共查询到17条相似文献,搜索用时 125 毫秒
1.
2.
3.
4.
5.
针对地震勘探资料湮没在随机噪声中的微弱同相轴问题提出基于混沌理论的混沌振子检测算法. 利用修正的Duffing_Holmes方程建立检测微弱同相轴的混沌振子系统,之后经过对同相轴的扫描处理,构成新子波等时间间隔序列W(t),与此同时对随机噪声也进行相同的截断. 截断的随机噪声在混沌振子系统中可以具有与周期信号相同的表现;经过大量仿真实验确定出满足通常地震勘探子波延续时间的使混沌振子检测子波不呈现周期相态的随机噪声截断时间范围. 选用与松辽盆地T1、T2反射层类似的子波函数并构成待检微弱周期信号,经过MATLAB仿真试验成功地检测出该弱信号,信噪比达到约-10.3dB. 相似文献
6.
利用首都圈数字地震台网接收人工地震信号,进行地下结构研究具有重要意义.但人工震源释放的能量小,激发的地震波以短周期为主,因此本文较全面地研究了地震台网对短周期微弱信号(1~20 Hz)的检测能力:(1) 分析了台网的背景噪声,结果表明基岩台址的地震台噪声比沉积盖层台址的地震台噪声低约13 dB,这相当于近1个震级的检测阈值;夜间的噪声比白天低约5 dB;噪声有逐年增高的趋势,2006年比2001年噪声提高约4 dB.(2 )分析了在台网内进行的药量为25 kg的陆地井下爆破实验,一次爆破相当于0.69级(ML)的天然地震,有18个地震台可辨认爆炸产生的Pg、Pm或Pc波;离爆破点218 km的基岩台,仍可以接收到振幅只有1.6 nm 的Pm波,这个结果可为地震勘探实际工作提供参考.(3) 研究了台网外核爆试验的信号特征,2006年发生在朝鲜的地下核试验是一次检验台网检测微弱信号能力的好机会.波形记录经1~5Hz滤波后,台网中噪声小的18个基岩台可以清晰辨认核爆破产生的P波或Lg波,P波平均振幅为16 nm,计算的平均震级为mb4.3,和NEIC给出的震级相同;分析还表明背景噪声是影响台站信号检测能力的主要因素之一. 相似文献
7.
低频电磁信号在地下电性结构探测中具有重要作用,经过长距离传播,信号衰减,可能被淹没于噪声中.利用多重自相关检测方法,对微弱低频电磁信号进行检测,并与自适应滤波法和离散小波变换法进行对比.利用Matlab对3种算法进行仿真研究.结果表明,多重自相关法能更好抑制噪声,有效检测微弱信号,检测性能优于小波变换法和自适应滤波法. 相似文献
8.
9.
10.
11.
基于遗传神经网络的砂土液化判别模型 总被引:4,自引:0,他引:4
针对BP人工神经网络具有易陷入局部极小等缺陷,本文提出了将遗传算法与神经网络相结合,同时优化网络结构与权值、阈值的思想。根据地震液化的实测资料,建立了砂土液化判别的遗传神经网络模型,比较计算结果证明了该模型的科学性、高效性。文中并进行主成分分析,提出液化影响的主要因素。 相似文献
12.
针对结构损伤检测中损伤的识别、定位以及程度的标定这三个独立并按一定先后顺序进行的检测过程,提出了一种能将以上三者同时进行的联合检测方法。该方法首先利用经验模态分解(EMD)方法将三层钢筋混凝土剪切型结构在各种损伤工况下的顶层地震作用加速度响应分解为若干固有模态函数(IMF)分量,然后以此IMF分量和未经EMD分解的原始加速度响应数据来构造损伤标识量,作为特征参数依次输入到径向基函数神经网络(RBFNN)中进行损伤检测。给出了应用此方法的具体步骤,通过仿真实验证明了利用该方法进行结构损伤一次检测的可行性和有效性,结果表明,由加速度响应经EMD分解而得到的IMF分量输入到RBFNN中能够更为精确地一次检测出结构所有损伤信息,并且RBFNN在结构损伤损度大时具有更好的检测效果。 相似文献
13.
利用天然地震震源和人工爆破震源之间信号能量分布的差异,结合RBF神经网络技术,对2类事件进行分类,具体步骤如下:使用8个带通滤波器对事件波形进行滤波,并划分为4个波形段:P波、P波尾波、S波和S波尾波,分别计算每个滤波器信道和波形段的能量特征值,以所得32个特征参数作为输入向量,利用RBF神经网络,对地震和爆破事件进行分类识别。结果表明,基于RBF神经网络的地震事件识别方法,识别率为88.1%,具有较高的准确性,可作为地震与爆破事件识别的一个重要依据。 相似文献
14.
利用人工神经元网络方法,提出了一种从连续的地震数据中检测出地震事件的方法。该方法分两步,首先,低阈值的STA/LTA算法从连续的波形中检测出类似地震事件;其次利用神经元网络方法,区分事件是地震事件还是噪声事件。通过对数据检测结果比较,找出了适合地震检测的神经元网络训练方法和神经元传递函数。在对天山流动台阵其中两个台的检测结果表明,在连续约两个月数据中,39RLS台检测出地震75个,30RNA台检测出地震95个,证明该方法对地震事件检测来说是一种有效的方法。 相似文献
15.
Mitsuru Nakamura Sami F. Masri Anastassios G. Chassiakos Thomas K. Caughey 《地震工程与结构动力学》1998,27(9):997-1010
A neural network-based approach is presented for the detection of changes in the characteristics of structure-unknown systems. The approach relies on the use of vibration measurements from a ‘healthy’ system to train a neural network for identification purposes. Subsequently, the trained network is fed comparable vibration measurements from the same structure under different episodes of response in order to monitor the health of the structure. The methodology is applied to actual data obtained from ambient vibration measurements on a steel building structure that was damaged under strong seismic motion during the Hyogo-Ken Nanbu Earthquake of 17 January 1995. The measurements were done before and after repairs to the damaged frame were made. A neural network is trained with data after the repairs, which represents ‘healthy’ condition of the building. The trained network, which is subsequently fed data before the repairs, successfully identified the difference between the damaged storey and the undamaged storey. Through this study, it is shown that the proposed approach has the potential of being a practical tool for a damage detection methodology applied to smart civil structures. © 1998 John Wiley & Sons, Ltd. 相似文献
16.
Recognizing spatial distribution patterns of grassland insects: neural network approaches 总被引:1,自引:1,他引:1
WenJun Zhang XiaoQing Zhong GuangHua Liu 《Stochastic Environmental Research and Risk Assessment (SERRA)》2008,22(2):207-216
The main objective of this study was to fit and recognize spatial distribution patterns of grassland insects using various
neural networks, and to analyze the feasibility of neural networks for detecting spatial distribution patterns of grassland
insects. BP neural network, Learning vector quantization (LVQ) neural network, linear neural network and Fisher’s linear discriminant
analysis were used to fit and recognize spatial distribution patterns at different ecological scales. Various comparisons
and analysis were conducted. The results showed that BP, LVQ and linear neural networks were better algorithms for recognizing
spatial distribution patterns of grassland insects. BP neural network was the best algorithm to fit spatial distribution patterns.
BP network may be used to recognize the spatial details of distribution patterns, and the recognition performance of BP network
became better as the increase of the number of hidden layers and neurons. Performance of linear neural network for pattern
recognition was similar to linear discrimination method. Linear neural network would yield better performance in finding the
general trends of distribution patterns. Recognition performance of LVQ network was just between BP network and linear network.
It was found that recognition performance of neural networks depended upon not only the ecological scale but also the criterion
for classification. Under the uniform criterion, recognition efficiency of linear methods tended to be weak as ecological
scale became to be coarser. A joint use of neural networks was suggested in order to achieve both overall and detailed understanding
on spatial distribution patterns. 相似文献
17.
在前人工作的基础上,我们运用卷积来定义一个连续信号的二进小波变换。在考虑小波函数的相位特征基础上给出了其重现公式。另外,本文论述了这种小波变换定义能直接用于信号特征的检测,并给出了可用于信号奇异性分析的小波函数和尺度函数。 相似文献