首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A statistical method to quantitatively assess the relative importance of unmodelled site and source effects on the observed variability (σ) in ground motions is presented. The method consists of analysis of variance (ANOVA) using the computed residuals with respect to an empirical ground-motion model for strong-motion records of various earthquakes recorded at a common set of stations. ANOVA divides the overall variance (σ 2) into the components due to site and source effects (respectively σ S 2 and σ E 2) not modelled by the ground-motion model plus the residual variance not explained by these effects (σ R 2). To test this procedure, four sets of observed strong-motion records: two from Italy (Umbria-Marche and Molise), one from the French Antilles and one from Turkey, are used. It is found that for the data from Italy, the vast majority of the observed variance is attributable to unmodelled site effects. In contrast, the variation in ground motions in the French Antilles and Turkey data is largely attributable, especially at short periods, to source effects not modelled by the ground-motion estimation equations used.  相似文献   

2.
地震危险性概率分析(PSHA)是目前最广泛应用于地震灾害与风险性评估的方法。然而它在计算中却存在着一个错误:把强地面运动衰减关系(一个函数)的条件超越概率等同于强地面运动误差(一个变量)的超越概率。这个错误导致了运用强地面运动误差(空间分布特征)去外推强地面运动的发生(时间分布特征)或称之为遍历性假设,同时也造成了对PSHA理解和应用上的困难。本文推导出新的灾害计算方法(称之为KY-PSHA)来纠正这种错误。  相似文献   

3.
Scherbaum et al. [(2004) Bull Seismolo Soc Am 94(6): 2164–2185] proposed a likelihood-based approach to select and rank ground-motion models for seismic hazard analysis in regions of low-seismicity. The results of their analysis were first used within the PEGASOS project [Abrahamson et al. (2002), In Proceedings of the 12 ECEE, London, 2002, Paper no. 633] so far the only application of a probabilistic seismic hazard analysis (PSHA) in Europe which was based on a SSHAC Level 4 procedure [(Budnitz et al. 1997, Recommendations for PSHA: guidance on uncertainty and use of experts. No. NUREG/CR-6372-V1). The outcome of this project have generated considerable discussion (Klügel 2005, Eng Geol 78:285–307, 2005b) Eng Geol 78: 285–307, (2005c) Eng Geol 82: 79–85 Musson et al. (2005) Eng Geol 82(1): 43–55]; Budnitz et al. (2005), Eng Geol 78(3–4): 285–307], a central part of which is related to the issue of ground-motion model selection and ranking. Since at the time of the study by Scherbaum et al. [(2004.) Bull Seismolo Soc Am 94(6): 2164–2185], only records from one earthquake were available for the study area, here we test the stability of their results using more recent data. Increasing the data set from 12 records of one earthquake in Scherbaum et al. [(2004) Bull Seismolo Soc Am 94(6): 2164–2185] to 61 records of 5 earthquakes, which have mainly occurred since the publication of the original study, does not change the set of the three top-ranked ground-motion models [Abrahamson and Silva (1997) Seismolo Res Latt 68(1): 94–127; Lussou et al. (2001) J Earthquake Eng 5(1):13–33; Berge-Thierry et al. (2003) Bull Seismolog Soc Am 95(2): 377–389. Only for the lower-ranked models do we obtain modifications in the ranking order. Furthermore, the records from the Waldkirch earthquake (Dec, 5th, 2004, M w = 4.9) enabled us to develop a new stochastic model parameter set for the application of Campbell’s [(2003) Bull Seismolo Soc Am 93(3): 1012–1033] hybrid empirical model to SW Germany and neighbouring regions.  相似文献   

4.
Arias Intensity (Arias, MIT Press, Cambridge MA, pp 438–483, 1970) is an important measure of the strength of a ground motion, as it is able to simultaneously reflect multiple characteristics of the motion in question. Recently, the effectiveness of Arias Intensity as a predictor of the likelihood of damage to short-period structures has been demonstrated, reinforcing the utility of Arias Intensity for use in both structural and geotechnical applications. In light of this utility, Arias Intensity has begun to be considered as a ground-motion measure suitable for use in probabilistic seismic hazard analysis (PSHA) and earthquake loss estimation. It is therefore timely to develop predictive equations for this ground-motion measure. In this study, a suite of four predictive equations, each using a different functional form, is derived for the prediction of Arias Intensity from crustal earthquakes in New Zealand. The provision of a suite of models is included to allow for epistemic uncertainty to be considered within a PSHA framework. Coefficients are presented for four different horizontal-component definitions for each of the four models. The ground-motion dataset for which the equations are derived include records from New Zealand crustal earthquakes as well as near-field records from worldwide crustal earthquakes. The predictive equations may be used to estimate Arias Intensity for moment magnitudes between 5.1 and 7.5 and for distances (both rjb and rrup) up to 300 km.  相似文献   

5.
Probabilistic seismic hazard for Mainland Portugal was re-evaluated in order to perform its disaggregation. Seismic hazard was disaggregated considering different spaces of random variables, namely, univariate conditional hazard distributions of M (magnitude), R (source-to-site distance) and ε (deviation of ground motion to the median value predicted by an attenuation model), bivariate conditional hazard distributions of MR and XY (seismic source latitude and longitude) or multivariate conditional hazard distributions of MRε and M–(XY)–ε. The main objective of the present work was achieved, as it was possible, based on the modal values of the above mentioned distributions, to characterize the scenarios that dominate some seismic hazard levels of the 278 Mainland Portuguese counties. In addition, results of 4D disaggregation analysis, in M–(XY)–ε, pointed out the existence of one geographic location shared by the dominant scenario of most analyzed counties, especially for hazard levels correspondent to high return periods. Those dominant scenarios are located offshore at a distance of approximately 70 km WSW of S. Vicente cape. On the other hand, the lower the return period the higher is the number of modal scenarios in the neighbourhood of the analyzed site. One may conclude that modal scenarios reproduce hazard target values in each site with great accuracy enabling the applications derived from those scenarios (e.g. loss evaluation) to be associated to a hazard level exceedance probability.  相似文献   

6.
Peak ground motion predictions in India: an appraisal for rock sites   总被引:1,自引:0,他引:1  
Proper selection and ranking of Ground Motion Prediction Equations (GMPEs) is critical for successful logic-tree implementation in probabilistic seismic hazard analysis. The present study explores this issue in predicting peak ground accelerations at the rock sites in India. Macroseismic intensity data complemented with limited strong ground-motion recordings are used for the purpose. The findings corroborate the possible conformity between the GMPEs developed for tectonically active shallow crust across the globe. On the other hand, the relevant GMPEs in the intraplate regions cluster into two different groups with the equations of lower ranks catering to higher ground motions. The earthquakes in the subduction zones have significant regional implications. However, affinity in the ground-motion attenuations between the major interface events (M W > 7.4) in Andaman-Nicobar, Japan and Cascadia, respectively, is noted. This can be also observed for the intraslab events in the Hindukush and Taiwan respectively. Overall, we do not observe any significant advantage with the equations developed using the regional data. These findings are expected to be useful in probabilistic seismic hazard analysis across the study region.  相似文献   

7.
The first ground-motion prediction equation derived from European and Middle Eastern strong-motion data was published more than 30 years ago; since then strong-motion networks and the resulting databank of accelerograms in the region have expanded significantly. Many equations for the prediction of peak ground-motion parameters and response spectral ordinates have been published in recent years both for the entire Euro-Mediterranean and Middle Eastern region as well as for individual countries within this region. Comparisons among empirical ground-motion models for these parameters, developed using large regional datasets, do not support the hypothesis of there being significant differences in earthquake ground-motions from one area of crustal seismicity to another. However, there are certain regions within Europe—affected by different tectonic regimes—for which the existing pan-European equations may not be applicable. The most recent European equations make it possible to now implement overdue modifications to the presentation of seismic design actions in Eurocode 8 that allow an improved approximation to the target uniform hazard spectrum (UHS). Using these recent equations, this study outlines a new approach via which an approximation to the UHS may be constructed using hazard maps calculated for peak ground velocity and the corner period T D in addition to the maps for peak ground acceleration that underpin the current stipulations of Eurocode 8.  相似文献   

8.
Over the past four or five decades many advances have been made in earthquake ground-motion prediction and a variety of procedures have been proposed. Some of these procedures are based on explicit physical models of the earthquake source, travel-path and recording site while others lack a strong physical basis and seek only to replicate observations. In addition, there are a number of hybrid methods that seek to combine benefits of different approaches. The various techniques proposed have their adherents and some of them are extensively used to estimate ground motions for engineering design purposes and in seismic hazard research. These methods all have their own advantages and limitations that are not often discussed by their proponents. The purposes of this article are to: summarise existing methods and the most important references, provide a family tree showing the connections between different methods and, most importantly, to discuss the advantages and disadvantages of each method.
John DouglasEmail:
  相似文献   

9.
Empirical recordings of ground motions featuring large amplitudes of acceleration or velocity play a key role in defining the maximum levels of ground motion required for the design of engineering projects, in view of their potentially very destructive nature. They also provide valuable insights as to the nature of the tails of the ground-motion distribution. The present paper reviews the interpretations put forward for a dataset of recordings selected for their large value of PGA (?1 g) or PGV (?100 cm/s), and attempts to classify causative physical processes according to a uniform nomenclature. The aim of the study is to identify to what extent large-amplitude ground motions are predictable, by separating scenarios that could generally be encountered and foreseen using current knowledge of the processes involved in earthquake ground-motion generation and propagation, such as particular features of the recording site, from occurrences that are related to unforeseeable characteristics of the source and path.  相似文献   

10.
EstimationofseismicstresdropfromthepeakvelocityofgroundmotionJIAZHENGQIN(秦嘉政)ZUYINLIU(刘祖荫)XIAODONGQIAN(钱晓东)QINGYINXIE(谢庆...  相似文献   

11.
A methodology is proposed to determine design earthquakes for site-specific studies such as the siting of critical structures (power plants, waste disposals, large dams, etc.), strategic structures (fire stations, military commands, hospitals, etc.), or for seismic microzoning studies, matching the results of probabilistic seismic hazard analyses. This goal is achieved by calculating the source contribution to hazard and the magnitude–distance deaggregation, showing that, varying the selected frequency and the level of hazard, the reference earthquakes are changed as a result. A procedure is then adopted to minimize the residuals between the uniform hazard spectrum (target motion) and the design earthquake spectrum, to provide a specific earthquake scenario encompassing all the frequencies of the target motion. Finally, some considerations on the use and the influence exerted by ground motion uncertainty (σ) on hazard deaggregation are outlined.  相似文献   

12.
We derive S-wave attenuation characteristics, earthquake source parameters and site amplification functions at seismic stations used for earthquake early warning in the Irpinia–Basilicata region, using non-parametric spectral inversion of seismograms from 49 local events with M L = 1.5–3.1. We obtain relatively low Q values (Q 0 = 28 at a frequency of 1 Hz) in conjunction with a strong frequency-dependence (close to linear). The source spectra can be satisfactorily modeled using the omega-square model, with stress drops ranging between 0.01–2 MPa, and in the narrow magnitude range available for analysis, the source spectra seem to scale self-similarly. The local magnitude M L shows a linear correlation with moment magnitude M W, however with a systematic underestimation by about 0.5-magnitude units. The results obtained in this work provide important insights into the ground-motion characteristics that are required for appropriate seismic hazard assessment and are of practical relevance for a suite of applications, such as the calibration of ground-motion prediction equations or the correction for site amplification in earthquake early warning and rapid calculation of shake-maps for seismic emergency management.  相似文献   

13.
应用“固结问题和布辛涅斯克问题解”,计算了丹江水库水位在130m和157m两种情况下,库区基岩体深度分别为1、3、5、7、9、11、13和15km时的水压应力场、变形场和超孔隙水压力场。结果表明,σ_1、σ_3和τ_(max)在库中心位置最大,库岸边较小;同时σ_1和σ_3在库中心均显压性,而在库岸边σ_3显张性;垂直位移在库中心最大(7cm),而水平位移在库岸边最大(0.5cm);超孔隙水压力一般在库中心深水区库基下3—9km处最大,库岸边和浅水区较小;体应变一般在库中心位置形成压缩区,而在库岸边则形成拉伸应变区并同时向四周扩展,与诱发地震震中分布相一致。  相似文献   

14.
Alignmentsilkwormsasseismicanimalanomalousbehavior(SAAB)andelectromagneticmodelofafault:atheoryandlaboratoryexperimentMOTO...  相似文献   

15.
Predictive relations are developed for peak ground acceleration (PGA) from the engineering seismoscope (SRR) records of the 2001 Mw 7.7 Bhuj earthquake and 239 strong-motion records of 32 significant aftershocks of 3.1 ≤ Mw ≤ 5.6 at epicentral distances of 1 ≤ R ≤ 288 km. We have taken advantage of the recent increase in strong-motion data at close distances to derive new attenuation relation for peak horizontal acceleration in the Kachchh seismic zone, Gujarat. This new analysis uses the Joyner-Boore’s method for a magnitude-independent shape, based on geometrical spreading and anelastic attenuation, for the attenuation curve. The resulting attenuation equation is,
where, Y is peak horizontal acceleration in g, Mw is moment magnitude, rjb is the closest distance to the surface projection of the fault rupture in kilometers, and S is a variable taking the values of 0 and 1 according to the local site geology. S is 0 for a rock site, and, S is 1 for a soil site. The relation differs from previous work in the improved reliability of input parameters and large numbers of strong-motion PGA data recorded at short distances (0–50 km) from the source. The relation is in demonstrable agreement with the recorded strong-ground motion data from earthquakes of Mw 3.5, 4.1, 4.5, 5.6, and 7.7. There are insufficient data from the Kachchh region to adequately judge the relation for the magnitude range 5.7 ≤ Mw ≤ 7.7. But, our ground-motion prediction model shows a reasonable correlation with the PGA data of the 29 March, 1999 Chamoli main shock (Mw 6.5), validating our ground-motion attenuation model for an Mw6.5 event. However, our ground-motion prediction shows no correlation with the PGA data of the 10 December, 1967 Koyna main shock (Mw 6.3). Our ground-motion predictions show more scatter in estimated residual for the distance range (0–30 km), which could be due to the amplification/noise at near stations situated in the Kachchh sedimentary basin. We also noticed smaller residuals for the distance range (30–300 km), which could be due to less amplification/noise at sites distant from the Kachchh basin. However, the observed less residuals for the longer distance range (100–300 km) are less reliable due to the lack of available PGA values in the same distance range.  相似文献   

16.
Fourier-amplitude spectrum is one of the most important parameters describing earthquake ground motion, and it is widely used for strong ground motion prediction and seismic hazard estimation. The relationships between Fourier-acceleration spectra, earthquake magnitude and distance were analysed for different seismic regions (the Caucasus and Taiwan island) on the basis of ground motion recordings of small to moderate (3.5≤ML≤6.5) earthquakes. It has been found that the acceleration spectra of the most significant part of the records, starting from S-wave arrival, can be modelled accurately by the Brune's “ω-squared” point-source model. Parameters of the model are found to be region-dependent. Peak ground accelerations and response spectra for condition of rock sites were calculated using stochastic simulation technique and obtained models of source spectra. The modelled ground-motion parameters are compared with those predicted by recent empirical attenuation relationship for California.  相似文献   

17.
Introduction The Pamirs region where Jiashi is located is one of the most active regions of continental plate dynamics in China. Frequent earthquakes here, especially several strong earthquakes oc- curred in 1997 and 2003, have provided excellent conditions for studying the tectonic stress field in this region and a large number of results (GAO and WEN, 2000; GAO et al, 2004; XU, 2001; ZHOU et al, 2001) have been obtained. Although different methods and data were used, under- standings …  相似文献   

18.
Accurate estimates of the ground motions that occurred during damaging earthquakes are a vital part of many aspects of earthquake engineering, such as the study of the size and cause of the uncertainties within earthquake risk assessments. This article compares a number of methods to estimate the ground shaking that occurred on Guadeloupe (French Antilles) during the 21st November 2004 (M w 6.3) Les Saintes earthquake, with the aim of providing more accurate shaking estimates for the investigation of the sources of uncertainties within loss evaluations, based on damage data from this event. The various techniques make differing use of the available ground-motion recordings of this earthquake and by consequence the estimates obtained by the different approaches are associated with differing uncertainties. Ground motions on the French Antilles are affected by strong local site effects, which have been extensively investigated in previous studies. In this article, use is made of these studies in order to improve the shaking estimates. It is shown that the simple methods neglecting the spatial correlation of earthquake shaking lead to uncertainties similar to those predicted by empirical ground-motion models and that these are uniform across the whole of Guadeloupe. In contrast, methods (such as the ShakeMap approach) that take account of the spatial correlation in motions demonstrate that shaking within roughly 10 km of a recording station (covering a significant portion of the investigated area) can be defined with reasonable accuracy but that motions at more distant points are not well constrained.  相似文献   

19.
The seismic microzonation of the Bengal Basin, Haldia region, India is carried out using the Analytical Hierarchy Process (AHP) on the Geographic Information System (GIS). Three themes are used for the seismic microzonation, namely Peak Ground Acceleration (PGA), predominant frequency and elevation map. An analysis of the maximum magnitude (m max) and the b value is carried out after preparing the earthquake catalogue from various sources. On the basis of the tectonic set up and seismicity of the region, five seismic zones are delineated which can be a threat to Haldia. They are broadly classified as Zone 1: Arakan-Yoma Zone (AYZ), Zone 2: Himalayan Zone (HZ), Zone 3: Shillong Plateau Zone (SPZ), Zone 4: Bay of Bengal Zone (BBZ) and Zone 5: Shield Zone (SZ). The m max for Zones 1, 2, 3, 4 and 5 are 8.30 ± 0.51, 9.09 ± 0.58, 9.20 ± 0.51, 6.62 ± 0.43 and 6.61 ± 0.43, respectively. The PGA value is computed for Haldia following the attenuation relationship taking the m max of each source zone. The expected PGA at Haldia varies from 0.09–0.19 g. The predominant frequency of Haldia is also calculated using the H/V ratio with a frequency ranging from 0.1–3.0 Hz. The elevation map of Haldia is also generated using the Shuttle Radar Topography Mission (STRM) data. A first-order seismic microzonation map of Haldia is prepared in which four zones of hazard have been broadly classified for Haldia as very high seismic hazard zone, high seismic hazard zone, moderate seismic hazard zone and less seismic hazard zone. The very high seismic hazard zone is observed along the southern part of Haldia where there are major industrial and port facilities. The PGA for the four hazard zones are: 0.09–0.13 g for low hazard zone, > 0.13–0.15 g for moderate hazard zone, > 0.15–0.16 g for high hazard zone and > 0.16–0.19 g for very high hazard zone.  相似文献   

20.
Based on the three-dimensional elastic inclusion model proposed by Dobrovolskii, we developed a rheological inclusion model to study earthquake preparation processes. By using the Corresponding Principle in the theory of rheologic mechanics, we derived the analytic expressions of viscoelastic displacement U(r, t) , V(r, t) and W(r, t), normal strains εxx (r, t), εyy (r, t) and εzz (r, t) and the bulk strain θ (r, t) at an arbitrary point (x, y, z) in three directions of X axis, Y axis and Z axis produced by a three-dimensional inclusion in the semi-infinite rheologic medium defined by the standard linear rheologic model. Subsequent to the spatial-temporal variation of bulk strain being computed on the ground produced by such a spherical rheologic inclusion, interesting results are obtained, suggesting that the bulk strain produced by a hard inclusion change with time according to three stages (α, β, γ) with different characteristics, similar to that of geodetic deformation observations, but different with the results of a soft inclusion. These theoretical results can be used to explain the characteristics of spatial-temporal evolution, patterns, quadrant-distribution of earthquake precursors, the changeability, spontaneity and complexity of short-term and imminent-term precursors. It offers a theoretical base to build physical models for earthquake precursors and to predict the earthquakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号