首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Diana Necea  W. Fielitz  L. Matenco   《Tectonophysics》2005,410(1-4):137-156
The Romanian East Carpathians display large-scale heterogeneities along the mountain belt, unusual foredeep geometries, significant post-collisional and neotectonic activity, and major variations in topography, mostly developed in the aftermath of late Miocene (Sarmatian; 11 Ma) subduction/underthrusting and continental collision between the East European/Scythian/Moesian foreland and the inner Carpathians Tisza-Dacia unit. In particular, the SE corner of the arcuate orogenic belt represents the place of still active large-scale differential vertical movements between the uplifting mountain chain and the subsiding Focşani foredeep basin. In this key area, we have analysed the configuration of the present day landforms and the drainage patterns in order to quantify the amplitude, timing and kinematics of these post-collisional late Pliocene–Quaternary vertical movements. A river network is incising in the upstream a high topography consisting of the external Carpathians nappes and the Pliocene–Lower Pleistocene sediments of the foreland. Further eastwards in the downstream, this network is cross-cutting a low topography consisting of the Middle Pleistocene–Holocene sediments of the foreland. Geological observations and well-preserved geomorphic features demonstrate a complex succession of geological structures. The late Pliocene–Holocene tectonic evolution is generally characterised by coeval uplift in the mountain chain and subsidence in the foreland. At a more detailed scale, these vertical movements took place in pulses of accelerated motion, with laterally variable amplitude both in space and in time. After a first late Pliocene uplifting period, subsidence took place during the Earliest Pleistocene resulting in a basal Quaternary unconformity. This was followed by two, quantifiable periods of increased uplift, which affected the studied area at the transition between the Carpathians orogen and the Focşani foreland basin in the late Early Pleistocene and the late Middle to late Pleistocene. Both large-scale deformation events affected the western Focşani basin flank, tilting the entire structure with 9° during the late Early Pleistocene and uplifted it as a block during the early Late Pleistocene. The late Early Pleistocene tilting resulted in 750 m uplift near the frontal monocline and by extrapolation in a presumed 3000 m uplift near the central parts of the Carpathians. The late Middle to late Pleistocene cumulative uplift reaches 250 m and correlates with a contemporaneous progradation of the uplifted areas towards the Focşani Basin. The uplifting events are separated by a second Quaternary unconformity. On the whole, the late Pliocene–Quaternary evolution of the Carpathians orogen/Focşani basin structure indicate large-scale differential uplift during the latest stages of a continuous post-collisional orogenic evolution.  相似文献   

2.
BSR (Bottom Simulating Reflector) occurs widely in the strata since the late Miocene in the deep-water area of the northern continental slope of South China Sea (SCS). It is an important seismic reference mark which identifies the gas hydrate and its distribution influenced by the tectonic movements. Single-point basin modeling was conducted using 473 points in the study area. To discuss the relationships between the tectonic subsidence and BSR, the volume and rate of tectonic subsidence in each geological time have been simulated. The results show that there are three tectonic accelerate subsidence processes in the study area since the late Miocene, especially since 1.8Ma the tectonic subsidence accelerates more apparently. Since the Late Miocene to Pleistocene, the rate of tectonic subsidence in deep-water underwent a transformation from weak to strong. The ratio of tectonic subsidence to the total subsidence was relatively high (65-70%). Through the superposition of the BSR developed areas and the contours of tectonic subsidence in this area, it was discovered that more than 80% of BSR tend to be distributed at the slope break or depression-uplift structural transfer zone and the average tectonic subsidence rate ranges from 70 m/Ma to 125 m/Ma.  相似文献   

3.
The Rwenzori Mountains (Mtns) in west Uganda are the highest rift mountains on Earth and rise to more than 5,000 m. We apply low-temperature thermochronology (apatite fission-track (AFT) and apatite (U–Th–Sm)/He (AHe) analysis) for tracking the cooling history of the Rwenzori Mtns. Samples from the central and northern Rwenzoris reveal AFT ages between 195.0 (±8.4) Ma and 85.3 (±5.3) Ma, and AHe ages between 210.0 (±6.0) Ma to 24.9 (±0.5) Ma. Modelled time–temperature paths reflect a protracted cooling history with accelerated cooling in Permo-Triassic and Jurassic times, followed by a long period of constant and slow cooling, than succeeded by a renewed accelerated cooling in the Neogene. During the last 10 Ma, differentiated erosion and surface uplift affected the Rwenzori Mtns, with more pronounced uplift along the western flank. The final rock uplift of the Rwenzori Mtns that partly led to the formation of the recent topography must have been fast and in the near past (Pliocene to Pleistocene). Erosion could not compensate for the latest rock uplift, resulting in Oligocene to Miocene AHe ages.  相似文献   

4.
天山山脉隶属中亚造山带,晚新生代时期印度板块向亚洲板块俯冲的构造效应同样影响到天山地区,使这一晚古生代形成的造山带重新复活。天山南北两侧的晚第三纪和第四纪时期的地层正是对印度板块-亚洲板块碰撞带的响应,发生构造变形,形成了一系列逆冲断层和褶皱,指示这一区域的地壳在晚新生代变短和加厚。文章对天山北缘晚中新世以来的沉积进行了详细的磁性地层学和沉积学研究,结果表明:在研究的独山子背斜地区,磨拉石沉积最早出现于约7百万年前,说明天山山脉自7百万年前开始有一次构造隆升,研究区内7.00~2.58Ma间的巨厚砾石沉积主要是构造抬升的结果。而早更新世的西域砾岩沉积在很大程度上与第四纪时期全球冰期的来临,特别是北半球开始发育大规模冰川作用有关,因此西域砾岩应当是在第四纪冰川作用(气候变冷)及新构造运动共同作用下的产物。  相似文献   

5.
2007年中国在南海北部神狐海域通过钻探首次获得天然气水合物样品,证实了珠江口盆地深水区是水合物富集区。通过对珠江口盆地深水区构造沉降史的定量模拟研究,发现晚中新世以来区内构造沉降总体上具有由北向南、自西向东逐渐变快的演化趋势;从晚中新世到更新世,盆地深水区经历了构造沉降作用由弱到强的变化过程:晚中新世(11.6~5.3 Ma),平均构造沉降速率为67 m/Ma;上新世(5.3~1.8 Ma),平均构造沉降速率为68 m/Ma;至更新世(1.8~0 Ma),平均构造沉降速率为73 m/Ma。而造成这些变化的主因是发生在中中新世末-晚中新世末的东沙运动和发生在上新世-更新世早期的台湾运动。东沙运动(10~5 Ma)使盆地在升降过程中发生块断升降,隆起剥蚀,自东向西运动强度和构造变形逐渐减弱,使得盆地深水区持续稳定沉降;台湾运动(3 Ma)彻底改变了盆地深水区的构造格局,因重力均衡调整盆地深水区继续沉降,越往南沉降越大。将似海底反射(BSR)发育区与沉降速率平面图进行叠合分析,发现80%以上的BSR分布趋于构造沉降速率值主要在75~125 m/Ma之间、沉降速率变化迅速的隆坳接合带区域。  相似文献   

6.
武隆喀斯特及其地壳抬升性质解读   总被引:5,自引:3,他引:2  
在特定的地质结构及峡谷水文网分布条件下,武隆喀斯特以独立发育的诸多包气带喀斯特系统为主要特征,而且不同喀斯特系统间的结构与形态组成差异甚大。喀斯特系统的分析可解读相适应的地壳运动性质是: 自新近纪末期以来,地壳运动只有上升没有下降过程;前80~ 100万年为持续上升,即几乎没有相对稳定的经历;继后是间歇性抬升与相对稳定,似以后者占优;分布于深切峡谷相对高度150~ 300m间的大型成层性洞穴,主要发育于中更新世;晚更新世以来的上升与相对稳定彼此平分秋色。   相似文献   

7.
柴达木盆地大浪滩梁 ZK02孔的磁性地层及其古环境研究   总被引:4,自引:0,他引:4  
对柴达木盆地西部大浪滩盐湖梁-ZK02孔岩芯进行详细的磁性地层研究,确定钻孔岩芯的B—M界线位于315m,Jaramillo位于405~430m,Olduvai位于772~816m。在磁性年代学框架基础上,以蒸发岩沉积序列作为主要依据,结合碎屑岩变化以及孢粉分析,认为该地区在第四纪发生过三次较大的沉积环境变化,分别发生在2.5~2.2Ma,1.2~0.7Ma与0.4Ma。青藏高原第四纪的隆升是造成上述三次变化的主要原因,其中早更新世末—中更新世早期的隆升对柴达木盆地的气候影响较大,导致柴达木盆地的气候由温凉湿润转换为寒冷干旱。高原隆升引起的气候干旱并非简单的逐渐加剧,而是早更新世末期以来,气候湿润期表现得更为湿润,这种现象可能由高原隆升增加了夏季风的强度导致,冰川和积雪面积的增大也起到了叠加效应。  相似文献   

8.
The Late Cenozoic basins in the Weihe–Shanxi Graben, North China Craton are delineated by northeast-striking faults. The faults have, since a long time, been related to the progressive uplift and northeastward expansion of the Tibetan Plateau. To show the relation between the basins and faults, two Pliocene–Pleistocene stratigraphic sections(Chengqiang and Hongyanangou) in the southern part of the Nihewan Basin at the northernmost parts of the graben are studied herein. Based on the sedimentary sequences and facies, the sections are divided into three evolutionary stages, such as alluvial fan-eolian red clay, fan delta, and fluvial, with boundaries at ~2.8 and ~1.8 Ma. Paleocurrent indicators, the composition of coarse clastics, heavy minerals, and the geochemistry of moderate–fine clastics are used to establish the temporal and spatial variations in the source areas. Based on features from the middlenorthern basin, we infer that the Nihewan Basin comprises an old NE–SW elongate geotectogene and a young NW–SE elongate subgeotectogene. The main geotectogene in the mid-north is a half-graben bounded by northeast-striking and northwest-dipping normal faults(e.g., Liulengshan Fault). This group of faults was mainly affected by the Pliocene(before ~2.8–2.6 Ma) NW–SE extension and controlled the deposition of sediments. In contrast, the subgeotectogene in the south was affected by northwest-striking normal faults(e.g., Huliuhe Fault) that were controlled by the subsequent weak NE–SW extension in the Pleistocene. The remarkable change in the sedimentary facies and provenance since ~1.8 Ma is possibly a signal of either weak or strong NE–SW extension. This result implies that the main tectonic transition ages of ~2.8–2.6 Ma and ~1.8 Ma in the Weihe–Shanxi Graben are affected by the Tibetan Plateau in Pliocene–Pleistocene.  相似文献   

9.
The late Cenozoic sediments in the rift basins in the northern Himalaya Mountains document important information about the uplift and deformation of the most active tectonic region in the Tibetan Plateau. However, these sediments have not been precisely dated, hindering our ability to address the basin development and termination associated with a series of uplifts in the southern Tibetan Plateau. Here, we report a detailed magnetostratigraphic study on the fluvio - lacustrine sedimentary sequence of the Dati Formation bearing abundant Hipparion forstenae fossils in the Dati Basin in the northern frontal region of the Himalaya Mountains. The 195 m – thick section yielded six normal and seven reversed polarity zones that correlate well with Chrons C3An.1r to C4r.2r of the geomagnetic polarity time scale, constraining the section age to ~8.6 – ~6.2 Ma. Together with the magnetostratigraphic results from other rift basins in the region, these results indicate that the horizons bearing the Hipparion fossils were deposited during the age interval of 7.1–6.5 Ma in the northern Himalaya Mountains. The regional tectonic activity and comprehensive magnetostratigraphic and sedimentologic comparisons suggest that the evolution of the rift basins in the northern Himalaya Mountains has involved three major stages since the late Cenozoic, i.e., (1) ~10.0–8.0 Ma, onset of the basins with fan delta facies; (2) ~8.0–3.0 Ma, expansion of the basins with mainly lacustrine facies; (3) ~3.0–1.7 Ma, shrinking and termination of the basins with alluvial fans. The basin evolutionary history indicates an accelerated tectonic uplift of the Himalaya Mountains at ~10.0 Ma, and two deformational events at ~3.0 Ma and at ~1.7 Ma.  相似文献   

10.
基于TM遥感图像解译和野外调研,分析了攀西地区大渡河、安宁河深切河谷地貌特征和断裂带构造变形特征,建立了安宁河断裂带晚新生代5阶段变形历史。研究表明,中新世晚期—上新世早期,安宁河断裂以挤压走滑活动为主;上新世晚期至早更新世时期,断裂以斜张走滑活动为主,活动强度较弱;早中更新世之间发生的元谋运动使昔格达组湖相地层褶皱变形;中晚更新世时期发生断陷作用,形成安宁河两堑夹—垒的构造格局;晚更新世—全新世时期又以左旋走滑活动为主。综合安宁河、大渡河河谷地貌和晚新生代地层记录和变形特征,提出了攀西高原晚新生代4阶段隆升模式:中新世早中期(12Ma之前)以缓慢隆升与区域夷平化作用为主,中新世晚期—上新世早期(12~3.4Ma)是高原快速隆升与河流强烈下切的时期,上新世晚期—早更新世(3.4~1.1Ma)为昔格达湖盆发育时期,中晚更新世—全新世(1.1Ma以来)是高原快速隆升与河谷阶地发育时期。最后指出,至上新世晚期(3.4Ma以前),攀西高原海拔高度可能超过了3000m。  相似文献   

11.
围绕IODP 683号建议书,介绍东亚东倾地形格局与季风系统演化历史的相关研究。新生代全球宏观环境格局发生了一系列重大变化,表现为岩石圈活动强烈,板块漂移导致海陆格局和地貌格局的变化,并引发洋流和大气环流的改组,最终导致全球气候的重大变化。新生代岩石圈运动和气候变化表现最为典型的地区是亚洲,其中最具标志性和全球意义的地质事件是喜马拉雅山和青藏高原的隆升及亚洲季风系统的形成与演化。青藏高原隆升最直接的结果是亚洲地区现代地貌格局的形成,大江大河的发育,并在很大程度上影响了亚洲季风系统的形成与演化。综合大洋钻探计划683号航次建议书,计划在长江中下游盆地和东海陆架盆地实施钻探,以获得长江历史演化和东亚季风演化的地质记录,并为研究青藏高原的演化提供新的证据。  相似文献   

12.
This work examines the connection between Quaternary tectonics and erosion/incision processes in the primary Tuscan‐Romagna watershed of the Northern Apennines, which essentially coincides with the topographic culmination of the Nero Unit structural ridge. Tectonic and geomorphic information were collected in the area where this ridge is crossed by the upper Tiber River course forming a deep gorge. Structural analysis and field mapping have revealed that the region experienced polyphase tectonics with superposed thrust folding events identifiable both at the map and mesoscopic scales. Hinterland‐SSW‐verging thrusts and thrust‐related folds deformed the whole thrust pile during the latest deformation phase. Backthrusts/backfolds controlled the development of intermountain basins nearby the main watershed during the Early Pleistocene and seemingly deformed, in the Tiber gorge, a low‐relief landscape developed in the Early Pleistocene (ca. 1.1 Ma). Successively, the upper Tiber River course area and Apennines axial zone underwent a generalized uplift, which is manifested by the deep incision of palaeo‐morphologies. This proposed sequence of events correlates well with the major geodynamic change of the Apennines revealed by an acceleration of uplift rates in the Middle–Late Pleistocene. This latter event may also correlate with increased rates of river incision recorded in Europe as a consequence of uplift and/or climate change. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
青藏高原东北部的形成演化是检验高原隆升模型及其驱动季风-干旱环境形成假说的关键。青海贵德和西宁盆地新生代高精度磁性地层和盆地演化揭示出贵德和西宁盆地在早新生代两个盆地曾经为一个统一的、发育于东昆仑山前的弱挤压型陆内挠曲盆地或前陆盆地,可能包括兰州盆地、循化-化隆盆地和祁连山东部一些盆地在内的周边地区都向这个统一的盆地内注入水流和沉积物质,在西宁一带形成汇水中心,并在当时为行星风系的亚热带副高压带作用下形成巨厚的膏盐层。从约21Ma的中新世早期开始,前陆盆地挠曲下沉明显加剧,盆地早期地层被挤压变形,形成盆地中最显著的角度不整合,推测分隔贵德盆地东部的海宴—泽库右旋断裂强烈活动,分隔贵德和西宁盆地的拉脊山东部开始隆升,贵德盆地河流水系由北转向西流,至中中新世,隆升可能席卷整个拉脊山,贵德盆地水系明显南流,盆地挤压中心由早先的昆仑山前转移至拉脊山两侧。从约8Ma开始,拉脊山开始强烈阶段性幕式(3.6、2.6及1.8Ma)变形隆升,导致两侧断层以花状向盆地中心逐步扩展,断裂、掀斜和褶皱地层,盆地转变成山间盆地,并在约1.8Ma的强烈变形隆升后,黄河出现,紧接着形成上千米深切河谷和7级阶地,高原东北部现今构造地貌沉积格局最终形成。上述盆地形成演化过程总体揭示出印度板块碰撞早期最远端的高原东北部就已经开始变形隆升响应,这个过程阶段性由弱至强,至8Ma以来达到最大,反映了高原南北的同步变形隆升但幅度不同的动力学过程与形成模式,可能指示了脆性上地壳块体间柔性变形、块体内刚性挤压破裂变形和塑性下地壳连续变形增厚与流动的共同作用机制。  相似文献   

14.
The historical site of the Monte Mario lower Pleistocene succession (Rome, Italy) is an important marker of the Pliocene/Pleistocene boundary. Recently, the Monte Mario site was excavated and restudied. A spectacular angular unconformity characterizes the contact between the Monte Vaticano and the Monte Mario formations, which marks the Pliocene/Pleistocene boundary. Biostratigraphical analyses carried out on ostracod, foraminifer, and calcareous nannofossil assemblages indicate an Early Pliocene age (topmost Zanclean, 3.81–3.70 Ma) for the underlying Monte Vaticano Formation, whereas the Monte Mario Formation has been dated as early Pleistocene (Santernian, 1.66–1.59 Ma). Palaeomagnetic analyses point to C2Ar and C1r2r polarity chrons for the Monte Vaticano and the Monte Mario formations, respectively. The Monte Mario Formation consists of two obliquity-forced depositional sequences (MM1 and MM2) characterized by transgressive systems tracts of littoral marine environments at depths, respectively, of 40–80 m and 15–20 m. The data obtained from foraminifer and ostracod assemblages allow us to reconstruct early Pleistocene relative sea-level changes near Rome. At the Plio/Pleistocene transition, a relative sea-level drop of at least 260 m occurred, as a result of both tectonic uplift of the central Tyrrhenian margin and glacio-eustatic changes linked to early Pleistocene glaciation (Marine Isotope Stage 58).  相似文献   

15.
The uplift of the Ailao Shan-Diancang Shan(ASDS) along the Ailao Shan-Red River(ASRR) shear zone is an important geological event in the southeastern margin of Qinghai-Tibet Plateau tectonic domain in the Late Cenozoic,and it preserves important information on the structures,exhumational history and tectonic evolution of the ASRR shear zone.The uplift structural mode and uplift timing of the ASDS is currently an important scientific topic for understanding the ASDS formation and late stage movements and evolution of the ASRR shear zone.The formation of the ASDS has been widely considered to be the consequence of the strike-slip movements of the ASRR shear zone.However,the shaping of geomorphic units is generally direct results of the latest tectonic activities.In this study,we investigated the timing and uplift structural mechanism of the ASDS and provided the following lines of supportive evidence.Firstly,the primary tectonic foliation of the ASDS shows significant characteristic variations,with steeply dipping tectonic foliation developed on the east side of the ASDS and the relatively horizontal foliation on the west side.Secondly,from northeast to southwest direction,the deformation and metamorphism gradually weakened and this zone can be further divided into three different metamorphic degree belts.Thirdly,the contact relationship between the ASDS and the Chuxiong basin-Erhai lake is a normal fault contact which can be found on the east side of the ASDS.40Ar/39 Argeochronology suggests that the Diancang Shan had experienced a fast cooling event during 3–4 Ma.The apatite fission track testing method gives the age of 6.6–10.7 Ma in the Diancang Shan and 4.6–8.4 Ma in the Ailao Shan,respectively.Therefore the uplift of the ASDS can be explained by tilted block mode in which the east side was uplifted much higher than the west side,and it is not main reason of the shearing movements of the ASRR shear zone.The most recent uplift stages of the ASDS happened in the Pliocene(3–4 Ma) and Late Miocene(6–10 Ma).  相似文献   

16.
The Late Miocene to Pleistocene evolution of the northwestern Iblean plateau (Sicily) is marked by a complex interplay of subaerial and submarine volcanism, subsidence and uplift, eustatic sea-level changes, and shallow-water carbonate and clay sedimentation. Volcanic activity occurred in distinct phases, differing drastically in volume, chemical composition, eruptive and depositional sites, and eruptive mechanisms. Six of the newly defined formations in the northwestern Iblean plateau are either entirely volcanic or contain significant amounts of volcanics. The eastern part of a shallow marine basin was filled completely by Late Pliocene tholeiitic lava flows (Militello Formation) that had advanced subaerially from the south–southeast. Lava deltas advanced southwestward on top of earlier pillow breccia debris flow deposits intertongued with soft Trubi marls and chalks. True submarine eruptions (Monte Caliella Formation) simultaneously produced densely packed pillow piles up to 250?m thick. Inferred water depths based on volcanologic and paleoecologic criteria of interbedded and overlying calcarenites agree well. Subsequent alkalic, more explosive Pleistocene volcanic eruptions (Poggio Vina Formation) changed from initially submarine to late subaerial indicating growth of edifices above sea level, sea-level rise, or land Subsidence by ca. 50?m. They and the latest Militello volcanics are interlayed with minor shallow-water calcarenites. The Poggio Vina volcanics were submerged during a second sea-level rise amounting to up to 100?m. The sea was generally shallow, i.e., <100?m deep, throughout most of the Late Pliocene and early Pleistocene. The Poggio Vina volcanism took place prior to the Emilian transgression. The sea-level rise might represent a continuation of the subsidence trend that caused the Lower Pliocene Trubi marine basin. Subaerial conditions were reached twice in the approximate time interval 1.9–1.6?Ma during phases of voluminous volcanism that outpaced subsidence. Uplift of approximately 600?m (Palagonia) to 950?m (Monte Lauro) occurred subsequent to emplacement of the Pleistocene alkalic volcanics. Bioclastic carbonates deposited concurrently with uplift drape a major fault scarp east of Palagonia with uplift rates in excess of 0.5?mm/a, provided most uplift occurred during ca. 1?Ma. Basinning continued beneath the half graben of the present Piana di Catania where volcanics several hundreds of meters thick – at least some of them alkalic in composition – occur at a depth of approximately 500–1500?m below the present surface. Quaternary uplift of the northwestern Iblean plateau may have been due to a major phase of underplating or rise of partially melted mantle. Composition of the volcanic rocks, total volume, and mass eruptive rates are well-correlated. The volumetrically very minor highly mafic Messinian nephelinites may have formed in response to Messinian lithosphere unloading following draining of the Mediterranean resulting in very low-degree partial melting. The nephelinitic to basanitic Poggio Inzerillo and Poggio Pizzuto pillow lavas may herald a major mantle decompression event, possibly the rise of a mantle diapir. The remarkably homogeneous bronzite-bearing, relatively SiO2-rich Militello tholeiites, representing a very short-lived but voluminous eruptive phase, resemble E-MORB and reflect a major high-degree partial melting event. The Pleistocene Poggio Vina alkali basalts to nephelinites resemble the late-stage alkalic phase in intraplate magmatic systems. The Iblean cycle of a brief but intense phase of widespread tholeiites followed by alkali basaltic volcanism resembles that of Etna Volcano where widespread basal tholeiites erupted at approximately 0.5?Ma and were followed by (evolved) alkali basaltic lavas. The immediate cause-and-effect relationship between volcanism and tectonism remains speculative.  相似文献   

17.
青藏高原隆升的主因—大陆板块内的盆-山碰撞作用   总被引:7,自引:0,他引:7  
在地壳运动中,盆地和山脉的形成机制是不可分割而有联系的。上地幔的波动起伏引起地壳上部物质的分配,在重力均衡作用的支配下,地壳物质由上地幔的隆升区域向拗陷区域蠕动,因而形成大陆板块内的盆地和山脉的分异和盆-山运动。高耸的喜马拉雅山和青藏高原就是塔里木盆地、卡拉库姆盆地和印-恒盆地等巨大盆地的扩张作用挤压而造成的。盆-山运动是真正的造山运动。  相似文献   

18.
刘瑾  陈兴强  王平  李廷栋 《地球科学》2020,45(7):2673-2683
渭河盆地和三门峡盆地内发育的河湖相三门组沉积,记录了上新世-更新世的盆地沉积历史,对认识区域古环境及盆地演化特征具有重要意义.通过两个盆地三门组地层的沉积相分析和物源重建,发现2.8~2.6 Ma盆地环境发生了明显变化,2.8~2.6 Ma渭河盆地由深湖转为浅湖沉积,水位下降,而三门峡盆地由河流相转为滨浅湖,水位上升.结合前人古地貌重建和区域应力反演结果,认为上新世渭河盆地和三门峡盆地相互独立,早更新世两个盆地才连通,湖水由渭河盆地注入三门峡盆地,形成统一的三门古湖.对比区域构造事件和物源分析结果,认为青藏高原的快速隆升导致秦岭的抬升,可能是盆地及其水系演化的触发动力.   相似文献   

19.
利用残存的地貌标志恢复原始地貌形态是地貌研究的难点之一。青藏高原东北缘循化-贵德地区晚新生代构造活动强烈,晚新生代黄河在本区发育,其后期演化记录了青藏高原隆升扩展的详细信息,同时黄河侵蚀下切过程本身也是值得深入研究的重要科学问题。由于黄河水系的发育,晚更新世以后循化-贵德盆地地区实现由盆地加积向退积的调整,盆地地区逐渐开始遭受黄河水系的侵蚀下切,并逐渐形成现今青藏高原东北缘的地貌形态。野外地质调查发现更新统的变形程度较弱,由于区域构造隆升与河流强烈下切的共同作用,现今保存的更新统已经成为盆地内部的分水岭,如龙羊峡地区。本研究正是选取循化-贵德盆地及其邻区更新统地层为古地貌重建的标志,基于数字高程模型(DEM)空间分析技术,构建了青藏高原东北缘循化-贵德盆地地区更新世古地貌形态,并进行了初步分析,主要认识有: 1)秦岭北缘断裂带构成其南西向北东方向地形快速降低的边界带; 2)在北西南东方向上,西秦岭、黄河、拉脊山、湟水河以及祁连山等总体上构成了向形-背形相间的地貌格局。同时以古地形为基础,定量计算了盆地区更新世以来的侵蚀分布图像,定量结果表明: 1)剥蚀量的分布形态与高原东北缘盆山地貌系统之间有一定相关耦合性,盆地地区的剥蚀量比较大,而相邻山脉地区的剥蚀量都比较小; 2)剥蚀量比较大的盆地地区剥蚀量与盆地内部河流形态之间也具有明显的关联特征,盆地内部剥蚀量最大的区域往往是盆地内部独立河流的中游地区。  相似文献   

20.
《Quaternary Science Reviews》2007,26(22-24):2864-2882
In this paper, we report our latest observations concerning a Pliocene and Early Pleistocene record from Western Turkey. The sedimentary sequence described comprises the fluvial deposits of an Early Pleistocene palaeo-Gediz river system and its tributaries prior to the onset of volcanism around Kula and the subsequent lacustrine, volcaniclastic and fluvial deposits associated with the first phase of volcanism (∼1.2 Ma) in this area.Early development of an east–west drainage system in this area resulted from tectonic adjustments to north–south extension and the formation of east–west-oriented grabens. Headward erosion of drainage entering the main Alaşehir graben led to the progressive capture of pre-existing drainage systems as eastward (headward) erosion upstream tapped drainage networks previously formed in internally draining NNE–SSW-oriented basins. Within one of these, the Selendi Basin, part of this evolutionary sequence is preserved as a buried river terrace sequence. Eleven terraces are preserved beneath alluvial fan sediments that are, in turn, capped by basaltic lava flows. Using the available geochronology these terraces are considered to represent sedimentation–incision cycles which span the period ∼1.67–1.2 Ma. Although progressive valley incision is a fluvial system response to regional uplift, the frequency of terrace formation within this time period suggests that the terrace formation resulted from sediment/water supply changes, a consequence of obliquity-driven climate changes. The production of sub-parallel terraces suggests that during this period the river was able to attain a quasi-equilibrium longitudinal profile adjusted to the regional uplift rate. Thus, the incision rate of 0.16 mm a−1 during this period is believed to closely mirror the regional uplift rate.After the onset of volcanism at ∼1.2 Ma, there is a destruction of the dynamic link between fluvial system behaviour and climate change. The repeated damming of the trunk river and its tributaries led to the construction of complex stratigraphic relationships. During the first phase of volcanism the palaeo-Gediz river was dammed on numerous occasions leading to the formation of a series of lakes upstream of the dams in the palaeo-Gediz valley. Variations in lake level forced localised base-level changes that resulted in complex fluvial system response and considerable periods of disequilibrium in profile adjustment. Furthermore, response to these base-level changes most likely disrupted the timing of the incisional adjustment to the on-going regional uplift, thus making the use of this part of the archive for inferring regional uplift rates untenable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号