首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study numerically the restricted five-body problem when some or all the primary bodies are sources of radiation. The allowed regions of motion as determined by the zero-velocity surface and corresponding equipotential curves, as well as the positions of the equilibrium points are given. We found that the number of the collinear equilibrium points of the problem depends on the mass parameter β and the radiation factors q i , i=0,…,3. The stability of the equilibrium points are also studied. Critical masses associated with the number of the equilibrium points and their stability are given. The network of the families of simple symmetric periodic orbits, vertical critical periodic solutions and the corresponding bifurcation three-dimensional families when the mass parameter β and the radiation factors q i vary are illustrated. Series, with respect to the mass (and to the radiation) parameter, of critical periodic orbits are calculated.  相似文献   

2.
We have studied the stability of location of various equilibrium points of a passive micron size particle in the field of radiating binary stellar system within the framework of circular restricted three body problem. Influence of radial radiation pressure and Poynting-Robertson drag (PR-drag) on the equilibrium points and their stability in the binary stellar systems RW-Monocerotis and Krüger-60 has been studied. It is shown that both collinear and off axis equilibrium points are linearly unstable for increasing value of β 1 (ratio of radiation to gravitational force of the massive component) in presence of PR-drag for the binary systems. Further we find that out of plane equilibrium points (L i , i=6,7) may exists for range of values of β 1>1 for these binary systems in the presence of PR-drag. Our linear stability analysis shows that the motion near the equilibrium points L 6,7 of the binary systems is unstable both in the absence and presence of PR-drag.  相似文献   

3.
The existence and stability of a test particle around the equilibrium points in the restricted three-body problem is generalized to include the effect of variations in oblateness of the first primary, small perturbations ϵ and ϵ′ given in the Coriolis and centrifugal forces α and β respectively, and radiation pressure of the second primary; in the case when the primaries vary their masses with time in accordance with the combined Meshcherskii law. For the autonomized system, we use a numerical evidence to compute the positions of the collinear points L 2κ , which exist for 0<κ<∞, where κ is a constant of a particular integral of the Gylden-Meshcherskii problem; oblateness of the first primary; radiation pressure of the second primary; the mass parameter ν and small perturbation in the centrifugal force. Real out of plane equilibrium points exist only for κ>1, provided the abscissae x < \fracn(k-1)b\xi<\frac{\nu(\kappa-1)}{\beta}. In the case of the triangular points, it is seen that these points exist for ϵ′<κ<∞ and are affected by the oblateness term, radiation pressure and the mass parameter. The linear stability of these equilibrium points is examined. It is seen that the collinear points L 2κ are stable for very small κ and the involved parameters, while the out of plane equilibrium points are unstable. The conditional stability of the triangular points depends on all the system parameters. Further, it is seen in the case of the triangular points, that the stabilizing or destabilizing behavior of the oblateness coefficient is controlled by κ, while those of the small perturbations depends on κ and whether these perturbations are positive or negative. However, the destabilizing behavior of the radiation pressure remains unaltered but grows weak or strong with increase or decrease in κ. This study reveals that oblateness coefficient can exhibit a stabilizing tendency in a certain range of κ, as against the findings of the RTBP with constant masses. Interestingly, in the region of stable motion, these parameters are void for k = \frac43\kappa=\frac{4}{3}. The decrease, increase or non existence in the region of stability of the triangular points depends on κ, oblateness of the first primary, small perturbations and the radiation pressure of the second body, as it is seen that the increasing region of stability becomes decreasing, while the decreasing region becomes increasing due to the inclusion of oblateness of the first primary.  相似文献   

4.
The nonlinear stability of the equilibrium points in the restricted three-body problem with variable mass has been studied. It is found that, in the nonlinear sense, the collinear points are unstable for all mass ratios and the triangular points are stable in the range of linear stability except for three mass ratios, which depend upon β, the constant due to the variation in mass governed by Jeans’ law.  相似文献   

5.
We consider the modified restricted three body problem with power-law density profile of disk, which rotates around the center of mass of the system with perturbed mean motion. Using analytical and numerical methods, we have found equilibrium points and examined their linear stability. We have also found the zero velocity surface for the present model. In addition to five equilibrium points there exists a new equilibrium point on the line joining the two primaries. It is found that L 1 and L 3 are stable for some values of inner and outer radius of the disk while other collinear points are unstable, but L 4 is conditionally stable for mass ratio less than that of Routh’s critical value. Lastly, we have studied the effects of radiation pressure, oblateness and mass of the disk on the motion and stability of equilibrium points.  相似文献   

6.
The linear stability of the inner collinear equilibrium point of the photogravitational elliptic restricted three-body problem is examined and the stability regions are determined in the space of the parameters of mass, eccentricity and radiation pressure. The case of equal radiation factors of the two primaries is considered and the full range of values of the common radiation factor is explored, from the caseq 1 =q 2 =q = 1/8 at which the triangular equilibria disappear by coalescing on the rotating axis of the primaries transferring their stability to the collinear point, down toq = 0 at which value the stability regions in theµ - e plane disappear by shrinking down to zero size. It is found that radiation pressure exerts a significant influence on the stability regions. For certain intervals of radiation values these regions become qualitatively different from the gravitational case as well as the solar system case. They evolve as in the case of the triangular equilibrium point considered in a previous paper. There exist values of the common radiation factor, in the range considered, for which the collinear equilibrium point is stable for the entire range of mass distribution among the primaries and for large eccentricities of their orbits.  相似文献   

7.
In this paper we study the asymptotic solutions of the (N+1)-body ring planar problem, N of which are finite and ν=N−1 are moving in circular orbits around their center of masses, while the Nth+1 body is infinitesimal. ν of the primaries have equal masses m and the Nth most-massive primary, with m 0=β m, is located at the origin of the system. We found the invariant unstable and stable manifolds around hyperbolic Lyapunov periodic orbits, which emanate from the collinear equilibrium points L 1 and L 2. We construct numerically, from the intersection points of the appropriate Poincaré cuts, homoclinic symmetric asymptotic orbits around these Lyapunov periodic orbits. There are families of symmetric simple-periodic orbits which contain as terminal points asymptotic orbits which intersect the x-axis perpendicularly and tend asymptotically to equilibrium points of the problem spiraling into (and out of) these points. All these families, for a fixed value of the mass parameter β=2, are found and presented. The eighteen (more geometrically simple) families and the corresponding eighteen terminating homo- and heteroclinic symmetric asymptotic orbits are illustrated. The stability of these families is computed and also presented.  相似文献   

8.
We study numerically the asymmetric periodic orbits which emanate from the triangular equilibrium points of the restricted three-body problem under the assumption that the angular velocity ω varies and for the Sun–Jupiter mass distribution. The symmetric periodic orbits emanating from the collinear Lagrangian point L 3, which are related to them, are also examined. The analytic determination of the initial conditions of the long- and short-period Trojan families around the equilibrium points, is given. The corresponding families were examined, for a combination of the mass ratio and the angular velocity (case of equal eigenfrequencies), and also for the critical value ω = 2
, at which the triangular equilibria disappear by coalescing with the inner collinear equilibrium point L 1. We also compute the horizontal and the vertical stability of these families for the angular velocity parameter ω under consideration. Series of horizontal–critical periodic orbits of the short-Trojan families with the angular velocity ω and the mass ratio μ as parameters, are given.  相似文献   

9.
In this paper, we study the existence of libration points and their linear stability when the three participating bodies are axisymmetric and the primaries are radiating, we found that the collinear points remain unstable, it is further seen that the triangular points are stable for 0<μ<μ c , and unstable for where , it is also observed that for these points the range of stability will decrease. In addition to this we have studied periodic orbits around these points in the range 0<μ<μ c , we found that these orbits are elliptical; the frequencies of long and short orbits of the periodic motion are affected by the terms which involve parameters that characterize the oblateness and radiation repulsive forces. The implication is that the period of long periodic orbits adjusts with the change in its frequency while the period of short periodic orbit will decrease.  相似文献   

10.
This paper studies the existence and stability of equilibrium points under the influence of small perturbations in the Coriolis and the centrifugal forces, together with the non-sphericity of the primaries. The problem is generalized in the sense that the bigger and smaller primaries are respectively triaxial and oblate spheroidal bodies. It is found that the locations of equilibrium points are affected by the non-sphericity of the bodies and the change in the centrifugal force. It is also seen that the triangular points are stable for 0<μ<μ c and unstable for mc £ m < \frac12\mu_{c}\le\mu <\frac{1}{2}, where μ c is the critical mass parameter depending on the above perturbations, triaxiality and oblateness. It is further observed that collinear points remain unstable.  相似文献   

11.
This paper investigates the stability of equilibrium points in the restricted three-body problem, in which the masses of the luminous primaries vary isotropically in accordance with the unified Meshcherskii law, and their motion takes place within the framework of the Gylden–Meshcherskii problem. For the autonomized system, it is found that collinear and coplanar points are unstable, while the triangular points are conditionally stable. It is also observed that, in the triangular case, the presence of a constant κ, of a particular integral of the Gylden–Meshcherskii problem, makes the destabilizing tendency of the radiation pressures strong. The stability of equilibrium points varying with time is tested using the Lyapunov Characteristic Numbers (LCN). It is seen that the range of stability or instability depends on the parameter κ. The motion around the equilibrium points L i (i=1,2,…,7) for the restricted three-body problem with variable masses is in general unstable.  相似文献   

12.
This paper focuses on some aspects of the motion of a small particle moving near the Lagrangian points of the Earth–Moon system. The model for the motion of the particle is the so-called bicircular problem (BCP), that includes the effect of Earth and Moon as in the spatial restricted three body problem (RTBP), plus the effect of the Sun as a periodic time-dependent perturbation of the RTBP. Due to this periodic forcing coming from the Sun, the Lagrangian points are no longer equilibrium solutions for the BCP. On the other hand, the BCP has three periodic orbits (with the same period as the forcing) that can be seen as the dynamical equivalent of the Lagrangian points. In this work, we first discuss some numerical methods for the accurate computation of quasi-periodic solutions, and then we apply them to the BCP to obtain families of 2-D tori in an extended neighbourhood of the Lagrangian points. These families start on the three periodic orbits mentioned above and they are continued in the vertical (z and ż) direction up to a high distance. These (Cantor) families can be seen as the continuation, into the BCP, of the Lyapunov family of periodic orbits of the Lagrangian points that goes in the (z, ż) direction. These results are used in a forthcoming work [9] to find regions where trajectories remain confined for a very long time. It is remarkable that these regions seem to persist in the real system. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
This paper examines the effect of a constant κ of a particular integral of the Gylden-Meshcherskii problem on the stability of the triangular points in the restricted three-body problem under the influence of small perturbations in the Coriolis and centrifugal forces, together with the effects of radiation pressure of the bigger primary, when the masses of the primaries vary in accordance with the unified Meshcherskii law. The triangular points of the autonomized system are found to be conditionally stable due to κ. We observed further that the stabilizing or destabilizing tendency of the Coriolis and centrifugal forces is controlled by κ, while the destabilizing effects of the radiation pressure remain unchanged but can be made strong or weak due to κ. The condition that the region of stability is increasing, decreasing or does not exist depend on this constant. The motion around the triangular points L 4,5 varying with time is studied using the Lyapunov Characteristic Numbers, and are found to be generally unstable.  相似文献   

14.
We study the equilibrium points and the zero-velocity curves of Chermnykh’s problem when the angular velocity ω varies continuously and the value of the mass parameter is fixed. The planar symmetric simple-periodic orbits are determined numerically and they are presented for three values of the parameter ω. The stability of the periodic orbits of all the families is computed. Particularly, we explore the network of the families when the angular velocity has the critical value ω = 2√2 at which the triangular equilibria disappear by coalescing with the collinear equilibrium point L1. The analytic determination of the initial conditions of the family which emanate from the Lagrangian libration point L1 in this case, is given. Non-periodic orbits, as points on a surface of section, providing an outlook of the stability regions, chaotic and escape motions as well as multiple-periodic orbits, are also computed. Non-linear stability zones of the triangular Lagrangian points are computed numerically for the Earth–Moon and Sun–Jupiter mass distribution when the angular velocity varies.  相似文献   

15.
The effect of small perturbations ε and ε in the Coriolis and the centrifugal forces, respectively on the nonlinear stability of the triangular points in the restricted three-body problem with variable mass has been studied. It is found that, in the nonlinear sense, the triangular points are stable for all mass ratios in the range of linear stability except for three mass ratios, which depend upon ε, ε and β, the constant due to the variation in mass governed by Jeans’ law.  相似文献   

16.
The existence and linear stability of the planar equilibrium points for photogravitational elliptical restricted three body problem is investigated in this paper. Assuming that the primaries, one of which is radiating are rotating in an elliptical orbit around their common center of mass. The effect of the radiation pressure, forces due to stellar wind and Poynting–Robertson drag on the dust particles are considered. The location of the five equilibrium points are found using analytical methods. It is observed that the collinear equilibrium points L1, L2 and L3 do not lie on the line joining the primaries but are shifted along the y-coordinate. The instability of the libration points due to the presence of the drag forces is demonstrated by Lyapunov’s first method of stability.  相似文献   

17.
Photogravitational Restricted Three-Body Problem (PGRTBP) is considered and halo orbits are generated in the vicinity of the Sun–Mars L1 Lagrangian point. Deviation of properties such as time period, size and velocity variation in the halo orbits with Sun as a source of radiation are discussed. With increase in solar radiation pressure, the halo orbits are found to elongate and move towards the Sun and the time period of the halo orbits is found to increase. The variation in the behaviour of invariant manifolds with change in radiation pressure is also computed and it is found that as the radiation pressure increases, the transition from Mars-centric path to heliocentric path is delayed. Certain implications of the velocity profile of the invariant manifolds are also discussed.  相似文献   

18.
We explore the periodic orbits and the regions of quasi-periodic motion around both the primaries in the Saturn-Titan system in the framework of planar circular restricted three-body problem. The location, nature and size of periodic and quasi-periodic orbits are studied using the numerical technique of Poincare surface of sections. The maximum amplitude of oscillations about the periodic orbits is determined and is used as a parameter to measure the degree of stability in the phase space for such orbits. It is found that the orbits around Saturn remain around it and their stability increases with the increase in the value of Jacobi constant C. The orbits around Titan move towards it with the increase in C. At C=3.1, the pericenter and apocenter are 358.2 and 358.5 km, respectively. No periodic or quasi-periodic orbits could be found by the present method around the collinear Lagrangian point L 1 (0.9569373834…).  相似文献   

19.
This study explores the effects of small perturbations in the Coriolis and centrifugal forces, radiation pressures and triaxiality of the two stars (primaries) on the position and stability of an infinitesimal mass (third body) in the framework of the planar circular restricted three-body problem (R3BP). it is observed that the positions of the usual five (three collinear and two triangular) equilibrium points are affected by the radiation, triaxiality and a small perturbation in the centrifugal force, but are unaffected by that of the Coriolis force. The collinear points are found to remain unstable, while the triangular points are seen to be stable for 0<μ<μ c and unstable for $\mu_{c} \le\mu\le\frac{1}{2}$ , where μ c is the critical mass ratio influenced by the small perturbations in the Coriolis and centrifugal forces, radiation and triaxiality. It is also noticed that the former one and all the latter three posses stabilizing and destabilizing behavior respectively. Therefore, the overall effect is that the size of the region of stability decreases with increase in the values of the parameters involved.  相似文献   

20.
In this paper we have studied the locations and stability of the Lagrangian equilibrium points in the restricted three-body problem under the assumption that both the primaries are finite straight segments. We have found that the triangular equilibrium points are conditional stable for 0<μ<μ c , and unstable in the range μ c <μ≤1/2, where μ is the mass ratio. The critical mass ratio μ c depends on the lengths of the segments and it is observed that the range of μ c increases when compared with the classical case. The collinear equilibrium points are unstable for all values of μ. We have also studied the regions of motion of the infinitesimal mass. It has been observed that the Jacobian constant decreases when compared with the classical restricted three-body problem for a fixed value of μ and lengths l 1 and l 2 of the segments. Beside this we have found the numerical values for the position of the collinear and triangular equilibrium points in the case of some asteroids systems: (i) 216 Kleopatra-951 Gaspara, (ii) 9 Metis-433 Eros, (iii) 22 Kalliope-243 Ida and checked the linear stability of stationary solutions of these asteroids systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号