首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The western margin of the Lachlan Fold Belt contains early ductile and brittle structures that formed during northeast‐southwest and east‐west compression, followed by reactivation related to sinistral wrenching. At Stawell all of these structural features (and the associated gold lodes) are dismembered by a complex array of later northwest‐, north‐ and northeast‐dipping faults. Detailed underground structural analysis has identified northwest‐trending mid‐Devonian thrusts (Tabberabberan) that post‐date Early Devonian plutonism and have a top‐to‐the‐southwest transport. Deformation associated with the initial stages of dismemberment occurred along an earlier array of faults that trend southwest‐northeast (or east‐west) and dip to the northwest (or north). The initial transport of the units in the hangingwall of these fault structures was top‐to‐the‐southeast. ‘Missing’ gold lodes were discovered beneath the Magdala orebody by reconstructing a displacement history that involved a combination of transport vectors (top‐to‐the‐southeast and top‐to‐the‐southwest). Fold interference structures in the adjacent Silurian Grampians Group provide further evidence for at least two almost orthogonal shortening regimes, post the mid‐Silurian. Overprinting relationships, and correlation with synchronous sedimentation in the Melbourne Trough, indicates that the early fault structures are mid‐ to late‐Silurian in age (Ludlow: ca 420–414 Ma). These atypical southeast‐vergent structures have regional extent and separate significant northeast‐southwest shortening that occurred in the mid‐Devonian (‘Tabberabberan orogeny’) and Late Ordovician (‘Benambran orogeny’).  相似文献   

2.
The Bentong‐Raub Suture Zone (BRSZ) of Peninsular Malaysia is one of the major structural zones in Sundaland, Southeast Asia. It forms the boundary between the Gondwana‐derived Sibumasu terrane in the west and Sukhothai Arc in the east. The BRSZ is genetically related to the sediment‐hosted/orogenic gold deposits associated with the major lineaments in the Central Gold Belt of Peninsular Malaysia. In this investigation, the Phased Array type L‐band Synthetic Aperture Radar (PALSAR) satellite remote sensing data were used to map major geological structures in Peninsular Malaysia and provide detailed characterization of lineaments and curvilinear structures in the BRSZ, as well as their implication for sediment‐hosted/orogenic gold exploration in tropical environments. Major structural lineaments such as the Bentong‐Raub Suture Zone (BRSZ) and Lebir Fault Zone, ductile deformation related to crustal shortening, brittle disjunctive structures (faults and fractures) and collisional mountain range (Main Range granites) were detected and mapped at regional scale using PALSAR ScanSAR data. The major geological structure directions of the BRSZ were N–S, NNE–SSW, NE–SW and NW–SE, which derived from directional filtering analysis to PALSAR fine and polarimetric data. The pervasive array of N–S faults in the Central Gold Belt and surrounding terrain is mainly linked to the N–S trending of the Suture Zone. N–S striking lineaments are often cut by younger NE–SW and NW–SE‐trending lineaments. Gold mineralized trend lineaments are associated with the intersection of N–S, NE–SW, NNW–SSE and ESE–WNW faults and curvilinear features in shearing and alteration zones. Compressional tectonic structures such as the NW–SE trending thrust, ENE–WSW oriented faults in mylonite and phyllite, recumbent folds and asymmetric anticlines in argillite are high potential zones for gold prospecting in the Central Gold Belt. Three generations of folding events in Peninsular Malaysia have been recognized from remote sensing structural interpretation. Consequently, PALSAR satellite remote sensing data is a useful tool for mapping major geological structural features and detailed structural analysis of fault systems and deformation areas with high potential for sediment‐hosted/orogenic gold deposits and polymetallic vein‐type mineralization along margins of Precambrian blocks, especially for inaccessible regions in tropical environments.  相似文献   

3.
An analysis of joint patterns in the Grampians Group rocks o£ Western Victoria has established that the dominant directions are north‐north‐west, east‐north‐east, west‐north‐west, north‐north‐east and north. The master joints are steeply‐dipping structures which formed after the sediments were lithified and folded. The joint‐formation is not genetically related to the folding and post‐dates the emplacement of the igneous intrusions. Joint orientation is independent of lithology and the sediments have reacted as a uniform mass to an applied stress.

The joint pattern conforms with the regional tectonic pattern of faults and lineaments which includes directions of the regmatic shear pattern of Sonder (1947). The jointing and major faulting took place during the Kanimblan Orogeny. The faulting and joint‐formation may have been contemporaneous, the faults being directions along which displacement occurred; conversely the actual movements along faults may have induced the jointing into the sediments.  相似文献   

4.
Multiple geographic information system (GIS) datasets, including joint orientations from nine bedrock outcrops, inferred faults, topographic lineaments, geophysical data (e.g. regional gravity, magnetic and stress field), 290 pre-gas-drilling groundwater samples (Cl–Br data) and Appalachian Basin brine (ABB) Cl–Br data, have been integrated to assess pre-gas-drilling salinization sources throughout Susquehanna County, Pennsylvania (USA), a focus area of Marcellus Shale gas development. ABB has migrated naturally and preferentially to shallow aquifers along an inferred normal fault and certain topographic lineaments generally trending NNE–SSW, sub-parallel with the maximum regional horizontal compressive stress field (orientated NE–SW). Gravity and magnetic data provide supporting evidence for the inferred faults and for structural control of the topographic lineaments with dominant ABB shallow groundwater signatures. Significant permeability at depth, imparted by the geologic structures and their orientation to the regional stress field, likely facilitates vertical migration of ABB fluids from depth. ABB is known to currently exist within Ordovician through Devonian stratigraphic units, but likely originates from Upper Silurian strata, suggesting significant migration through geologic time, both vertically and laterally. The natural presence of ABB-impacted shallow groundwater has important implications for differentiating gas-drilling-derived brine contamination, in addition to exposing potential vertical migration pathways for gas-drilling impacts.  相似文献   

5.
The purpose of this investigation was to identify subsurface lineaments in Gafsa trough (onshore central Tunisia) after gravity data analysis. The Bouguer and residual gravity maps show a gravity values decrease from west to east associated with subsidence variation and confirmed by a regional seismic reflection profile. The deep structural map of the study area is elaborated after the application of two methods: (1) the automatic lineament tracing after horizontal gravity gradient and (2) 3D Euler method. The dominant trends show approximately NW–SE, E–W, and NE–SW directions. Some of these trends are well correlated with the major faults systems. We can qualify the deep structuration model as a mosaic of quadratic blocks bounded by significant deep flower fault corridors. The elaborated structural map of the study area constitutes also a useful document for rationalizing the future petroleum exploration in the Gafsa trough.  相似文献   

6.
The Paleozoic Pataz–Parcoy gold mining area is located in a right-stepping jog on the regional Cordillera Blanca fault, in northern Peru. Most of the 8 million ounces of gold production from this area has come from quartz–carbonate–sulfide veins hosted by the Pataz batholith. Despite a subduction zone setting since at least the Cambrian, the area records several periods of extension and its present structure is that of a rift and graben terrain. The Pataz district (the northern part of the Pataz–Parcoy area) is dominated structurally by northwest to north northwest-striking (NW–NNW) faults and northeast to east northeast-striking (NE–ENE) lineaments, both of which have been active periodically since at least the Mississippian (Early Carboniferous). NW–NNW faults control the margins of a central horst that exposes basement schist and the Pataz batholith, and step across NE–ENE lineaments. The Lavasen graben, to the east of the central horst, contains the Lavasen Volcanics, and the Chagual graben, to the west, contains an allochthonous sedimentary sequence derived from the Western Andean Cordillera.New SHRIMP zircon geochronological data indicate emplacement of the Pataz batholith during the Middle Mississippian, at around 338–336 Ma, approximately 10 Ma earlier than previous estimates based on 40Ar/39Ar geochronology. The calc-alkaline, I-type batholith comprises diorite and granodiorite, the latter being the major component of the batholith, and was emplaced as a sill complex within the moderately NE-dipping sequence of the Eastern Andean Cordillera. Moderate- to high-temperature ductile deformation took place on the batholith contacts during or shortly after emplacement. Following emplacement of the batholith, differential uplift occurred along NW–NNW faults forming the Lavasen graben, into which the Lavasen Volcanics were deposited. SHRIMP U–Pb in zircon ages for the Lavasen Volcanics and the Esperanza subvolcanic complex, which was intruded into the western margin of the graben, are within error of one another at ca 334 Ma. The ductile batholith contacts were cut by renewed movement on NW–NNW faults such that the margins of the batholith are now controlled by these steep brittle-ductile faults. The NW–NNW faults were oriented normal to the principal axis of regional shortening (ENE–WSW) during formation of the batholith-hosted, gold-bearing quartz–carbonate–sulfide veins. The misoriented faults were unable to accommodate significant displacement, leading to high fluid pressures, vertical extension in the competent batholith and formation of gold-bearing veins. Brittle failure of the batholith was most extensive in the northern Pataz district where the fault-controlled western contact of the batholith is offset by a swarm of NE–ENE lineaments.The timing of vein formation is not established, despite published 40Ar/39Ar ages of 312 to 314 Ma for metasomatic white mica, which are interpreted as minimum ages of formation. Gold-bearing veins formed during or shortly after uplift of the Pataz batholith and formation of the Lavasen graben; they were therefore broadly coeval with deposition of the Lavasen Volcanics and emplacement of the Esperanza subvolcanic complex. These K-rich, weakly alkalic, ferroan (A-type) magmas may provide a viable source for the ore fluid that deposited gold in the Pataz batholith.  相似文献   

7.
Many stable continental regions have subregions with poorly defined earthquake hazards. Analysis of minor structures (folds and faults) in these subregions can improve our understanding of the tectonics and earthquake hazards. Detailed structural mapping in Pottawatomie County has revealed a suite consisting of two uplifted blocks aligned along a northeast trend and surrounded by faults. The first uplift is located southwest of the second. The northwest and southeast sides of these uplifts are bounded by northeast-trending right-lateral faults. To the east, both uplifts are bounded by north-trending reverse faults, and the first uplift is bounded by a north-trending high-angle fault to the west. The structural suite occurs above a basement fault that is part of a series of north–northeast-trending faults that delineate the Humboldt Fault Zone of eastern Kansas, an integral part of the Midcontinent Rift System. The favored kinematic model is a contractional stepover (push-up) between echelon strike-slip faults. Mechanical modeling using the boundary element method supports the interpretation of the uplifts as contractional stepovers and indicates that an approximately east–northeast maximum compressive stress trajectory is responsible for the formation of the structural suite. This stress trajectory suggests potential activity during the Laramide Orogeny, which agrees with the age of kimberlite emplacement in adjacent Riley County. The current stress field in Kansas has a N85°W maximum compressive stress trajectory that could potentially produce earthquakes along the basement faults. Several epicenters of seismic events (<M2.0) are located within 10 km of the structural suite. One epicenter is coincident with the northwest boundary of the uplift. This structural suite, a contractional stepover between echelon northeast-trending right-lateral faults, is similar to that mapped in the New Madrid Seismic Zone, and both areas currently feature roughly east–west maximum compressive stress trajectory. Based on these similarities, the faults in Pottawatomie County have the potential for seismicity. The results demonstrate that mechanical analysis of minor structural features can improve our knowledge of local earthquake hazards.  相似文献   

8.
Linked fault systems identified in the northern portion of the onshore Perth basin comprise north‐striking normal faults, the dominant structures in the basin, and hard linkages—east‐striking transfer faults. The former are either divided into segments of distinctive character by, or terminate at, the transfer faults. The fault systems were initiated by west‐southwest‐east‐northeast extension in the Early Permian but were reactivated by subsequent rifting with approximately east‐west extension in the Jurassic. They were also reactivated by the oblique extension of northwest‐southeast orientation associated with Gondwana continental breakup in the Late Jurassic ‐ earliest Cretaceous. In addition to reactivation, older structures of the linked fault families controlled the development of younger fractures and folds. During the oblique extension, the linked fault systems define releasing bends, characterised by a rollover anticline in the hangingwall of the Mountain Bridge Fault, and restraining bends where contractional folds are sites of major commercial hydrocarbon fields in the basin.  相似文献   

9.
The Buchan Rift, in northeastern Victoria, is a north–south-trending basin, which formed in response to east–west crustal extension in the Early Devonian. The rift is filled mostly with Lower Devonian volcanic and volcaniclastic rock of the Snowy River Volcanics. Although the structure and geometry of the Buchan Rift and its major bounding faults are well mapped at the surface, a discrepancy exists between the surface distribution of the thickest rift fill and its expected potential field response. To investigate this variation, two new detailed land-based gravity surveys, which span the rift and surrounding basement rocks in an east–west orientation, have been acquired and integrated with pre-existing government data. Qualitative interpretation of the observed magnetic data suggests the highly magnetic rocks of the Snowy River Volcanics have a wider extent at depth than can be mapped at the surface. Forward modelling of both land-based gravity data and aeromagnetic data supports this interpretation. With the Snowy River Volcanics largely confined within the Buchan Rift, resolved geometries also allow for the interpretation of rift boundaries that are wider at depth. These geometries are unusual. Unlike typical basin inversions that involve reactivation of rift-dipping faults, the bounding faults of the Buchan Rift dip away from the rift axis and thus appear unrelated to the preceding rifting episode. Limited inversion of previous extensional rift faults to deform the rift-fill sequences (e.g. Buchan Synclinorium) appears to have been followed by the initiation of new reverse faults in outboard positions, possibly because the relatively strong igneous rift fill began to act as a rigid basement ramp during continued E–W crustal shortening in the Middle Devonian Tabberabberan Orogeny. Overthrusting of the rift margins by older sediments and granite intrusions of the adjacent Tabberabbera and Kuark zones narrowed the exposed rift width at surface. This scenario may help explain the steep-sided geometries and geophysical expressions of other rift basins in the Tasmanides and elsewhere, particularly where relatively mechanically strong basin fill is known or suspected.  相似文献   

10.
洛旺煤矿区是云南重要的煤产地,煤类以贫煤为主,局部为无烟煤。根据地质勘查成果及煤质测试资料,系统分析了该区主采煤层C5煤层的煤质特征及其变化规律,探讨了影响煤质变化的地质因素。结果表明:区内C5煤层硫分由西南向东北逐渐增大,灰分产率自东向西逐渐降低,这一规律主要受自西向东陆相到海陆交互相沉积环境变化的控制。在平面上煤类表现为煤矿区中部为无烟煤三号,东西两端逐渐变为贫煤,分析认为深成变质作用是造成煤类变化的主要原因。矿区中部煤层埋深较东、西两端大,煤变质程度相对高,根据构造条件推测,后期的动力变质作用对矿区中部煤变质程度的加深起了一定的促进作用。  相似文献   

11.
钟安宁  周翔 《沉积学报》2020,38(3):610-619
沙河子组是松辽盆地北部深层重要的天然气勘探目的层,复杂多变的物源体系制约了研究区沉积体系刻画和致密气储层预测。综合碎屑岩骨架矿物、砾石成分、重矿物组合和地震反射特征分析,对沙河子组母岩性质和物源方向进行系统研究。结果表明:1)徐家围子断陷沙河子组可分为安达凸起、中央古隆起、徐东斜坡三大物源区和安达、徐西、宋站、徐东四个物源体系;2)不同物源体系的物源方向存在差异,其中安达地区受西北安达凸起物源影响,物源方向以南西向、东西向为主;徐西凹陷受西部中央古隆起物源影响,物源方向以东西向为主;宋站地区和徐东凹陷受东部徐东斜坡物源影响,物源方向以东西向、北东向为主;3)断裂活动影响沉积物充填方式、物源供给决定沉积相发育规模、地貌特征控制沉积体延伸方向,断裂、物源和地貌特征的联合作用,造成断陷西侧陡坡带安达和徐西物源体系以扇三角洲沉积为主,而东部斜坡区宋站和徐东物源体系则主要发育辫状河三角洲。  相似文献   

12.
Structural studies of Lower Permian sequences exposed on wave‐cut platforms within the Nambucca Block, indicate that one to two ductile and two to three brittle — ductile/brittle events are recorded in the lower grade (sub‐greenschist facies) rocks; evidence for four, possibly five, ductile and at least three brittle — ductile/brittle events occurs in the higher grade (greenschist facies) rocks. Veins formed prior to the second ductile event are present in some outcrops. Further, the studies reveal a change in fold style from west‐southwest‐trending, open, south‐southeast‐verging, inclined folds (F1 0) at Grassy Head in the south, to east‐northeast‐trending, recumbent, isoclinal folds (F1 0; F2 0) at Nambucca Heads to the north, suggesting that strain increases towards the Coffs Harbour Block. A solution cleavage formed during D1 in the lower grade rocks and cleavages defined by neocrystalline white mica developed during D1 and D2 in the higher grade rocks. South‐ to south‐southwest‐directed tectonic transport and north‐south shortening operated during these earlier events. Subsequently, north‐northeast‐trending, open, upright F3 2 folds and inclined, northwest‐verging, northeast‐trending F4 2 folds developed with poorly to moderately developed axial planar, crenulation cleavage (S3 and S4) formed by solution transfer processes. These folds formed heterogeneously in S2 throughout the higher grade areas. Later northeast‐southwest shortening resulted in the formation of en échelon vein arrays and kink bands in both the lower and higher grade rocks. Shortening changed to east‐northeast‐west‐southwest during later north‐northeast to northeast, dextral, strike‐slip faulting and then to approximately northwest‐southeast during the formation of east‐southeast to southeast‐trending, strike‐slip faults. Cessation of faulting occurred prior to the emplacement of Triassic (229 Ma) granitoids. On a regional scale, S1 trends east‐west and dips moderately to the north in areas unaffected by later events. S2 has a similar trend to S1 in less‐deformed areas, but is refolded about east‐west axes during D3. S3 is folded about east‐west axes in the highest grade, multiply deformed central part of the Nambucca Block. The deformation and regional metamorphism in the Nambucca Block is believed to be the result of indenter tectonics, whereby south‐directed movement of the Coffs Harbour Block during oroclinal bending, sequentially produced the east‐west‐trending structures. The effects of the Coffs Harbour Block were greatest during D1 and D2.  相似文献   

13.
Spectral analysis of the digital data of the Bouguer anomaly of North India including Ganga basin suggest a four layer model with approximate depths of 140, 38, 16 and 7 km. They apparently represent lithosphere–asthenosphere boundary (LAB), Moho, lower crust, and maximum depth to the basement in foredeeps, respectively. The Airy’s root model of Moho from the topographic data and modeling of Bouguer anomaly constrained from the available seismic information suggest changes in the lithospheric and crustal thicknesses from ∼126–134 and ∼32–35 km under the Central Ganga basin to ∼132 and ∼38 km towards the south and 163 and ∼40 km towards the north, respectively. It has clearly brought out the lithospheric flexure and related crustal bulge under the Ganga basin due to the Himalaya. Airy’s root model and modeling along a profile (SE–NW) across the Indus basin and the Western Fold Belt (WFB), (Sibi Syntaxis, Pakistan) also suggest similar crustal bulge related to lithospheric flexure due to the WFB with crustal thickness of 33 km in the central part and 38 and 56 km towards the SE and the NW, respectively. It has also shown the high density lower crust and Bela ophiolite along the Chamman fault. The two flexures interact along the Western Syntaxis and Hazara seismic zone where several large/great earthquakes including 2005 Kashmir earthquake was reported.The residual Bouguer anomaly maps of the Indus and the Ganga basins have delineated several basement ridges whose interaction with the Himalaya and the WFB, respectively have caused seismic activity including some large/great earthquakes. Some significant ridges across the Indus basin are (i) Delhi–Lahore–Sargodha, (ii) Jaisalmer–Sibi Syntaxis which is highly seismogenic. and (iii) Kachchh–Karachi arc–Kirthar thrust leading to Sibi Syntaxis. Most of the basement ridges of the Ganga basin are oriented NE–SW that are as follows (i) Jaisalmer–Ganganagar and Jodhpur–Chandigarh ridges across the Ganga basin intersect Himalaya in the Kangra reentrant where the great Kangra earthquake of 1905 was located. (ii) The Aravalli Delhi Mobile Belt (ADMB) and its margin faults extend to the Western Himalayan front via Delhi where it interacts with the Delhi–Lahore ridge and further north with the Himalayan front causing seismic activity. (iii) The Shahjahanpur and Faizabad ridges strike the Himalayan front in Central Nepal that do not show any enhanced seismicity which may be due to their being parts of the Bundelkhand craton as simple basement highs. (iv) The west and the east Patna faults are parts of transcontinental lineaments, such as Narmada–Son lineament. (v) The Munghyr–Saharsa ridge is fault controlled and interacts with the Himalayan front in the Eastern Nepal where Bihar–Nepal earthquakes of 1934 has been reported. Some of these faults/lineaments of the Indian continent find reflection in seismogenic lineaments of Himalaya like Everest, Arun, Kanchenjunga lineaments. A set of NW–SE oriented gravity highs along the Himalayan front and the Ganga and the Indus basins represents the folding of the basement due to compression as anticlines caused by collision of the Indian and the Asian plates. This study has also delineated several depressions like Saharanpur, Patna, and Purnia depressions.  相似文献   

14.
华阳川铀铌铅矿床是北秦岭造山带内一种类型特殊的铀多金属矿床。为了实现在外围快速找矿的目的,在矿床及其周边开展了1∶1万高精度航空磁放测量,获得高精度的航空放射性数据,通过对航放数据的解释,对下一步找矿勘探工作的部署有重要意义。通过对宏观上放射性元素的分布特征的研究,认为铀、钾异常分布特征相似,在测区西部有大面积分布,东部无成规模异常,钍异常在测区中部形成东西向异常带,与韧性剪切带的位置一致。铀异常有明显受北西向和北东向两组断裂控制,且在华阳川断裂北东盘异常面积大,强度高,但南西盘太古宙地层却无明显铀异常。本次研究计算了钍钾比、钍铀比、铀钾比、古铀含量、活性铀含量等参数,掌握了元素在不同地层单元的迁移富集规律。根据航空放射性异常,开展地面验证工作,圈定3条铀矿化带,达到了快速找矿的目的,对铀矿等战略性矿产的成矿规律研究及找矿勘查有积极意义。  相似文献   

15.
Abu Deleig area is a transitional area between the Butana basement terrain to the east; and the Khartoum and Shendi sedimentary basins to the west and northwest directions, respectively. The existence of sedimentary basins within this region of Sudan was previously unknown. Landsat images have been used for delineation of lineaments and drainage system, followed by a structural analysis and geophysical investigations including gravity and resistivity methods. The interpretation of the remotely sensed data revealed that the drainage pattern is structurally controlled. The structural analysis defined the trends of the shear and tensional fractures. The structural analysis revealed that Wadi Al Hawad is the southern continuation of the Keraf Shear Zone. The related minor fractures in a NE–SW direction exhibit normal faults governing the geometry of the Abu Deleig sub-basin. The geophysical investigations confirmed the findings of structural analysis and portrayed the subsurface geometry of the sub-basin. The newly discovered sub-basin has a prism-like shape with its apex occurring at Abu Deleig town and extends to 40 km in NW direction. The depth to the basement increases from 20 m at Abu Deleig in step form to more than 300 m, where it is linked with the Shendi Basin in the northwestern part. The results of this study, however, did not confirm any link of Abu Deleig sub-basin with Atbara Basin to the NE or Khartoum Basin to the west as have been previously suggested.  相似文献   

16.
柯坪塔格推覆构造几何学、运动学及其构造演化   总被引:29,自引:1,他引:29  
大量野外构造地质调查和深部构造解释表明柯坪塔格推覆构造由多组倒转复式背斜、复式箱状背斜构成的推覆体及其前缘逆冲断裂组成 ,由寒武系—第四系组成的推覆体由北向南逆—斜冲 ,平面上构成向南凸出的弧形推覆构造 ;普昌断裂由各不相连的逆冲斜冲断裂段组成 ,而不是完整的一条走滑断层 ,各推覆体前缘逆冲断裂与各推覆体的普昌断裂段共同构成统一的前缘逆冲斜冲逆冲断裂和推覆构造系统 ;普昌断裂段以西的推覆体具有向东抬升、向西倾覆的鼻状构造特征 ,普昌断裂段以东的推覆体具有向西抬升、向东倾覆的鼻状构造特征 ,普昌基底隆起带是巴楚隆起隐伏在柯坪塔格推覆构造之下的部分。各推覆体前缘断裂在深部均归并于统一的寒武系底部的滑脱面 ,其南浅北深 ,东浅西深 (普昌隆起带以西 )或西浅东深 (普昌隆起带以东 ) (6 10km ) ,埋深较大区发育多组滑脱面。柯坪塔格推覆构造的形成时期为晚第四纪 ,为现今活动的推覆构造系统。文中认为各推覆体向南西的倾覆端基底滑脱面和中新生界内部的滑脱面没有贯通 ,是未来 6级以上地震的发震构造部位。  相似文献   

17.
A gravity study was conducted across the northern Oaxaca terrane and its bounding faults: the Caltepec and Oaxaca Faults to the west and east, respectively. These faults juxtapose the Oaxaca terrane against the Mixteca and Juarez terranes, respectively. The Oaxaca Fault also forms the eastern boundary of the Cenozoic Tehuacán depression. On the west, at depth, the Tehuacán valley is limited by the normal buried Tehuacán Fault. This gravity study reveals that the Oaxaca Fault system gives rise to a series of east tilted basamental blocks (Oaxaca Complex). The tectonic depression is filled with Phanerozoic rocks and has a deeper depocenter to the west. The gravity data also indicate that on the west, the Oaxaca Complex, the Caltepec and Santa Lucia faults continue northwestwards beneath Phanerozoic rocks. A major E–W to NE–SW discontinuity is inferred to exist between profiles 1 and 2.  相似文献   

18.
The active kinematics of the eastern Tibetan Plateau are characterized by the southeastward movement of a major tectonic unit, the Chuan-Dian crustal fragment, bounded by the left-lateral Xianshuihe–Xiaojiang fault in the northeast and the right-lateral Red River–Ailao Shan shear zone in the southwest. Our field structural and geomorphic observations define two sets of young, active strike–slip faults within the northern part of the fragment that lie within the SE Tibetan Plateau. One set trends NE–SW with right-lateral displacement and includes the Jiulong, Batang, and Derong faults. The second set trends NW–SE with left-lateral displacement and includes the Xianshuihe, Litang, Xiangcheng, Zhongdian, and Xuebo faults. Strike–slip displacements along these faults were established by the deflection and offset of streams and various lithologic units; these offsets yield an average magnitude of right- and left-lateral displacements of ~15–35 km. Using 5.7–3.5 Ma as the time of onset of the late-stage evolution of the Xianshuihe fault and the regional stream incision within this part of the plateau as a proxy for the initiation age of conjugate strike–slip faulting, we have determined an average slip rate of ~2.6–9.4 mm/year. These two sets of strike–slip faults intersect at an obtuse angle that ranges from 100° to 140° facing east and west; the fault sets define a conjugate strike–slip pattern that expresses internal E–W shortening in the northern part of the Chuan-Dian crustal fragment. These conjugate faults are interpreted to have experienced clockwise and counterclockwise rotations of up to 20°. The presence of this conjugate fault system demonstrates that this part of the Tibetan Plateau is undergoing not only southward movement, but also E–W shortening and N–S lengthening due to convergence between the Sichuan Basin and the eastern Himalayan syntaxis.  相似文献   

19.
《Atmósfera》2014,27(4):367-376
Some characteristics of the precipitation such as the beginning and end of the rainy season, as well as their spatial and temporal distributions are studied. The study included data from 23 climatological stations located in the Federal District for the period 1954-1988. Four variables related to the beginning and end of the rainy season were defined, namely the day of the first and last event with 10 mm of accumulated precipitation and the percentage of accumulated precipitation until Julian days 150 and 275. An analysis of variance and principal components was made with these variables, establishing that rainfall in the Federal District (which includes part of Mexico City and its surrounding areas) responds homogeneously through time to the presence of mesoscale meteorological phenomena. The results indicate that precipitation was lower at the beginning and end of the study period, and higher in the middle; additionally, the rainy season starts from west to east and ends from east to west, causing a longer season in the southwest than in the northeast. The spatial distribution shows the greatest rainfall in the southwest due to the effect of the nearby mountains, and the lowest in the northeast.  相似文献   

20.
采用EXXON公司"Vail"学派的观点,将晚二叠世划分为2个三级层序。层序Ⅰ发育低位体系域、海侵体系域及高位体系域,比较完整。层序Ⅱ只发育海侵体系域及高位体系域。通过绘制各种单因素等值线图,并与单井剖面相和连井剖面相分析相结合,从点到线再到面,展开古地理分析。2个层序均反映出海侵自东向西的脉动推进、东深西浅的格局,从而产生了潮坪三角洲-海湾(泻湖)-潮坪-浅海沉积模式在垂向上和平面上的展布特征,其中海湾-潮坪及碳酸盐台地构成了研究区基本骨架。物源区主要来自西部康滇古陆。总体上晚二叠世研究区遭遇了一个海水自东北向西南不断侵进的过程,因此成煤环境随着海平面的上升而不断向西南迁移。煤层主要发育在海湾-潮坪环境里,其次为低地残积平原。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号