首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The properties of locally rotationally symmetric Bianchi type-II perfect fluid space-times are analyzed in Barber’s second self-creation theory by using a special law of variation for Hubble’s parameter that yields a constant value of deceleration parameter. By assuming the equation of state p=γ ρ, many new solutions are obtained for different era—Zel’dovich, radiation, vacuum and vacuum energy dominated. The solutions with power-law and exponential expansion are discussed. A detailed study of geometrical and physical parameters is carried out. The nature of singularity is also clarified in each case.  相似文献   

2.
The Bianchi type-V cosmological model with viscous fluid and creation particle in Brans-Dicke theory has been considered. The present paper deals with Bianchi type-V cosmological model with bulk viscosity and particle creation described by full causal thermodynamics in Brans-Dicke theory. We have discussed two types of solutions of the average scale factor for a Bianchi type-V model by using a variation law of Hubble’s parameter, which yields a constant value of the deceleration parameter. The exact solutions to the corresponding field equations are obtained in quadrature form. The solutions to the Einstein field equations are obtained for power law and exponential form. The cosmological parameters have been discussed in detail.  相似文献   

3.
A special law of variation for Hubble’s parameter is presented in a spatially homogeneous and anisotropic Bianchi type-I space-time that yields a constant value of deceleration parameter. Using the law of variation for Hubble’s parameter, exact solutions of Einstein’s field equations are obtained for Bianchi-I space-time filled with perfect fluid in two different cases where the universe exhibits power-law and exponential expansion. It is found that the solutions are consistent with the recent observations of type Ia supernovae. A detailed study of physical and kinematical properties of the models is carried out.  相似文献   

4.
5.
We have studied the evolution of homogeneous and anisotropic Bianchi type-I cosmological models filled with perfect fluid in Barber second self-creation theory by assuming a special law of variation for Hubble’s parameter that yield a constant value of deceleration parameter. Some physical consequences of the models have been discussed in case of Zel’dovich fluid and radiation dominated fluid.  相似文献   

6.
We utilise a form for the Hubble parameter to generate a number of solutions to the Einstein field equations with variable cosmological constant and variable gravitational constant. The Hubble law utilised yields a constant value for the deceleration parameter. A variety of solutions is presented in the Robertson-Walker spacetimes. A generalisation of the cosmic scale factor is utilised in the anisotropic Bianchi I spacetime to illustrate that new solutions may also be found in spacetimes with less symmetry than Robertson-Walker. We also show that the constant deceleration parameter used is consistent with alternate theories of gravity by considering the scalar-tensor theory of Lau and Prokhovnik with ak = 0 Robertson-Walker background.  相似文献   

7.
The solutions of Einstein’s equations with cosmological constant (Λ) in the presence of a creation field have been obtained for general class of anisotropic cosmological models. We have obtained the cosmological solutions for two different scenarios of average scale factor. In first case, we have discussed three different types of physically viable cosmological solutions of average scale factor for the general class of Bianchi cosmological models by using a special law for deceleration parameter which is linear in time with a negative slope. In second case, we have discussed another three different forms of cosmological solutions by using the average scale factor in three different scenarios like Intermediate scenario, Logamediate scenario and Emergent scenario. All physical parameters are calculated and discussed in each physical viable cosmological model. We examine the nature of creation field and cosmological constant is dominated the early Universe but they do not survive for long time and finally tends to zero for large cosmic time t. We have also discussed the all energy conditions in each cases.  相似文献   

8.
We study Bianchi type-III cosmological model filled with perfect fluid in the presence of cosmological constant Λ(t). The Hubble law utilised yields a constant value of deceleration parameter. Physical and Kinematical properties of the model have also studied.   相似文献   

9.
Exact solutions are obtained for an isotropic homogeneous universe with a bulk viscous fluid in the cosmological theory based on Lyra’s geometry. The viscosity coefficient of the bulk viscous fluid is assumed to be a power function of the mass density. Cosmological models with time dependent displacement field have been discussed for a constant value of the deceleration parameter. Finally some possibilities of further problems and their investigations have been pointed out.  相似文献   

10.
A new class of exact solutions of Einstein’s field equations with a bulk viscous fluid for an LRS Bianchi type-Ia obtained by using a time dependent deceleration parameter and cosmological term Λ. The coefficient of bulk viscosity is assumed to be a power function of mass density (ξ=ξ 0 ρ n ). We have obtained a general solution of the field equations from which six models of the universe are derived: exponential, polynomial and sinusoidal form respectively. The behaviour of these models of the universe are also discussed in the frame of reference of recent supernovae Ia observations.   相似文献   

11.
An exact Bianchi type-V perfect fluid cosmological model is obtained in a scalar tensor theory proposed by Sen (Z. Phys. 149:311, 1957) based on Lyra Manifold in case of β is a constant and it is shown that this cosmological model exists only in the case of Radiation Universe (ρ=3p) if β is a function of ‘t’ using negative constant deceleration parameter. Some physical and geometrical properties of these models are discussed.  相似文献   

12.
Some features of the Bianchi type-I universes in the presence of a fluid that wields an anisotropic equation of state (EoS) parameter are discussed in the context of general relativity. The models that exhibit de Sitter volumetric expansion due to the constant effective energy density (the sum of the energy density of the fluid and the anisotropy energy density) are of particular interest. We also introduce two locally rotationally symmetric models, which exhibit de Sitter volumetric expansion in the presence of a hypothetical fluid that has been obtained by minimally altering the conventional vacuum energy. In the first model, the directional EoS parameter on the x axis is assumed to be −1, while the ones on the other axes and the energy density of the fluid are allowed to be functions of time. In the second model, the energy density of the fluid is assumed to be constant, while the directional EoS parameters are allowed to be functions of time.  相似文献   

13.
We studied plane symmetric cosmological model in the presence of quark and strange quark matter with the help of f(R, T) theory. To decipher solutions of plane symmetric space-time, we used power law relation between scale factor and deceleration parameter. We considered the special law of variation of Hubble’s parameter proposed by Berman (Nuovo Cimento B74, 182, 1983) which yields constant deceleration parameter. We also discussed the physical behavior of the solutions by using some physical parameters.  相似文献   

14.
Bermann [Nuovo Cimento B (1983), 74, 182] presented a law of variation of Hubble’s parameter that yields constant deceleration parameter models of the Universe. In this paper, we study some cosmological models with negative constant deceleration parameter within the framework of Lyra geometry. PACS Nos: 98.80 cq, 04.20 jb, 04.50  相似文献   

15.
The paper deals with a spatially homogeneous and isotropic FRW space-time filled with perfect fluid and dark energy components. The two sources are assumed to interact minimally, and therefore their energy momentum tensors are conserved separately. A special law of variation for the Hubble parameter proposed by Berman (Nuovo Cimento B 74:182, 1983) has been utilized to solve the field equations. The Berman’s law yields two explicit forms of the scale factor governing the FRW space-time and constant values of deceleration parameter. The role of dark energy with variable equation of state parameter has been studied in detail in the evolution of FRW universe. It has been found that dark energy dominates the universe at the present epoch, which is consistent with the observations. The physical behavior of the universe has been discussed in detail.  相似文献   

16.
We study a gravitational model in which scale transformations play the key role in obtaining dynamical G and Λ. We take a non-scale invariant gravitational action with a cosmological constant and a gravitational coupling constant. Then, by a scale transformation, through a dilaton field, we obtain a new action containing cosmological and gravitational coupling terms which are dynamically dependent on the dilaton field with Higgs type potential. The vacuum expectation value of this dilaton field, through spontaneous symmetry breaking on the basis of anthropic principle, determines the time variations of G and Λ. The relevance of these time variations to the current acceleration of the universe, coincidence problem, Mach’s cosmological coincidence and those problems of standard cosmology addressed by inflationary models, are discussed. The current acceleration of the universe is shown to be a result of phase transition from radiation toward matter dominated eras. No real coincidence problem between matter and vacuum energy densities exists in this model and this apparent coincidence together with Mach’s cosmological coincidence are shown to be simple consequences of a new kind of scale factor dependence of the energy momentum density as ρa −4. This model also provides the possibility for a super fast expansion of the scale factor at very early universe by introducing exotic type matter like cosmic strings.  相似文献   

17.
The propagation of a spherical shock wave in an ideal gas with heat conduction and radiation heat-flux, and with or without self-gravitational effects, is investigated. The initial density of the gas is assumed to obey a power law. The heat conduction is expressed in terms of Fourier’s law and the radiation is considered to be of the diffusion type for an optically thick grey gas model. The thermal conductivity and the absorption coefficient are assumed to vary with temperature and density, and the total energy of the wave to vary with time. Similarity solutions are obtained and the effects of variation of the heat transfer parameters, the variation of initial density and the presence of self-gravitational field are investigated.  相似文献   

18.
Exact solutions of the field equations for a Bianchi type-I space-time, filled with a viscous fluid and cosmological constant, are obtained. We utilize the constancy of deceleration parameter to get singular and non-singular solutions. We investigate a number of solutions with constant and time-varying cosmological constant together with a linear relation between shear viscosity and expansion scalar. Due to dissipative processes, the mean anisotropy and shear of the model tend to zero at a faster rate.  相似文献   

19.
FRW models of universe in the presence of viscous fluid are investigated in the cosmological theory based on Lyra’s Manifold. By considering the deceleration parameter to be a variable and the viscosity coefficient of bulk viscous fluid to be a constant, exacts solutions have been obtained from which three forms of model of the universe are derived. The physical properties of the models are also investigated.  相似文献   

20.
In this paper we study the evolution of the dark energy parameter within the scope of a spatially homogeneous and isotropic Friedmann-Robertson-Walker (FRW) model filled with barotropic fluid and dark energy by revisiting the recent results (Amirhashchi et al. in Chin. Phys. Lett. 28:039801, 2011a). To prevail the deterministic solution we select the scale factor which generates a time-dependent deceleration parameter (DP), representing a model which generates a transition of the universe from the early decelerating phase to the recent accelerating phase. We consider the two cases of an interacting and non-interacting two-fluid (barotropic and dark energy) scenario and obtained general results. The cosmic jerk parameter in our derived model is also found to be in good agreement with the recent data of astrophysical observations under the suitable condition. The physical aspects of the models and the stability of the corresponding solutions are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号