes of 100–180 km. The model of the monoenergetic beam of electrons precipitating from the radiation belt (L ~ 2.0–2.8) into the ionosphere has been proposed.  相似文献   

18.
The spatial dynamics of geomagnetic variations and pulsations, auroras, and riometer absorption during the development of the main phase of the extremely strong magnetic storm of November 7–8, 2004, has been studied. It has been indicated that intense disturbances were observed in the early morning sector of auroral latitudes rather than in the nighttime sector, as usually takes place during magnetic storms. The unusual spatial dynamics was revealed at the beginning of the storm main phase. A rapid poleward expansion of disturbances from geomagnetic latitudes of 65°–66° to 74°–75° and the development of the so-called polar cap substorm with a negative bay amplitude of up to 2500 nT, accompanied by precipitation of energetic electrons (riometer absorption) and generation of Pi2–Pi3 pulsations, were observed when IMF B z was about ?45 nT. The geomagnetic activity maximum subsequently sharply shifted equatorward to 60°–61°. The spatial dynamics of the westward electrojet, Pi2–Pi3 geomagnetic pulsations, and riometer absorption was similar, which can indicate that the source of these phenomena is common.  相似文献   

19.
The features of daytime high-latitude geomagnetic variations and geomagnetic pulsations in the Рс5 range during the recent, large, two-stage magnetic storm of September 7–8, 2017 are studied. The discussed disturbances were observed at the recovery phase of the first stage of the storm after the interplanetary magnetic field (IMF) turned northward. It is shown that the large sign-alternating variations in Ву and Bz components of the IMF caused intense geomagnetic disturbances up to 300–400 nT with a quasi-period of ~20 min in the daytime sector of polar latitudes, probably in the region of the daytime polar cusp. These disturbances may have reflected quasi-period motions of the daytime magnetopause and may have resulted from nonlinear transformation of the variations in the interplanaterary magnetic field in the magnetosheath or in the magnetospheric entry layers. The appearance of high-latitude long-period variations was accompanied by the excitation of bursts (wave packets) of geomagnetic Pc5 pulsations. The onset of Pc5 pulsation bursts often coincided with a sudden northward turn of the IMF. It was discovered for the first time that the development of a “daytime polar substorm,” i.e., a negative magnetic bay in the daytime sector of polar latitudes, led to a sudden termination of the generation of geomagnetic Pc5 pulsations over the entire latitude range in which these oscillations were recorded before the appearance of the daytime bay.  相似文献   

20.
Disturbances in the solar wind density, geomagnetic field, and magnetospheric plasma density and fluxes are analyzed. The disturbances have the same sign and are close to each other in time. They accompany the process of amplitude modulation of Pc1 geomagnetic pulsations during the recovery phase of the moderate magnetic storm of April 10–11, 1997. The magnetospheric disturbances were recorded by ground-based observatories and on spacecraft in all local time sectors with insignificant time delays. It is concluded that in this case variations in the geomagnetic field and magnetospheric plasma density are primary, whereas the amplitude modulation of Pc1, 2 is a secondary manifestation of fast magnetosonic (FMS) waves that are generated during the interaction between the magnetosphere and solar wind density irregularities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号