首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the published analysis of the average monthly variations in solar activity and temperature of the upper atmosphere in the region of the mesopause and lower thermosphere (after elimination of the average long-term variations during different 11-year cycles), it was indicated that the periods and amplitudes of the observed quasibiennial variations monotonically decrease in the course of time. The regularity of these variations is described by the Airy function, which represents a wave train with decreasing amplitude and period and reflects cyclic hydrodynamic processes in the Sun’s interior. A spectral analysis of the quasibiennial variations modelly described by the Airy function has been performed. It has been revealed that the period amplitudes near the average value for 2.25 years (27 months) are distributed normally with a dispersion of ~0.5 years. According to several publications, similar periods are obtained by analyzing measurements of long-term variations in solar activity and parameters of the lower and middle atmosphere. This indicates that the values of the periods are obtained randomly. Therefore, a standard Fourier analysis does not make it possible to determine a real character of the quasibiennial variations since a real physical process is not revealed in the course of this analysis.  相似文献   

2.
We discuss the results of a study of microwave radiation from three flare-active regions??NOAA 10300, 10930, and 11158??with powerful eruptive events (X-class flares and coronal mass ejections) recorded on July 15, 2002; December 13, 2006; and February 15, 2011, when the regions were in the central part of the disk. There exists evidence of a ??-configuration in the structure of the photospheric magnetic field formed one or two days prior to the eruptive process as a result of the emergence of a new magnetic flux and shifting movements of the sunspots and accompanied by changes in the spectral characteristics of the microwave radiation of the active regions (ARs), which suggests the development of a peculiar radio source. The analysis of these regions continues a series of studies of eruptive events carried out at RATAN-600 in the 1980s?C1990s and gives a reason to conclude that early detections of peculiar sources in the microwave radiation of ARs, which are essentially areas of high energy release in the solar atmosphere, can be used as a factor in predicting powerful eruptive (geoeffective) processes on the Sun.  相似文献   

3.
The evolution of the microwave radiation from four active regions, where strong X-ray flares (X-class, GOES) occurred in 2011, has been studied. Daily multiwavelength RATAN-600 radio observations of the Sun in the 1.6–8.0 cm range have been used. It has been indicated that the radiosource above the photospheric magnetic field neutral line (above the region with the maximal convergence of the fields opposite in sign) becomes predominant in the structure of the active region microwave radiation one to two days before a powerful flare as in the eruptive events previously studied with RATAN-600. The appearance of such a radiosource possibly reflects the current sheet formation in the corona above the active region. The energy necessary for a flare is stored in the magnetic field of active region, which can be considered as a factor for predicting a powerful flare.  相似文献   

4.
Summary Proof is presented that extraterrestrial interactions may function as triggering mechanisms in the process of redistribution of much larger amounts of energy, accumulated in the whole geosystem, in the polar regions. However, it is shown that the effect of the extraterrestrial interactions need not always be the same. In some geographic regions they may generate cyclogenetic changes, in others anticyclogenetic changes. The interdisciplinary nature of the studied problem and the necessity of close cooperation of all interdisciplinary sciences is emphasized.
u¶rt;um ¶rt;aamm m, m n am mmuu au¶rt;mu m nm u mu a n nan¶rt;u a uu, aua um. ¶rt;a ma naam, m uu mmuu au¶rt;mu am m ¶rt;a. u m am umuu uu ¶rt;uauu am, m a ¶rt;u u m um uu amuumuu. ¶rt;uam ¶rt;unuua aam u¶rt; n u ¶rt;um m¶rt;uma nau ¶rt;uunu.
  相似文献   

5.
The results of the observations, using partial reflections, of the lower ionosphere over Tumannyi station in the Murmansk region (69.0° N, 35.7° E) during strong solar flares on January 15–20, 2005, are presented. The structure of the D region of the polar ionosphere and the effects of X-ray flares and fluxes of high energy protons on this region are considered. The anomalous values of electron density in the lower part of the D region, unusually low values of the height of the lower ionospheric boundary, complete or partial absorption of short and medium radiowaves, and bursts of the meter cosmic radio emission were detected during solar disturbances.  相似文献   

6.
Using a model of the general circulation, the response of the temperature and wind in the Earth’s atmosphere to variations in solar UV radiation flows during an 11-year activity cycle is studied with respect to their dependence on the wavelength. Satellite measurement data for the 23rd cycle that were characterized by anomalously low flows of UV radiation at minimum activity are used in calculations. To implement numerical scenarios, wavelength-dependent variations in the UV radiation flow changing absorption in the bands of ozone and molecular oxygen are used in the radiation block of the model. Based on empirical data, a spatial structure of stationary disturbances having the wavenumbers S = 1, 2, and 3 are assigned at the lower boundary of the model. The calculation results demonstrating the changes in the atmospheric parameters between the solar activity maximum and minimum within the height range 0–120 km are presented. It is shown that the response of monthly average values has a wavy structure in latitude, i.e., a nonseasonal character, amounting to several degrees in the lower atmosphere. The results obtained indicate that planetary waves are an important link in the transmission of an external effect on the lower atmosphere.  相似文献   

7.
A study of solar proton sources indicated that solar flare events responsible for ≥2000 pfu proton fluxes mostly occur in complex active regions (CARs), i.e., in transition structures between active regions and activity complexes. Different classes of similar structures and their relation to solar proton events (SPEs) and evolution, depending on the origination conditions, are considered. Arguments in favor of the fact that sunspot groups with extreme dimensions are CARs are presented. An analysis of the flare activity in a CAR resulted in the detection of “physical” boundaries, which separate magnetic structures of the same polarity and are responsible for the independent development of each structure.  相似文献   

8.
Nitrogen oxides, produced as a result of ionizing proton impacts, have long lifetimes and substantially affect the ozone balance. Photochemical models give an increased production level of nitrogen oxides during solar proton flares. The usage of an increased NO production effectiveness value (molecule number per each ion pair) during increased ionization of the atmosphere in models can be among the causes. This value has been estimated based on satellite observational data. Data on the solar proton fluxes and the composition of the atmosphere have been used. The period of the proton event of July 14, 2000, has been considered. The NO production effectiveness, obtained when the observational data were analyzed, was much smaller than the value obtained previously theoretically. The causes of these differences should be studied additionally.  相似文献   

9.
Summary The average change in height of several constant pressure levels in the troposphere and lower stratosphere after a strong solar flare is described. The analysis covers the northern hemisphere north of 10°N and is based on a sample of 81 carefully selected flares from the period July 1957 through December 1959.The statistical significance of the results is tested by drawing a comparison with the results obtained when one applies exactly the same analysis to three samples of 81 random key-dates selected from the same period.Properties of the reaction pattern are (1) it is pronounced at high as well as low latitudes, (2) it consists of alternating cells of positive and negative height change, (3) it is established within six hours after the flare, and (4) the maximum response occurs near the tropopause.It appears more likely that the atmospheric reaction pattern can be attributed to very energetic solar particles rather than to enhanced ultraviolet radiation.  相似文献   

10.
An assessment is made of the relative contribution of certain classes of energetic particle precipitation to the chemical composition of the middle atmosphere with emphasis placed on the production of odd nitrogen and odd hydrogen species and their subsequent role in the catalytic removal of ozone. Galactic cosmic radiation is an important source of odd nitrogen in the lower stratosphere but since the peak energy deposition occurs below the region where catalytic removal of O3 is most effective, it is questionable whether this mechanism is important in the overall terrestrial ozone budget. The precipitation of energetic solar protons can periodically produce dramatic enhancement in upper stratospheric NO. The long residence time of NO in this region of the atmosphere, where catalytic interaction with O3 is also most effective, mandates that this mechanism be included in future modelling of the global distribution of O3. Throughout the mesosphere the precipitation of energetic electrons from the outer radiation belt (60°70°) can sporadically act as a major local source of odd hydrogen and odd nitrogen leading to observable O3 depletion. Future satellite studies should be directed at simultaneously measuring the precipitation flux and the concomitant atmosphere modification, and these results should be employed to develop more sophisticated models of this important coupling.  相似文献   

11.
The influence of scattering of accelerated electrons in the turbulent plasma on the transformation of their distribution function is studied. The turbulence is connected with the emergence of magnetic inhomogeneities and ion-sound mode. The level of ion-sound turbulence is specified by the ratio W s/nk B T e = 10?3, while the value of magnetic fluctuations is δB/B = 10–3. Different initial angular distributions of the function of accelerated-electron source are regarded: from isotropic to narrow directional distributions. For the chosen energy-density values of the ion-sound turbulence and the level of magnetic fluctuations, it is shown that both types of turbulence lead to a qualitative change in the hard X-ray brightness along the loop, moreover their influence was found to be different. Models with magnetic fluctuations and the ion sound can be distinguished not only by the difference in the hard X-ray distribution along the loop but also by the photon spectrum.  相似文献   

12.
Discrete location of large flares near zero Carrington longitude results in artificial breaks within physically related flare clusters. This effect is eliminated by using the data presentation algorithm, which results in the conclusion that drifting zones of intensified sunspot formation (concentrated cores of activity complexes) and energetic flare generation exist in either hemisphere. The indicated L zone is hypothetically related to a non-asymmetric relic solar magnetic field or to the regions where large-scale convective cells, extending to the convective zone bottom, originate.  相似文献   

13.
The following results have been achieved in this work. The distribution of the recurrence times of solar flare events is generally lognormal. The typical flare recurrence times at the cycle 23 minimum and maximum are different: the average times (100–200 min) are most typical of the maximum; at the same time, the minimum is simultaneously characterized by short (several tens of seconds) and long (from several hundreds to a thousand of minutes). The minimal flare recurrence time tends to decrease in an active region with increasing sunspot group area in this region. The average flare recurrence times in an active region have typical values of 120m, 210m, 300m, 400m, and 530m, which is close to the typical periods of long-period sunspot oscillations. The total number of flares in an active region depends on the sunspot area in this region and the flare energy release rate.  相似文献   

14.
15.
The oscillations with a period of about 6 and 12 s in the nonthermal radiation of a solar flare occurred on November 5, 1992, are identified. The time-translated profiles of hard X-ray and microwave radiation flux are characterized by an anticorrelation. The specific features of the radiation fine time structure are interpreted using the model of the coronal magnetic mirror where fast magnetoacoustic modes are excited.  相似文献   

16.
The analysis of observations of large solar flares made it possible to propose a hypothesis on existence of a skin-layer in magnetic flux ropes of coronal mass ejections. On the assumption that the Bohm coefficient determines the diffusion of magnetic field, an estimate of the skin-layer thickness of ~106 cm is obtained. According to the hypothesis, the electric field of ~0.01–0.1 V/cm, having the nonzero component along the magnetic field of flux rope, arises for ~5 min in the surface layer of the eruptive flux rope during its ejection into the upper corona. The particle acceleration by the electric field to the energies of ~100 MeV/nucleon in the skin-layer of the flux rope leads to their precipitation along field lines to footpoints of the flux rope. The skin-layer presence induces helical or oval chromospheric emission at the ends of flare ribbons. The emission may be accompanied by hard X-ray radiation and by the production of gamma-ray line at the energy of 2.223 MeV (neutron capture line in the photosphere). The magnetic reconnection in the corona leads to a shift of the skin-layer of flux rope across the magnetic field. The area of precipitation of accelerated particles at the flux-rope footpoints expands in this case from the inside outward. This effect is traced in the chromosphere and in the transient region as the expanding helical emission structures. If the emission extends to the spot, a certain fraction of accelerated particles may be reflected from the magnetic barrier (in the magnetic field of the spot). In the case of exit into the interplanetary space, these particles may be recorded in the Earth’s orbit as solar proton events.  相似文献   

17.
The responses of element abundances to the atmospheric model were statistically analyzed. The summarized 1998 data (1D models) and summarized 2009 data (3D models) were compared. A significant statistical dependence between the response value and the first ionization potential (FIP) of an element was shown. This phenomenon may be caused by the presence of regions in the photosphere where the temperature and magnetic field configuration favor fractionation of neutrals and ions. This, in turn, leads to a certain diffusion process similar to the coronal FIP effect. This type of diffusion is not taken into account in photospheric models. In this case, a new chemical composition of the Sun (3D) with decreased C, N, O and Ne abundances is appropriate only to narrow layers in the lower chromospheres (and possibly in the deep photosphere) and does not require revision of the standard solar model.  相似文献   

18.
Despite its importance to questions of lunar origin, the chemical composition of the Moon is not precisely known. In recent years, however, the isotopic composition of lunar samples has been determined to high precision and found to be indistinguishable from the terrestrial mantle despite widespread isotopic heterogeneity in the Solar System. In the context of the giant-impact hypothesis, this level of isotopic homogeneity can evolve if the proto-lunar disk and post-impact Earth undergo turbulent mixing into a single uniform reservoir while the system is extensively molten and partially vaporized. In the absence of liquid–vapor separation, such a model leads to the lunar inheritance of the chemical composition of the terrestrial magma ocean. Hence, the turbulent mixing model raises the question of how chemical differences arose between the silicate Earth and Moon. Here we explore the consequences of liquid–vapor separation in one of the settings relevant to the lunar composition: the silicate vapor atmosphere of the post-giant-impact Earth. We use a model atmosphere to quantify the extent to which rainout can generate chemical differences by enriching the upper atmosphere in the vapor, and show that plausible parameters can generate the postulated enhancement in the FeO/MgO ratio of the silicate Moon relative to the Earth's mantle. Moreover, we show that liquid–vapor separation also generates measurable mass-dependent isotopic offsets between the silicate Earth and Moon and that precise silicon isotope measurements can be used to constrain the degree of chemical fractionation during this earliest period of lunar history. An approach of this kind has the potential to resolve long-standing questions on the lunar chemical composition.  相似文献   

19.
The variations of the first mode of Schumann resonance are analyzed using data from Kola peninsula stations during the solar proton event of 6 November 1997. On this day the intensive flux of energetic protons on GOES-8 and the 10% increase of the count rate of the neutron monitor in Apatity between 1220 and 2000 UT were preceded by a solar X-ray burst at 1155 UT. This burst was accompanied by a simultaneous increase of the Schumann frequency by 3.5%, and the relativistic proton flux increase was accompanied by 1% frequency decrease. These effects are explained by changes of the height and dielectric permeability of the Earth-ionosphere cavity.  相似文献   

20.
The descent and ejection of matter in the solar atmosphere observed in the CaII 8498-Å line have been studied. In the NOAA active region no. 10 792 on July 30, 2005 before the flare, the dense cold gas cloud descended with a ray velocity of ~8 km/s and then ascended in the impulsive phase. The plasma ascended with an acceleration reaching 0.4 km/s2 in the flare maximum. The acceleration of the matter likely continued after the flare maximum, because an acceleration of higher than 0.5 km/s2 was required for the appearance of the ejection at the edge of the occulting disk of the LASCO C2 coronagraph at 0557 UT. The descent of the matter resulting in the local heating of the chromosphere was also observed in the NOAA active region no. 10656 on August 9, 2004 before the flare. The maximum descent velocity was no more than 24.7 km/s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号