首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The active kinematics of the eastern Tibetan Plateau are characterized by the southeastward movement of a major tectonic unit, the Chuan-Dian crustal fragment, bounded by the left-lateral Xianshuihe–Xiaojiang fault in the northeast and the right-lateral Red River–Ailao Shan shear zone in the southwest. Our field structural and geomorphic observations define two sets of young, active strike–slip faults within the northern part of the fragment that lie within the SE Tibetan Plateau. One set trends NE–SW with right-lateral displacement and includes the Jiulong, Batang, and Derong faults. The second set trends NW–SE with left-lateral displacement and includes the Xianshuihe, Litang, Xiangcheng, Zhongdian, and Xuebo faults. Strike–slip displacements along these faults were established by the deflection and offset of streams and various lithologic units; these offsets yield an average magnitude of right- and left-lateral displacements of ~15–35 km. Using 5.7–3.5 Ma as the time of onset of the late-stage evolution of the Xianshuihe fault and the regional stream incision within this part of the plateau as a proxy for the initiation age of conjugate strike–slip faulting, we have determined an average slip rate of ~2.6–9.4 mm/year. These two sets of strike–slip faults intersect at an obtuse angle that ranges from 100° to 140° facing east and west; the fault sets define a conjugate strike–slip pattern that expresses internal E–W shortening in the northern part of the Chuan-Dian crustal fragment. These conjugate faults are interpreted to have experienced clockwise and counterclockwise rotations of up to 20°. The presence of this conjugate fault system demonstrates that this part of the Tibetan Plateau is undergoing not only southward movement, but also E–W shortening and N–S lengthening due to convergence between the Sichuan Basin and the eastern Himalayan syntaxis.  相似文献   

2.
We relocate the 1990–1991 Potenza (Southern Apennines belt, Italy) sequences and calculate focal mechanisms. This seismicity clusters along an E–W, dextral strike–slip structure. Second-order clusters are also present and reflect the activation of minor shears. The depth distribution of earthquakes evidences a peak between 14 and 20 km, within the basement of the subducting Apulian plate. The analysed seismicity does not mirror that of Southern Apennines, which include NW–SE striking normal faults and earthquakes concentrated within the first 15 km of the crust. We suggest that the E–W faults affecting the foreland region of Apennine propagate up to 25 km of depth. The Potenza earthquakes reflect the reactivation of a deep, preexisting fault system. We conclude that the seismotectonic setting of Apennines is characterized by NW–SE normal faults affecting the upper 15 km of the crust, and by E–W deeper strike–slip faults cutting the crystalline basement of the chain.  相似文献   

3.
Abstract

The classical model of faulting predicts that slip planes occur in two conjugate sets. Theoretically, more sets can be contemporarily active if pre-existing structures are reactivated in a three-dimensional strain field. Four to six sets of faults have been active in the Holocene in the Zailiski Alatau mountain range, Kazakstan. Faults strike with the highest frequency ENE and ESE and show mostly left-lateral reverse and right-lateral reverse motions, respectively. These faults have a bimodal distribution of dips, forming four sets arranged in orthorhombic symmetry. Locally, NNW- to NNE- striking vertical faults have also been active in the Holocene and show right-lateral strike-slip and left-lateral strike-slip motions, respectively. All these fault sets accommodated the general three-dimensional deformation, given by N-S-directed horizontal shortening, vertical extension, and E-W-directed horizontal extension. Field evidence also shows that the reverse motions, even if with a minor strike-slip component, occurred on high-angle planes with inclination of 65°-85°. ENE- and ESE-striking faults reactivated older fracture zones, whereas the other sets are newly formed. Comparison of these field results with the structures obtained from published analogue models shows a strong similarity of fault geometry and kinematics.  相似文献   

4.
Focal mechanisms of earthquakes and fault‐slip data have been collected to constrain the strain regime acting in the hydrothermal zone and surrounding areas of the Campanian Plain (southern Italy), a NW–SE elongated structural depression. The NW–SE striking faults bounding the depression move in response to a NE–SW striking regional extension. Within the depression, an extended hydrothermal circulation occurs related to the Vesuvius, Campi Flegrei and Ischia active volcanoes. In this zone, the strike of the extension is N–S. Results from a finite element model constrained by the collected data show that the presence of a lower rigidity zone due to the hydrothermal circulation may explain (a) the observed deflection of the direction of regional extension, and (b) why large magnitude earthquakes occur at the boundaries of the hydrothermal zone and not along the faults delimiting the structural depression.  相似文献   

5.
The Mosha and North Tehran faults correspond to the nearest seismic sources for the northern part of the Tehran megacity. The present-day structural relationships and the kinematics of these two faults, especially at their junction in Lavasanat region, is still a matter of debate. In this paper, we present the results of a morphotectonic analysis (aerial photos and field investigations) within the central part of the Mosha and eastern part of the North Tehran faults between the Mosha valley and Tehran City. Our investigations show that, generally, the traces of activity do not follow the older traces corresponding to previous long-term dip–slip thrusting movements. The recent faulting mainly occurs on new traces trending E–W to ENE–WSW affecting Quaternary features (streams, ridges, risers, and young glacial markers) and cutting straight through the topography. Often defining en-echelon patterns (right- and left-stepping), these new traces correspond to steep faults with either north- or south-dipping directions, along which clear evidences for left-lateral strike–slip motion are found. At their junction zone, the two sinistral faults display a left-stepping en-echelon pattern defining a positive flower structure system clearly visible near Ira village. Further west, the left-lateral strike–slip motion is transferred along the ENE–WSW trending Niavaran fault and other faults. The cumulative offsets associated with this left-lateral deformation is small compared with the topography associated with the previous Late Tertiary thrusting motion, showing that it corresponds to a recent change of kinematics.  相似文献   

6.
湘桂地区中新生代走滑断裂系统对铀成矿的控制作用   总被引:1,自引:0,他引:1  
湘桂地区是我国的重要铀成矿区之一。该区自中生代末期以来进入了全新的陆内走滑作用阶段,并经历了两次重大的构造转换,即晚三叠纪末至侏罗纪末的会聚走滑和白垩纪至第三纪早期的离散走滑。三条NNE向的主走滑断裂(PDZ)和一系列NE向的同向右侧列走滑断层(P)以及NW向的反向走滑断层(R')组成了复杂的走滑断裂网络系统,并直接控制了湘桂地区铀矿床(田)在时间和空间上的分布。  相似文献   

7.
贵州中生代变形主要发生在燕山期,发育三幕褶皱变形、两幕逆冲和三幕走滑。根据区域对比、卷入褶皱的地层和褶皱间的叠加关系,判断三期褶皱的形成顺序依次为近东西向、北东向和南北向,时限在J3—K2之间。逆冲推覆构造主要由向北西或西逆冲的近南北向逆冲断层组成,大体与南北向褶皱同时形成; 自雪峰构造带西缘向西,依次划分出根部带、中部带和前锋带。但是,在根部带识别出两幕逆冲推覆,其它两带各识别出一幕。走滑断层也有3个方向:东西向、北东向和近南北向。东西向走滑断层呈现出右行压扭的运动学特征,而大多数北东向走滑断层是左行张扭性质的。依据各个方向断层间的切割和限制关系,推测东西向走滑断层最早形成,其次是南北向逆冲断层,北东向走滑断层最晚活动。这些断裂和褶皱特征,总体表现出贵州多重多种复合联合的构造特征,最后,探讨了本区的构造成因模式。  相似文献   

8.
Large earthquakes in strike-slip regimes commonly rupture fault segments that are oblique to each other in both strike and dip. This was the case during the 1999 Izmit earthquake, which mainly ruptured E–W-striking right-lateral faults but also ruptured the N60°E-striking Karadere fault at the eastern end of the main rupture. It will also likely be so for any future large fault rupture in the adjacent Sea of Marmara. Our aim here is to characterize the effects of regional stress direction, stress triggering due to rupture, and mechanical slip interaction on the composite rupture process. We examine the failure tendency and slip mechanism on secondary faults that are oblique in strike and dip to a vertical strike-slip fault or “master” fault. For a regional stress field well-oriented for slip on a vertical right-lateral strike-slip fault, we determine that oblique normal faulting is most favored on dipping faults with two different strikes, both of which are oriented clockwise from the strike-slip fault. The orientation closer in strike to the master fault is predicted to slip with right-lateral oblique normal slip, the other one with left-lateral oblique normal slip. The most favored secondary fault orientations depend on the effective coefficient of friction on the faults and the ratio of the vertical stress to the maximum horizontal stress. If the regional stress instead causes left-lateral slip on the vertical master fault, the most favored secondary faults would be oriented counterclockwise from the master fault. For secondary faults striking ±30° oblique to the master fault, right-lateral slip on the master fault brings both these secondary fault orientations closer to the Coulomb condition for shear failure with oblique right-lateral slip. For a secondary fault striking 30° counterclockwise, the predicted stress change and the component of reverse slip both increase for shallower-angle dips of the secondary fault. For a secondary fault striking 30° clockwise, the predicted stress change decreases but the predicted component of normal slip increases for shallower-angle dips of the secondary fault. When both the vertical master fault and the dipping secondary fault are allowed to slip, mechanical interaction produces sharp gradients or discontinuities in slip across their intersection lines. This can effectively constrain rupture to limited portions of larger faults, depending on the locations of fault intersections. Across the fault intersection line, predicted rakes can vary by >40° and the sense of lateral slip can reverse. Application of these results provides a potential explanation for why only a limited portion of the Karadere fault ruptured during the Izmit earthquake. Our results also suggest that the geometries of fault intersection within the Sea of Marmara favor composite rupture of multiple oblique fault segments.  相似文献   

9.
济阳盆地中生代构造特征与油气   总被引:62,自引:6,他引:56  
宗国洪  王秉海 《地质论评》1998,44(3):289-294
济阳盆地中生代构造主要包括:印支期NW向压性构造(褶皱及逆断层)、消亡的NW向负反转半地垒及半地堑、燕山期ENE向压性构造(褶皱或逆断层)、SN向地垒。印支期NW向压性构造是华北板块同扬子板块的聚敛运动的产物,而NW向负反转地垒和地堑、ENE向压性构造及SN向地垒导源于郯庐断裂的左旋剪切作用,新生代郯庐断裂右旋剪切运动导致上述构造消亡并成为隐伏构造。中生代隐伏构造为济阳盆地深层勘探提供了潜山圈闭(  相似文献   

10.
青藏高原北部发育一系列北西向大型左行走滑断裂带,目前普遍认为这些左行走滑断裂至今仍在活动,在左行走滑作用下,青藏高原东部向东挤出并伴随强烈的地块旋转运动。本文以介于东昆仑左行走滑断裂带与玉树左行走滑断裂带之间的巴颜喀拉山中央断裂(及其周缘的构造形迹)为主要研究对象,根据断层构造的直接解译标志——清晰的线性形迹和构造地貌标志如断层陡坎、断层谷地、挤压脊、地裂缝、断层走滑造成的水系错动、新老洪积扇的侧向叠加等,在高分辨率的SPOT5及中等分辨率ETM遥感影像上对研究区内北西向活动断层与北东向活动断层的空间分布、规模、活动性质、相对活动时代及活动幅度等进行了遥感分析和野外验证,并结合对断层周缘沿共轭张裂隙展布的水系与地裂缝的规模、展布方向等的统计分析,对晚第四纪应力场进行了恢复。研究表明:北西向活动断层具右行走滑兼有逆冲运动特征,北东向活动断层具左行走滑兼有正滑运动特征,二者为晚第四纪NNE向(2°)挤压应力条件下产生的北西向与北东向走滑作用的产物。北西向右行走滑作用的发现,预示着青藏高原北部第四纪以来普遍存在的北西向左行走滑作用可能在晚更新世就已终止。在此基础上,探讨了处于不同展布方向上的湖盆在同一应力条件下表现出的不同演化趋势:即在NNE向挤压应力作用下,呈北东向展布的错坎巴昂日东湖处于近东西向拉张状态,呈北西向展布的卡巴纽尔多湖变化不明显。  相似文献   

11.
The Mondy strike-slip fault connects the W-E Tunka and N-S Hovsgol basins on the southern flank of the Baikal rift system. Ground penetrating radar (GPR) surveys in its damage zone provide constraints on thicknesses, dips, and plunges of fault planes, as well as on the amount and sense of vertical slip. Strike-slip faulting in the southern segment of the Mondy fault within the territory of Russia bears a normal slip component of motion along the W-E and NW planes. These motions have produced negative flower structures in shallow crust appearing as grabens upon Pleistocene fluvioglacial terraces. The amount of normal slip estimated from the displacement of reflection events varies over the area and reaches its maximum of 3.4 m near Mondy Village. In the Kharadaban basin link, left-lateral strike slip displaces valleys of ephemeral streams to 22 m, while normal slip detected by GPR reaches 2.2 m; this normal-to-strike slip ratio corresponds to a direction of ~ 6° to the horizon. The angles of dips of faults are in the range 75°-79°; the thicknesses of fault planes marked by low- or high-frequency anomalies in GPR records vary from 2.5 to 17.0 m along strike and decrease with depth within a few meters below the surface, which is common to near-surface coseismic motions. Many ruptures fail to reach the surface but appear rather as sinkholes localized mainly in fault hanging walls. The deformation style in the damage zone of the Mondy fault bears impact of the NW Yaminshin fault lying between its two segments. According to photoelasticity, the stress field changes locally at the intersection of the two faults, under NE compression at 38°, till the inverse orientations of principal compression and extension stresses. This stress pattern leads to a combination of normal and left-lateral strike slip components.  相似文献   

12.
青藏高原中部第四纪左旋剪切变形的地表地质证据   总被引:7,自引:5,他引:2  
在青藏铁路的格尔木—拉萨段进行的活动断裂调查发现,在沱沱河—五道梁之间宽约150km的地段内发育了多条由北西西向次级断层左列分布构成的北西西向和北西向左旋张扭性断裂带,在断裂带之间则发育"S"型的北东向裂陷盆地和雁列分布的菱形裂陷盆地,盆地边界断裂也为左旋张扭性质。上述断裂带和裂陷带主要形成于第四纪,它们构成了宽约150km的不均匀的左旋简单剪切变形域,该变形域的整体活动性较弱,属于弱的不均匀剪切变形域。但其中的二道沟断陷盆地是个例外,该盆地边界断裂的垂直活动速率约为0 5mm/a,左旋活动速率介于0 8~1 0mm/a之间。而在整个左旋剪切变形带累计的左旋走滑速率不会超过6mm/a,它们所调节的昆仑山与唐古拉山之间的地壳南北缩短量也可能仅占总缩短量的15%~30%。上述弱剪切变形域与强烈左旋走滑的昆仑断裂系共同构成了高原中部的左旋剪切变形带,它们在印度板块与欧亚板块强烈碰撞的构造动力学背景下,起着调节青藏高原南北向缩短的重要作用。  相似文献   

13.
G. F. Ufimtsev 《GeoJournal》1991,23(3):197-206
The Baikal rift valley, the central segment of the Baikal rift zone located in southern East Siberia, consists of two large depressions separated by an interdepressional uplift. The thickness of the Neogene-Quaternary sediments filling in the depression amounts to 5 km (Logatchev and Florensov 1978). The interdepressional uplift consists of subsiding residual steps and active tilted horsts.The NW slope of the Baikal rift is controlled by a system of faults diverging to the N. This system comprises tectonic scarps (faceted ridge spurs), an inclined piedmont surface and a summit slope. The facets indicate the position of the main dip slip faults behind which longitudinal strike slip faults are distributed. Between the branching faults, the so-called intermediate steps are situated. Their subsidence and destruction result in expansion of the rift valley. Transformation of normal faults into listric faults is manifested in the tectonic topography in the areas of the residual and intermediate steps. The large dimensions of the Baikal rift valley are evidently due to its being confined to the faults striking NE-SW.  相似文献   

14.
2014年5月云南盈江M_S5.6、M_S6.1地震发震构造分析   总被引:1,自引:0,他引:1  
2014年5月云南省盈江县先后发生MS5.6、MS6.1地震,为确定它们的发震构造及其所反映的区域活动构造格局,笔者围绕该区开展了地震烈度调查、活动构造遥感解译、地质构造及构造地貌野外调查、震源机制解及余震分布资料分析等工作。调查与分析表明,两次地震的宏观震中均位于盈江县勐弄乡麻栗坡村附近,但发震断层明显不同。前者为NE走向左旋走滑的昔马—盘龙山断裂,后者为近SN向右旋走滑的苏典断裂。历史地震资料显示,盈江地区的地震活动多以5~6级的中-强震为主,并具有明显的群发性和沿SN向断层迁移的特征。在实皆断裂及滇西内弧带的共同作用下,腾冲地块内以大盈江断裂为界,北部主要发育近SN向右旋走滑断裂,南部则以NE向左旋走滑断裂为主,其中近SN向断层晚第四纪活动性更强。  相似文献   

15.
Porphyry Cu (Mo–Au) deposits in the Himalayan–Tibetan orogen formed during the Late Triassic, Early Cretaceous, Eocene, Oligocene, and Miocene and can be classified into different metallogenic belts according to their petrologic features, mineralization ages, and tectonic settings. A close spatial relationship to regional strike–slip faults is evident in all five belts. Porphyry Cu (Mo–Au) deposits exist in a wide range of tectonic environments, including island arc, syn-collision, post-collisional convergence, and continental-transform plate boundaries.

Porphyry Cu deposits cluster in the southernmost part of the Yidun–Zhongdian Belt, along the N–S-trending Gaze River dextral strike–slip fault. Porphyry Cu deposits in the Lijiang–Jinping Belt lie along the Ailaoshan–Red River continental–transform shear zone and the associated strike–slip faults. The Yulong–Malasongduo porphyry belt is controlled by the Cesuo Fault, a NNW-trending regional dextral transcurrent fault that is associated with Palaeogene westward continental oblique subduction along the Jinsha suture. In the Gangdis Belt, Miocene porphyry Cu deposits are localized along N–S-trending normal faults, which were produced by transpression within the regional NW–SE-trending Karakoram–Jiali fault zone (KJFZ). A close spatial relationship between porphyry Cu deposits and strike–slip faults also exists for the Bangong–Nujiang Belt.  相似文献   

16.
The research on Paleozoic tectonics and endogenic metallogeny in the Tianshan-Altay region of Central Asia is an important and significant project. The Altay region, as a collision zone of the Early Paleozoic(500–397 Ma), and the Tianshan region, as a collision zone of the early period in the Late Paleozoic(Late Devonian-Early Carboniferous, 385–323 Ma), are all the result of nearly N-S trending shortening and collision(according to recent magnetic orientation). In the Late Devonian-Early Carboniferous period(385–323 Ma), regional NW trending faults displayed features of dextral strike-slip motion in the Altay and Junggar regions. In the Tianshan region, nearly EW-trending regional faults are motions of the thrusts. However, in the Late Carboniferous-Early Permian period(323–260 Ma), influenced by the long-distance effect induced from the Ural collision zone, those areas suffered weaker eastward compression, the existing NW trending faults converted into sinistral strike-slip in the Altay and Junggar regions, and the existing nearly E-W trending faults transferred into dextral strike-slip faults in the Tianshan region. The Rocks of those regions in the Late Carboniferous-Early Permian period(323–260 Ma) were moderately ruptured to a certain tension-shear, and thus formed a number of world famous giant endogenic metal ore deposits in the Tianshan-Altay region. As to the Central Asian continent, the most powerful collision period may not coincide with the most favorable endogenic metallogenic period. It should be treated to "the orogenic metallogeny hypothesis" with caution in that region.  相似文献   

17.
以21世纪初滇中大姚—姚安一带接连发生的4次Ms6.0~6.5级强震为例,通过分析该地区构造类型及其演化历史,结合川滇块体的现今运动特征和构造应力场,提出滇中构造区运动模型和特殊的孕震模式,探讨褶皱节理与地震活动的关系。研究表明,这些地震序列均有规律地沿北西方向展布,具有高度一致的沿北西向节理面右旋走滑的力学破裂机制。该地区断裂不发育,而是以北西向中生代褶皱构造为主。野外调查发现,该地区广泛发育与褶皱伴生的北西向纵向节理及北东向横向节理,前者较后者更为发育。这些节理密集成带,呈不等间距排列,带宽30~50 m,带内节理密度20~30条/m。节理面上发育有方解石脉和辉长岩脉,同时发育挤压片理化带、新鲜的水平擦痕和松软的断层泥,说明这些节理不仅与深部地壳有关联,而且近期有着新活动迹象。分析认为,在滇中块体南南东运动的背景下,这些地震是在现今北北西向挤压应力场作用下,北西向纵向节理发生构造强化、贯通、破裂的过程中产生的。"活节理"与活动断裂、活动褶皱等构造一样,是地球上广泛存在的活动构造之一。在特殊的构造环境和特定的构造应力场作用下,节理构造会演变为一种构造强化带或活化带,进而成为一种特殊的孕震构造。  相似文献   

18.
右江地区北西向断裂起源于晚古生代右江盆地内发育的同沉积断裂,这些断裂近等间距平行分布,新生代以来发生了多期次左旋走滑活动,进而导致了右江地区整体发生简单剪切变形。利用三维沙箱模型展开了物理模拟实验,对新生代右江地区的变形机制进行了分析。实验结果表明,早期在红河断裂的左旋剪切错动和印支地块的顺时针旋转联合作用下,右江地区北西向断裂复活,并发生明显的左旋走滑活动;随后川滇地块发生东南向的挤出运动,对右江地区产生侧向挤压,导致了右江地区北西向断裂新一轮的快速左旋走滑活动,同时还导致了右江地区西部的地壳压缩增厚。实验证实新生代右江地区的简单剪切变形以及北西向断裂的走滑活动是印支地块和川滇地块挤出运动共同作用的结果,同时也是印度-欧亚板块碰撞产生的连锁反应之一。   相似文献   

19.
Transpressional deformation has played an important role in the late Neoproterozoic evolution of the ArabianNubian Shield including the Central Eastern Desert of Egypt. The Ghadir Shear Belt is a 35 km-long, NW-oriented brittleductile shear zone that underwent overall sinistral transpression during the Late Neoproterozoic. Within this shear belt, strain is highly partitioned into shortening, oblique, extensional and strike-slip structures at multiple scales. Moreover, strain partitioning is heterogeneous along-strike giving rise to three distinct structural domains. In the East Ghadir and Ambaut shear belts, the strain is pure-shear dominated whereas the narrow sectors parallel to the shear walls in the West Ghadir Shear Zone are simple-shear dominated. These domains are comparable to splay-dominated and thrust-dominated strike-slip shear zones. The kinematic transition along the Ghadir shear belt is consistent with separate strike-slip and thrustsense shear zones. The earlier fabric(S1), is locally recognized in low strain areas and SW-ward thrusts. S2 is associated with a shallowly plunging stretching lineation(L2), and defines ~NW-SE major upright macroscopic folds in the East Ghadir shear belt. F2 folds are superimposed by ~NNW–SSE tight-minor and major F3 folds that are kinematically compatible with sinistral transpressional deformation along the West Ghadir Shear Zone and may represent strain partitioning during deformation. F2 and F3 folds are superimposed by ENE–WSW gentle F4 folds in the Ambaut shear belt. The sub-parallelism of F3 and F4 fold axes with the shear zones may have resulted from strain partitioning associated with simple shear deformation along narrow mylonite zones and pure shear-dominant deformation in fold zones. Dextral ENEstriking shear zones were subsequently active at ca. 595 Ma, coeval with sinistral shearing along NW-to NNW-striking shear zones. The occurrence of upright folds and folds with vertical axes suggests that transpression plays a significant role in the tectonic evolution of the Ghadir shear belt. Oblique convergence may have been provoked by the buckling of the Hafafit gneiss-cored domes and relative rotations between its segments. Upright folds, fold with vertical axes and sinistral strike-slip shear zones developed in response to strain partitioning. The West Ghadir Shear Zone contains thrusts and strikeslip shear zones that resulted from lateral escape tectonics associated with lateral imbrication and transpression in response to oblique squeezing of the Arabian-Nubian Shield during agglutination of East and West Gondwana.  相似文献   

20.
通过断层活动性分析、典型测线平衡剖面恢复、伸展率统计等方法, 对济阳坳陷新生代盆地结构的静态特征和演化过程进行了详细分析, 从凹陷内部结构差异、不同凹陷间结构差异、区域结构差异3个层次上对济阳坳陷盆地进行了对比分析并探讨了成因机制.研究结果表明: 凹陷内部及不同凹陷间结构的差异主要受控于北西向控盆断裂以及不同演化阶段控盆断裂体系的发育, 而区域结构差异主要受控于板块俯冲方式转变下的郯庐断裂带由左旋走滑到右旋走滑的转型以及深部地幔物质由上涌到下沉的转变.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号