首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Korean Peninsula is located in the far-eastern Eurasian plate margin where crustal structures vary laterally, causing significant raypath-dependent modulations of crustal phases. The discriminative variations of crustal phases hinder application of conventional local magnitude scales in the continental margin. The mantle-lid phase is less affected by the crustal structures than the crustal phases, providing a better constraint to magnitude estimation. A regional body-wave magnitude scale based on the mantle-lid P wave (Pn), m b(Pn),?is developed for regional events around the Korean Peninsula. The m b(Pn) scale is determined to be m b(Pn)?=?0.380 (±0.299)?+?log A?+?2.012 (±0.122) log d, where A is the peak-to-peak Pn amplitude in?μm and d is the epicentral distance in km. The m b(Pn) estimates of regional events around the Korean Peninsula are determined. The m b(Pn) estimates are compared with other available magnitude estimates (m b(Lg),?M L). The influence of structures beneath stations on Pn amplification is investigated from inter-station magnitude residuals. A characteristic spatial variation of inter-station magnitude residuals with strengths mostly between ?6 and 6 %, but with maximum strengths of?±10 %, is observed. The inter-station magnitude residuals appears to be correlated well with geological and seismic structures in the crust.  相似文献   

2.
Regional body-wave magnitude scalings are essential for quantification of small and moderate-size earthquakes that are observed only up to regional distances. Crustally-guided shear waves, Lg, develop stably at regional distances in continental crusts and are minimally influenced by the source radiation patterns. Lg body-wave magnitude scalings, mb(Lg),m_b(Lg), are widely used for assessment of sizes of regional crustal events. The mb(Lg)m_b(Lg) scaling has rarely been tested in continental margins where Lg waves are significantly attenuated due to abrupt lateral variation of crustal structures. We test the applicability of mb(Lg)m_b(Lg) scaling to the eastern margin of the Eurasian plate around the Korean Peninsula and Japanese islands. Both third-peak and root-mean-square (rms) amplitudes of Lg vary significantly according to the crustal structures along raypaths, causing apparent underestimation of mb(Lg).m_b(Lg). Implementation of raypath-dependent quality factors (Q) allows accurate estimation of mb(Lg),m_b(Lg), retaining the transportability of mb(Lg)m_b(Lg) in the continental margin around Korea and Japan. The calibration constants for an rms-amplitude-based mb(Lg)m_b(Lg) scaling are not determined to vary by region in the continental margin due to complicated crustal structures. The calibration constants are determined to be distance-dependent. Both the third-peak-amplitude-based and rms-amplitude-based mb(Lg)m_b(Lg) scalings yield accurate magnitude estimates when raypath-dependent quality factors are implemented.  相似文献   

3.
The problem of discriminating between earthquakes and underground nuclear explosions is formulated as a problem in pattern recognition. As such it may be separated into two stages, feature extraction and classification. The short-period (SP) features consist of mb and autoregressive parameters characterising the preceding noise, signal and coda. The long-period (LP) features consist of LP power spectral estimates taken within various group velocity windows. Contrary to common usage we have extracted features from horizontal Rayleigh waves and Love waves as well as vertical Rayleigh waves. The classification is performed by approximating the statistical distribution of earthquake and explosion feature vectors by multivariate normal distributions.The method has been tested on a data base containing 52 explosions and 73 earthquakes from Eurasia recorded at NORSAR between 1971 and 1975. Several of these events are difficult on the mb : Ms diagram [mb(PDE) and Ms (NORSAR) have been used]. The data set was divided into a learning and an independent data set. All of the events both from the learning data set and the independent data set were correctly classified using the new procedures. Furthermore, the increase in separation as compared to the mb : Ms discriminant is significant.  相似文献   

4.
We re-examine the utility of teleseismic seismic complexity discriminants in a multivariate setting using United Kingdom array data. We measure a complexity discriminant taken on array beams by simply taking the logarithm of the ratio of the P-wave coda signal to that of the first arriving direct P wave (βCF). The single station complexity discriminant shows marginal performance with shallow earthquakes having more complex signatures than those from explosions or deep earthquakes. Inclusion of secondary phases in the coda window can also degrade performance. However, performance improves markedly when two-station complexity discriminants are formed showing false alarm rates similar to those observed for network mbMs. This suggests that multistation complexity discriminants may ameliorate some of the problems associated with mbMs discrimination at lower magnitudes. Additionally, when complexity discriminants are combined with mbMs there is a tendency for explosions, shallow earthquakes and deep earthquakes to form three distinct populations. Thus, complexity discriminants may follow a logic that is similar to mbMs in terms of the separation of shallow earthquakes from nuclear explosions, although the underlying physics of the two discriminants is significantly different.  相似文献   

5.
The various useful source-parameter relations between seismic moment and common use magnitude lg(M 0) andM s,M L,m b; between magnitudesMs andM L,M s andm b,M L andm b; and between magnitudeM s and lg(L) (fault length), lg (W) (fault width), lg(S) (fault area), lg(D) (average dislocation);M L and lg(f c) (corner frequency) have been derived from the scaling law which is based on an “average” two-dimensional faulting model of a rectangular fault. A set of source-parameters can be estimated from only one magnitude by using these relations. The average rupture velocity of the faultV r=2.65 km/s, the total time of ruptureT(s)=0.35L (km) and the average dislocation slip rateD=11.4 m/s are also obtained. There are four strong points to measure earthquake size with the seismic moment magnitudeM w.
  1. The seismic moment magnitude shows the strain and rupture size. It is the best scale for the measurement of earthquake size.
  2. It is a quantity of absolute mechanics, and has clear physical meaning. Any size of earthquake can be measured. There is no saturation. It can be used to quantify both shallow and deep earthquakes on the basis of the waves radiated.
  3. It can link up the previous magnitude scales.
  4. It is a uniform scale of measurement of earthquake size. It is suitable for statistics covering a broad range of magnitudes. So the seismic moment magnitude is a promising magnitude and worth popularization.
  相似文献   

6.
—?Accurate discrimination of seismic events with a regional network requires detailed knowledge of the propagation characteristics of seismic waves in the region. At present, such propagation characteristics are reasonably well known for P and S waves in the European Arctic, however much work remains to be done regarding surface wave propagation and magnitude estimation.¶Regional long-period or broadband seismic data in digital form has been available in the European Arctic for only a few years. In order to assess regional surface wave propagation, and in particular to evaluate the M s :m b discriminant at regional distances, it is therefore necessary to take advantage of the historic analog recordings. The station APA in Apatity forms a unique source of such data, with high-quality long-period seismic recordings of regional earthquakes and nuclear explosions dating back about 30 years.¶This paper presents initial results from a project to digitize APA surface waves of selected regional events. The recordings for recent years have been compared to a colocated broadband Guralp three-component seismometer in order to verify the response characteristics and the quality of the digitization process. It turns out that the quality of the digitized records is excellent, and can be used over a spectral band ranging from 5?seconds to at least 30?seconds period.¶We demonstrate the capabilities of the APA surface wave recordings to provide a promising separation of earthquakes and explosions in the European Arctic over a range of frequencies using the M s :m b discriminant, although we note that additional work is required in regionalization of the propagation paths to take into account the major tectonic features in the region. We also note that the body-wave magnitudes provided by international agencies are not always reliable for events in this region, and must be reassessed in order to make full use of the earthquake-explosion discrimination potential.  相似文献   

7.
—?A set of procedures is described for estimating network-averaged teleseismic P-wave spectra for underground nuclear explosions and for analytically inverting these spectra to obtain estimates of m b /yield relations and individual yields for explosions at previously uncalibrated test sites. These procedures are then applied to the analyses of explosions at the former Soviet test sites at Shagan River, Degelen Mountain, Novaya Zemlya and Azgir, as well as at the French Sahara, U.S. Amchitka and Chinese Lop Nor test sites. It is demonstrated that the resulting seismic estimates of explosion yield and m b /yield relations are remarkably consistent with a variety of other available information for a number of these test sites. These results lead us to conclude that the network-averaged teleseismic P-wave spectra provide considerably more diagnostic information regarding the explosion seismic source than do the corresponding narrowband magnitude measures such as m b , M s and m b (L g ), and, therefore, that they are to be preferred for applications to seismic yield estimation for explosions at previously uncalibrated test sites.  相似文献   

8.
—?A comparison of regional and teleseismic log rms (root-mean-square) L g amplitude measurements have been made for 14 underground nuclear explosions from the East Kazakh test site recorded both by the BRV (Borovoye) station in Kazakhstan and the GRF (Gräfenberg) array in Germany. The log rms L g amplitudes observed at the BRV regional station at a distance of 690?km and at the teleseismic GRF array at a distance exceeding 4700?km show very similar relative values (standard deviation 0.048 magnitude units) for underground explosions of different sizes at the Shagan River test site. This result as well as the comparison of BRV rms L g magnitudes (which were calculated from the log rms amplitudes using an appropriate calibration) with magnitude determinations for P waves of global seismic networks (standard deviation 0.054 magnitude units) point to a high precision in estimating the relative source sizes of explosions from L g-based single station data. Similar results were also obtained by other investigators (Patton, 1988; Ringdal et?al., 1992) using L g data from different stations at different distances.¶Additionally, GRF log rms L g and P-coda amplitude measurements were made for a larger data set from Novaya Zemlya and East Kazakh explosions, which were supplemented with m b (L g) amplitude measurements using a modified version of Nuttli's (1973, 1986a) method. From this test of the relative performance of the three different magnitude scales, it was found that the L g and P-coda based magnitudes performed equally well, whereas the modified Nuttli m b (L g) magnitudes show greater scatter when compared to the worldwide m b reference magnitudes. Whether this result indicates that the rms amplitude measurements are superior to the zero-to-peak amplitude measurement of a single cycle used for the modified Nuttli method, however, cannot be finally assessed, since the calculated m b (L g) magnitudes are only preliminary until appropriate attenuation corrections are available for the specific path to GRF.  相似文献   

9.
v--vS/P amplitude ratios have proven to be a valuable discriminant in support of monitoring a Comprehensive Nuclear Test Ban Treaty. Regional S and P phases attenuate at different rates and the attenuation can vary geographically. Therefore, calibration is needed to apply the S/P discriminant in new regions. Calibration includes application of frequency-dependent source and distance corrections for regional Pn, Pg, Sn, and Lg phases.¶Jenkins et al. (1998) developed Pn, Pg, Sn, and Lg amplitude models for nine geographic regions and two global composite models, stable and tectonic. They determined frequency-dependent source and attenuation corrections from a large data set obtained from the Prototype International Data Center (PIDC). We use their corrections to evaluate calibrated S/P discriminants.¶Our discrimination data set includes >1000 amplitude ratios from earthquakes, industrial explosions, chemical explosions, and nuclear explosions from Lop Nor, India and Pakistan. We find that the calibrated S/P ratio is largest for earthquakes and smallest for the nuclear explosions, as expected. However, the discriminant is not universally valid. In particular, the S/P ratio for the Pakistan nuclear explosion fell within the normal range for the earthquakes. This event was recorded by only a few stations at far-regional distances and appears to have an anomalously high Sn amplitude. The industrial explosions overlap with the earthquake population, however the buried chemical explosions generally register lower S/P ratio than earthquakes.  相似文献   

10.
Data from 753 earthquakes are used to determine a relationship between surface-wave magnitude (M s) and bodywave magnitude (m b), and from 541 earthquakes to determine a relationship between surface-wave magnitude (M s) and local magnitude (M L) for China and vicinity: M s=0.9883 m b-0.0420, M s=0.9919 M L-0.1773. The relationship of M s versus m b is obtained for 292 events occurred in the Chinese mainland in the time period from 1964 to 1996, 291 events occurred in Taiwan in the time period from 1964 to 1995 and 170 events occurred in the surrounding area. Standard deviation of the fitting is 0.445. Relationship of M s versus M L is obtained for 36 events occurred in the Chinese mainland, 293 events occurred in Taiwan, China and 212 events occurred in the surrounding area. The total amount is 541 events. Standard deviation of the fitting is 0.4673. The uncertainties of the converted M s in different magnitude intervals can be estimated using complementary cumulative distribution function (CCDF). In the relationship of M s versus m b, taking ±0.25 as a range of uncertainties, in magnitude interval m b 4.0–4.9, the probabilities for the converted M s taken value less than (M s-0.25) and more than (M s+0.25) are 17% and 27% respectively. Similarly, we have probabilities for m b 5.0–5.9 are 34% and 20% and that for m b 6.0–6.9 are 11% and 47%. In the relationship of M s versus M L, if the range of uncertainties is still taken as ±0.25, the corresponding probabilities for magnitude interval M L 4.0–4.9 are 22% and 38%, for M L 5.0–5.9 are 20% and 15% and for magnitude interval M L 6.0–6.9, are 15% and 29%, respectively. The relationships developed in this paper can be used for the conversion of one magnitude scale into another magnitude scales conveniently. The estimation of uncertainties described in this paper is more accurate and more objective than the usual estimation expressed by deviation. The estimations described in this paper indicate various dispersions in different magnitude intervals of original data. The estimations of uncertainties described by probabilities can be well connected with the total estimations of uncertainties in seismic hazard assessment.  相似文献   

11.
In previous research, trace amplitudes of surface wave maxima recorded by undamped Milne seismographs were used to determine the surface-wave magnitudes Ms of large shallow earthquakes which occurred prior to 1912. For this purpose, the effective gain of these instruments was calibrated by using the surface-wave magnitudes Ms(GR) which were calculated from the unpublished worksheets for Seismicity of the Earth of Gutenberg and Richter. In this paper, the real quality of Ms(GR) is critically re-evaluated by using independent sets of data. It is found that Ms(GR) for the period 1904–1909 is considerably overestimated. The average excess from the real Ms is 0.5 units for 1904–1906, 0.4 for 1907, 0.3 for 1908–1909 and 0.0 for 1910–1912. This overestimation is so systematic and large that the previous results are all redetermined. The average effective gain of Milne instruments is revised to be 21.9; previously, the gain depended on Ms. This revision results in systematic reduction in the previously assigned magnitudes. The revised values of Ms for 264 shallow earthquakes, with Ms=6.8 and over in the period 1897–1912 inclusive, are listed. The present revision is large enough to preclude the possibility of the high activity of large shallow earthquakes around the turn of the century. The present results have a direct effect on all the magnitude catalogues of shallow earthquakes which occurred prior to 1909.  相似文献   

12.
Attenuation of High-Frequency Seismic Waves in Eastern Iran   总被引:1,自引:0,他引:1  
We investigated the frequency-dependent attenuation of the crust in Eastern Iran by analysis data from 132 local earthquakes having focal depths in the range of 5–25 km. We estimated the quality factor of coda waves (Q c) and body waves (Q p and Q s) in the frequency band of 1.5–24 Hz by applying the single backscattering theory of S-coda envelopes and the extended coda-normalization method, respectively. Considering records from recent earthquakes (Rigan M w 6.5, 2010/12/20, Goharan M w 6.2, 2013/5/11 and Sirch M w 5.5, 2013/1/21), the estimated values of Q c, Q p and Q s vary from 151 ± 49, 63 ± 6, and 93 ± 14 at 1.5 Hz to 1,994 ± 124, 945 ± 84 and 1,520 ± 123 at 24 Hz, respectively. The average frequency-dependent relationships (Q = Q o f n ) estimated for the region are Q c = (108 ± 10)f (0.96±0.01), Q p = (50 ± 5)f (1.01±0.04), and Q s = (75 ± 6)f (1.03±0.06). These results evidenced a frequency dependence of the quality factors Q c, Q p, and Q s, as commonly observed in tectonically active zones characterized by a high degree of heterogeneity, and the low value of Q indicated an attenuative crust beneath the entire region.  相似文献   

13.
—?Modal summation technique is used to generate 5000, three-component theoretical seismograms of Love and Rayleigh waves, assuming modified PREM (PREM-C) and AK135F global earth models. The focal depth h and the geometrical fault parameters are randomly chosen so as to uniformly cover possible source mechanisms and obtain uniform distribution of log h in the interval 1?h?h?M s of the form:¶ΔM s (h)=0 forh< 20km, ΔM s (h)=0.314log(h)-0.409 for 20≠h< 60km, ΔM s (h)=1.351log(h)-2.253 for 60≠h< 100km, ΔM s (h)=0.400log(h)-0.350 for 100≠h< 600km .¶After applying the above correction, the relationship between the surface wave magnitude and the scalar seismic moment for the observational data set significantly improves, and becomes independent of the source depth. In relation to CTBT, no depth correction is needed for M S when the m b ???M S discriminant is computed, because the proposed correction is zero for earthquakes with foci above 20?km.  相似文献   

14.
15.
The Comprehensive Nuclear-Test-Ban Treaty (CTBT), a global ban on nuclear explosions, is currently in a ratification phase. Under the CTBT, an International Monitoring System (IMS) of seismic, hydroacoustic, infrasonic and radionuclide sensors is operational, and the data from the IMS is analysed by the International Data Centre (IDC). The IDC provides CTBT signatories basic seismic event parameters and a screening analysis indicating whether an event exhibits explosion characteristics (for example, shallow depth). An important component of the screening analysis is a statistical test of the null hypothesis H 0: explosion characteristics using empirical measurements of seismic energy (magnitudes). The established magnitude used for event size is the body-wave magnitude (denoted m b) computed from the initial segment of a seismic waveform. IDC screening analysis is applied to events with m b greater than 3.5. The Rayleigh wave magnitude (denoted M S) is a measure of later arriving surface wave energy. Magnitudes are measurements of seismic energy that include adjustments (physical correction model) for path and distance effects between event and station. Relative to m b, earthquakes generally have a larger M S magnitude than explosions. This article proposes a hypothesis test (screening analysis) using M S and m b that expressly accounts for physical correction model inadequacy in the standard error of the test statistic. With this hypothesis test formulation, the 2009 Democratic Peoples Republic of Korea announced nuclear weapon test fails to reject the null hypothesis H 0: explosion characteristics.  相似文献   

16.
Forensic seismology revisited   总被引:1,自引:0,他引:1  
The first technical discussions, held in 1958, on methods of verifying compliance with a treaty banning nuclear explosions, concluded that a monitoring system could be set up to detect and identify such explosions anywhere except underground: the difficulty with underground explosions was that there would be some earthquakes that could not be distinguished from an explosion. The development of adequate ways of discriminating between earthquakes and underground explosions proved to be difficult so that only in 1996 was a Comprehensive Nuclear Test Ban Treaty (CTBT) finally negotiated. Some of the important improvements in the detection and identification of underground tests—that is in forensic seismology—have been made by the UK through a research group at the Atomic Weapons Establishment (AWE). The paper describes some of the advances made in identification since 1958, particularly by the AWE Group, and the main features of the International Monitoring System (IMS), being set up to verify the Test Ban. Once the Treaty enters into force, then should a suspicious disturbance be detected the State under suspicion of testing will have to demonstrate that the disturbance was not a test. If this cannot be done satisfactorily the Treaty has provisions for on-site inspections (OSIs): for a suspicious seismic disturbance for example, an international team of inspectors will search the area around the estimated epicentre of the disturbance for evidence that a nuclear test really took place. Early observations made at epicentral distances out to 2,000 km from the Nevada Test Site showed that there is little to distinguish explosion seismograms from those of nearby earthquakes: for both source types the short-period (SP: ∼1 Hz) seismograms are complex showing multiple arrivals. At long range, say 3,000–10,000 km, loosely called teleseismic distances, the AWE Group noted that SP P waves—the most widely and well-recorded waves from underground explosions—were in contrast simple, comprising one or two cycles of large amplitude followed by a low-amplitude coda. Earthquake signals on the other hand were often complex with numerous arrivals of similar amplitude spread over 35 s or more. It therefore appeared that earthquakes could be recognised on complexity. Later however, complex explosion signals were observed which reduced the apparent effectiveness of complexity as a criterion for identifying earthquakes. Nevertheless, the AWE Group concluded that for many paths to teleseismic distances, Earth is transparent for P signals and this provides a window through which source differences will be most clearly seen. Much of the research by the Group has focused on understanding the influence of source type on P seismograms recorded at teleseismic distances. Consequently the paper concentrates on teleseismic methods of distinguishing between explosions and earthquakes. One of the most robust criteria for discriminating between earthquakes and explosions is the m b : M s criterion which compares the amplitudes of the SP P waves as measured by the body-wave magnitude m b, and the long-period (LP: ∼0.05 Hz) Rayleigh-wave amplitude as measured by the surface-wave magnitude M s; the P and Rayleigh waves being the main wave types used in forensic seismology. For a given M s, the m b for explosions is larger than for most earthquakes. The criterion is difficult to apply however, at low magnitude (say m b < 4.5) and there are exceptions—earthquakes that look like explosions. A difficulty with identification criteria developed in the early days of forensic seismology was that they were in the main empirical—it was not known why they appeared to work and if there were test sites or earthquakes where they would fail. Consequently the AWE Group in cooperation with the University of Cambridge used seismogram modelling to try and understand what controls complexity of SP P seismograms, and to put the m b : M s criterion on a theoretical basis. The results of this work show that the m b : M s criterion is robust because several factors contribute to the separation of earthquakes and explosions. The principal reason for the separation however, is that for many orientations of the earthquake source there is at least one P nodal plane in the teleseismic window and this biases m b low. Only for earthquakes with near 45° dip-slip mechanisms where the antinode of P is in the source window is the m b:M s criterion predicted to fail. The results from modelling are consistent with observation—in particular there are earthquakes, “anomalous events”, which look explosion-like on the m b:M s criterion, that turn out to have mechanisms close to 45° dip-slip. Fortunately the P seismograms from such earthquakes usually show pP and sP, the reflections from the free surface of P and S waves radiated upwards. From the pP–P and sP–P times the focal depth can be estimated. So far the estimated depth of the anomalous events have turned out to be ∼20 km, too deep to be explosions. Studies show that the observation that P seismograms are more complex than predicted by simple models can be explained on the weak-signal hypothesis: the standard phases, direct P and the surface reflections, are weak because of amongst other things, the effects of the radiation pattern or obstacles on the source-to-receiver path; other non-standard arrivals then appear relatively large on the seismograms. What has come out of the modelling of P seismograms is a criterion for recognising suspicious disturbances based on simplicity rather than complexity. Simple P seismograms for earthquakes at depths of more than a few kilometres are likely to be radiated only to stations that lie in a confined range of azimuths and distances. If then, simple seismograms are recorded over a wide range of distances and particularly azimuths, it is unlikely the source is an earthquake at depth. It is possible to test this using the relative amplitudes of direct P and later arrivals that might be surface reflections. The procedure is to use only the simple P seismograms on the assumption that whereas the propagation through Earth may make a signal more complex it is unlikely to make it simpler. From the amplitude of the coda of these seismograms, bounds can be placed on the size of possible pP and sP. The relative-amplitude method is then used to search for orientations of the earthquake source that are compatible with the observations. If no such orientations are found the source must be shallow so that any surface reflections merge with direct P, and hence could be an explosion. The IMS when completed will be a global network of 321 monitoring stations, including 170 seismological stations principally to detect the seismic waves from earthquakes and underground explosions. The IMS will also have stations with hydrophones, microbarographs and radionuclide detectors to detect explosions in the oceans and the atmosphere and any isotopes in the air characteristic of a nuclear test. The Global Communications Infrastructure provides communications between the IMS stations and the International Data Centre (IDC), Vienna, where the recordings from the monitoring stations is collected, collated, and analysed. The IDC issues bulletins listing geophysical disturbances, to States Signatories to the CTBT. The assessment of the disturbances to decide whether any are possible explosions, is a task for State Signatories. For each Signatory to do a detailed analysis of all disturbances would be expensive and time consuming. Fortunately many disturbances can be readily identified as earthquakes and removed from consideration—a process referred to as “event screening”. For example, many earthquakes with epicentres over the oceans can be distinguished from underwater explosions, because an explosion signal is of much higher frequency than that of earthquakes that occur below the ocean bed. Further, many earthquakes could clearly be identified at the IDC on the m b : M s criterion, but there is a difficulty—how to set the decision line. The possibility has to be very small that an explosion will be classed by mistake, as an earthquake. The decision line has therefore to be set conservatively, consequently with routine application of current screening criteria, only about 50% of earthquakes can be positively identified as such. Various methods have been proposed whereby a “determined violator” could avoid the provisions of a CTBT and carry out a test that would be either undetected or detected but not identified as an explosion. The increase in complexity and cost of such a test should discourage any State from attempting it. In addition, there is always the possibility of some stations detecting the test, the test being identified as suspicious, and so subject to an OSI. With time as the IMS becomes more efficient and effective it will act increasingly to deter anyone contemplating a clandestine test, from going ahead. What has emerged is several robust criteria. The criteria include: location, which when combined with hydro-acoustic data can identify earthquakes under the sea; m b : M s; and depth of focus. More detailed study is required of any remaining seismic disturbance that is regarded as suspicious: for example, is close to a site where nuclear tests have been carried out in the past. Any disturbance that is shown to be explosion-like, may be the subject of an OSI. One surprise is how little plate tectonics has contributed to resolving problems in forensic seismology. Much of the evidence for plate tectonics comes from seismological studies so it would be expected that the implications for Earth structure arising from forensic seismology would be consistent with plate-tectonic models. So far the AWE Group have found little synergy between plate tectonics and forensic seismology. It is to be hoped that the large volume of seismological data of high quality now being collected by the IMS and the increasing number of digital stations, will result in a revised Earth model that is consistent with the findings of forensic seismology, so that a future review of progress will show that the forensic seismologist can draw on this model in attempting to interpret apparently anomalous seismograms.
A. DouglasEmail:
  相似文献   

17.
Teleseismic observations of explosions tend to be richer in short-period energy than are earthquakes, thus the effectiveness of them b M s discriminant. At regional distances the same basic separation occurs for smaller events in terms ofM L M 0 (Woods et al., 1993) andm b M 0 (Patton andWalter, 1993). While these studies demonstrate the basic differences in excitation, they suffer in practical application because of the detailed information required in the retrieval ofM 0 . In this paper, we introduce a new method of discrimination, based on the energy strength (M E ) from broadband regional records that appears to be effective and efficient. In this method all events are processed as earthquakes, and explosions are distinguished by their stronger energy levels relative to their long-period amplitudes. Results from 29 events recorded by TERRAscope, sampling 15 explosions from NTS and 14 earthquakes from the southwestern United States, are represented, indicating complete separation (45 data points).M L =3.6 is the smallest event examined to date but the method can probably be extended to even smaller levels in calibrated regions.  相似文献   

18.
—?An intriguing observation in Greenland is a clear spatial correlation between seismicity and deglaciated areas along passive continental margins, a piece of evidence for earthquake triggering due to postglacial rebound. Another piece of evidence for induced seismicity due to deglaciation derives from earthquake source mechanisms. Sparse, low magnitude seismicity has made it difficult to determine focal mechanisms from Greenland earthquakes. On the basis of two normal faulting events along deglaciated margins and from the spatial distribution of epicenters, earlier investigators suggested that the earthquakes of Greenland are due to postglacial rebound. This interpretation is tested here by using more recent data. Broadband waveforms of teleseismic P waves from the August 10, 1993 (m b = 5.4) and October 14, 1998 (m b = 5.1) earthquakes have been inverted for moment tensors and source parameters. Both mechanisms indicate normal faulting with small strike-slip components: the 1993 event, strike = 348.9°, dip = 41.0°, rake =?56.3°, focal depth = 11?km, seismic moment = 1.03?×?1024 dyne-cm, and M w = 5.3; the 1998 event, strike = 61.6°, dip = 58.0°, rake =?95.5°, focal depth = 5?km, seismic moment = 5.72?×?1023 dyne-cm, and M w = 5.1. These and the two prior events support the theory that the shallow part of the lithosphere beneath the deglaciated margins is under horizontal extension. The observed stress field can be explained as flexural stresses due to removal of ice loads and surface loads by glacial erosion. These local extensional stresses are further enhanced by the spreading stress of continental crust and reactivate preexisting faults. Earthquake characteristics observed from Greenland suggest that the dominant seismogenic stresses are from postglacial rebound and spreading of the continental lithosphere.  相似文献   

19.
The purpose of this work is to define a seismic regionalization of Mexico for seismic hazard and risk analyses. This seismic regionalization is based on seismic, geologic, and tectonic characteristics. To this end, a seismic catalog was compiled using the more reliable sources available. The catalog was made homogeneous in magnitude in order to avoid the differences in the way this parameter is reported by various agencies. Instead of using a linear regression to converts from m b and M d to M s or M w , using only events for which estimates of both magnitudes are available (i.e., paired data), we used the frequency-magnitude relations relying on the a and b values of the Gutenberg-Richter relation. The seismic regions are divided into three main categories: seismicity associated with the subduction process along the Pacific coast of Mexico, in-slab events within the down-going COC and RIV plates, and crustal seismicity associated to various geologic and tectonic regions. In total, 18 seismic regions were identified and delimited. For each, the a and b values of the Gutenberg-Richter relation were determined using a maximum likelihood estimation. The a and b parameters were repeatedly estimated as a function of time for each region, in order to confirm their reliability and stability. The recurrence times predicted by the resulting Gutenberg-Richter relations obtained are compared with the observed recurrence times of the larger events in each region of both historical and instrumental earthquakes.  相似文献   

20.
—?Two chemical calibration explosions, conducted at the former Semipalatinsk nuclear test site in 1998 with charges of 25 tons and 100 tons TNT, have been used for developing travel-time curves and generalized one-dimensional velocity models of the crust and upper mantle of the platform region of Kazakhstan. The explosions were recorded by a number of digital seismic stations, located in Kazakhstan at distances ranging from 0 to 720?km. The travel-time tables developed in this paper cover the phases P, Pn, Pg, S, Sn, Lg in a range of 0–740?km and the velocity models apply to the crust down to 44?km depth and to the mantle down to 120?km. A comparison of the compiled travel-time tables with existing travel-time tables of CSE and IASPEI91 is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号