首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An analytical solution for the joint effects of the Earth oblateness and the direct solar radiation pressure on the motion of an Artificial Earth Satellite of complex shape is constructed. The equations of motion are derived in the previous paper (hereafter refered to as paper I). The solution is effected through two canonical transformations retaining secular and periodic terms up to orders 3 and 2 respectively. The developments stressed on the effects of the radiation pressure and its coupling with the earth's gravity. A procedure for the computation of position and velocity is outlined. The conditions of the resonance are determined and the procedure for the transformations in the case of resonance is outlined. The solution revealed as expected that radiation pressure produced secular effects at the third order resulting from the coupling between periodic terms at lower orders. These affect both the main satellite body and the antenna. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Recent advances in wide-angle imaging by the Solar Mass Ejection Imager (SMEI) on board the Coriolis spacecraft and more recently by the Heliospheric Imagers (HI) aboard NASA’s Solar TErrestrial RElations Observatory (STEREO), have enabled solar wind transients to be imaged and tracked from the Sun to 1 AU and beyond. In this paper we consider two of the techniques that have been used to determine the propagation characteristics of solar wind transients based on single-spacecraft observations, in particular propagation direction and radial speed. These techniques usually assume that the observing spacecraft remains stationary for the duration of observation of the solar wind transient. We determine the inaccuracy introduced by this assumption for the two STEREO spacecraft and find that it can be significant, and it can lead to an overestimation of the transient velocity as seen from STEREO-A and an underestimation as seen by STEREO-B. This has implications for the prediction or solar wind transients at 1 AU and hence is important for the study of space weather.  相似文献   

3.
Simunac  K. D. C.  Galvin  A. B.  Farrugia  C. J.  Kistler  L. M.  Kucharek  H.  Lavraud  B.  Liu  Y. C.-M.  Luhmann  J. G.  Ogilvie  K. W.  Opitz  A.  Popecki  M. A.  Sauvaud  J.-A.  Wang  S. 《Solar physics》2012,281(1):423-447
Solar Physics - In this paper we present in situ observations of the heliospheric plasma sheet (HPS) from STEREO-A, Wind, and STEREO-B over four solar rotations in the declining phase of...  相似文献   

4.
Our previous studies on low-frequency electromagnetic cyclotron waves(ECWs) with amplitudes larger than 0.1nT in the solar wind revealed that the left-handed(LH) polarized ECWs are the dominant waves,and these waves preferentially occur in plasma conditions of high proton speed(Vp),high proton temperature(Tp),low proton density(Np).In the present study,using magnetic field and plasma data from the Wind mission between 2005 and2015,we perform a survey of small-amp...  相似文献   

5.
The resonance terms produced by the effect of direct solar radiation pressure on the motion of a spacecraft in the oblate field of the earth are analyzed. The spacecraft was assumed axially symmetric with a despun antenna and solar panels. A canonical transformation technique is developed, based on the Bohlin technique of expansion in fractional powers, using Lie series and transformation as well as the concept of the Delaunay anomaly. The developed technique, applied to the problem averaged over the mean anomaly, is suitable in the presence of more than one resonant vector.  相似文献   

6.
The solar X-ray observing satellite Yohkoh has discovered various new dynamic features in solar flares and corona, e.g., cusp-shaped flare loops, above-the-loop-top hard X-ray sources, X-ray plasmoid ejections from impulsive flares, transient brightenings (spatially resolved microflares), X-ray jets, large scale arcade formation associated with filament eruption or coronal mass ejections, and so on. It has soon become clear that many of these features are closely related to magnetic reconnection. We can now say that Yohkoh established (at least phenomenologically) the magnetic reconnection model of flares. In this paper, we review various evidence of magnetic reconnection in solar flares and corona, and present unified model of flares on the basis of these new Yohkoh observations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
A local current sheet and a subsequent small interplanetary magnetic-flux rope were observed on 1 April 2003 by Wind and the Advanced Composition Explorer (ACE). A Petschek reconnection-like exhaust crossing of the local current sheet was identified using the Walén test. The Wind spacecraft re-entered the reconnection exhaust after the main exhaust encounter, and the reentry may be due to a spatial fold of the current-sheet surface itself. The absence of parallel strahls and the presence of antiparallel strahls on either side of the current sheet suggest that the magnetic-field lines before the exhaust and in the subsequent small flux rope are all open. The \(180^{\circ}\) pitch-angle strahls were clearly absent, and halo-suprathermal electron pitch-angle distributions were observed in the exhaust. This finding means that the open field lines of the magnetic-flux rope were reconnecting to the adjacent open field lines to produce U-shaped field lines disconnected from the Sun. These observations provide direct evidence that the magnetic fields of the interplanetary small magnetic-flux rope were disconnecting from the Sun through magnetic reconnection. This type of disconnected event potentially has important implications for the magnetic-flux budget of the heliosphere.  相似文献   

8.
The images taken by the Heliospheric Imagers (HIs), part of the SECCHI imaging package onboard the pair of STEREO spacecraft, provide information on the radial and latitudinal evolution of the plasma compressed inside corotating interaction regions (CIRs). A plasma density wave imaged by the HI instrument onboard STEREO-B was found to propagate towards STEREO-A, enabling a comparison between simultaneous remote-sensing and in situ observations of its structure to be performed. In situ measurements made by STEREO-A show that the plasma density wave is associated with the passage of a CIR. The magnetic field compressed after the CIR stream interface (SI) is found to have a planar distribution. Minimum variance analysis of the magnetic field vectors shows that the SI is inclined at 54° to the orbital plane of the STEREO-A spacecraft. This inclination of the CIR SI is comparable to the inclination of the associated plasma density wave observed by HI. A small-scale magnetic cloud with a flux rope topology and radial extent of 0.08 AU is also embedded prior to the SI. The pitch-angle distribution of suprathermal electrons measured by the STEREO-A SWEA instrument shows that an open magnetic field topology in the cloud replaced the heliospheric current sheet locally. These observations confirm that HI observes CIRs in difference images when a small-scale transient is caught up in the compression region.  相似文献   

9.
本文分析了2002.7.23国家天文台云南天文台射电频谱仪在625~1500 MHz、2600~3800 MHz和5200~7600 MHz记录到的复杂型大爆发,将此爆发与Hα耀斑、日冕物质抛射(CME)、硬X射线爆发及地球物理参数作了相关分析,得到这个事件的一些显著特征,认为这一事件电子的加速区在日冕的外层,接近625 MHz的地方,并且多次发生磁重联.磁重联以后的衰变相是湍流加速过程.  相似文献   

10.
太阳风中的电磁离子回旋(Electromagnetic Ion Cyclotron, EMIC)波自报道以来,受到了广泛的关注和研究.由于波的频率接近质子的回旋频率, EMIC波可以通过回旋共振波粒相互作用将波能传递给离子,并在太阳风粒子加热和加速等能化现象中发挥重要作用.总结了太阳风中EMIC波的观测和理论研究进展,包括EMIC波在磁云内外、磁云和行星际日冕物质抛射鞘区中的观测研究得到的一系列结果以及基于观测进行波的激发机制所取得的研究进展,并展望未来研究太阳风中EMIC波的突破方向.  相似文献   

11.
史晨 《天文学报》2023,(3):30-130
磁云因其独特的磁场结构经常是重大灾害性空间天气的驱动源.近来从磁云的边界层结构、环向通量、大尺度结构等方面关于磁云传播的动力学演化过程的研究取得了一些进展.在磁云边界存在一个由于磁场重联而形成的边界层结构.在磁云传播过程中,这种发生在边界处的磁场重联可能会把磁云的磁场剥蚀掉,进而引起其磁通量绳结构环向通量的减少以及不对称.在磁云内部,经常会观测到多个子通量绳结构.这些特性各异的子通量绳可以通过磁场重联而合并,进而引起磁云磁结构的改变.关于磁云大尺度磁场拓扑位形的演化机制,除了较早提出的交换重联外,目前的研究表明在行星际空间中,磁云边界处的重联过程也可以将磁云闭合或半开放的磁场线打开或断开.尽管在相关研究中已经取得了较大进展,但关于磁云传播的动力学演化过程还有许多问题尚不清楚.在行星际小尺度磁通量绳边界也发现了边界层结构,那么磁云是否会因剥蚀而成为小尺度通量绳?磁云内子通量绳结构在相互作用中会不会引起某些不稳定性而导致整个通量绳系统的崩溃?这些问题的解决还有待于进一步的理论、观测和数值模拟研究.  相似文献   

12.
Interplanetary scintillation (IPS) measurements of the solar wind speed for the distance range between 13 and 37 R S were carried out during the solar conjunction of the Nozomi spacecraft in 2000?–?2001 using the X-band radio signal. Two large-aperture antennas were employed in this study, and the baseline between the two antennas was several times longer than the Fresnel scale for the X-band. We successfully detected a positive correlation of IPS from the cross-correlation analysis of received signal data during ingress, and estimated the solar wind speed from the time lag corresponding to the maximum correlation by assuming that the solar wind flows radially. The speed estimates range between 200 and 540?km?s?1 with the majority below 400?km?s?1. We examined the radial variation in the solar wind speed along the same streamline by comparing the Nozomi data with data obtained at larger distances. Here, we used solar wind speed data taken from 327 MHz IPS observations of the Solar-Terrestrial Environment Laboratory (STEL), Nagoya University, and in?situ measurements by the Advanced Composition Explorer (ACE) for the comparison, and we considered the effect of the line-of-sight integration inherent to IPS observations for the comparison. As a result, Nozomi speed data were proven to belong to the slow component of the solar wind. Speed estimates within 30 R S were found to be systematically slower by 10?–?15 % than the terminal speeds, suggesting that the slow solar wind is accelerated between 13 and 30 R S.  相似文献   

13.
14.
The photospheric spatial distribution of the main magnetic polarities of bipolar active regions (ARs) present during their emergence deformations are known as magnetic tongues. They are attributed to the presence of twist in the toroidal magnetic-flux tubes that form the ARs. The aim of this article is to study the twist of newly emerged ARs from the evolution of magnetic tongues observed in photospheric line-of-sight magnetograms. We apply the procedure described by Poisson et al. (Solar Phys. 290, 727, 2015a) to ARs observed over the full Solar Cycle 23 and the beginning of Cycle 24. Our results show that the hemispherical rule obtained using the tongues as a proxy of the twist has a weak sign dominance (53 % in the southern hemisphere and 58 % in the northern hemisphere). By defining the variation of the tongue angle, we characterize the strength of the magnetic tongues during different phases of the AR emergence. We find that there is a tendency of the tongues to be stronger during the beginning of the emergence and to become weaker as the AR reaches its maximum magnetic flux. We compare this evolution with the emergence of a toroidal flux-rope model with non-uniform twist. The variety of evolution of the tongues in the analyzed ARs can only be reproduced when using a broad range of twist profiles, in particular having a large variety of twist gradients in the direction vertical to the photosphere. Although the analytical model used is a special case, selected to minimize the complexity of the problem, the results obtained set new observational constraints to theoretical models of flux-rope emergence that form bipolar ARs.  相似文献   

15.
太阳系人造天体VLBI观测   总被引:5,自引:0,他引:5  
简介介绍了VLBI技术用于太阳系人造天体观测的进展状况,并对这一研究方向的天文研究课题作了展望。  相似文献   

16.
Obridko  V. N.  Shelting  B. D. 《Solar physics》2011,270(1):297-310
The comparison of the brightness and area of coronal holes (CH) to the solar wind speed, which was started by Obridko et al. (Solar Phys. 260, 191, 2009a) has been continued. While the previous work was dealing with a relatively short time interval 2000 – 2006, here we have analyzed the data on coronal holes observed in the Sun throughout activity Cycle 23. A catalog of equatorial coronal holes has been compiled, and their brightness and area variations during the cycle have been analyzed. It is shown that CH is not merely an undisturbed zone between the active regions. The corona heating mechanism in CH seems to be essentially the same as in the regions of higher activity. The reduced brightness is the result of a specific structure with the magnetic field being quasi-radial at as low an altitude as 1.1R or a bit higher. The plasma outflow decreases the measure of emission from CH. With an adequate choice of the photometric boundaries, the CH area and brightness indices display a fairly high correlation (0.6 – 0.8) with the solar wind velocity throughout the cycle, except for two years, which deviate dramatically – 2001 and 2007, i.e., the maximum and the minimum of the cycle. The mean brightness of the darkest part of CH, where the field lines are nearly radial at low altitudes, is of the order of 18 – 20% of the solar brightness, while the brightness of the other parts of the CH is 30 – 40%. The solar wind streams originate at the base of the coronal hole, which acts as an ejecting nozzle. The solar wind parameters in CH are determined at the level where the field lines are radial.  相似文献   

17.
The twin STEREO and the Wind spacecraft make remote multipoint measurements of interplanetary radio sources of solar origin from widely separated vantage points. One year after launch, the angular separation between the STEREO spacecraft reached 45°, which was ideal for locating solar type III radio sources in the heliosphere by three-spacecraft triangulation measurements from STEREO and Wind. These triangulated source locations enable intrinsic properties of the radio source, such as its beaming characteristics, to be deduced. We present the first three-point measurements of the beaming characteristics for two solar type III radio bursts that were simultaneously observed by the three spacecraft in December of 2007 and in January of 2008. These analyses suggest that individual type III bursts exhibit a wide beaming pattern that is approximately beamed along the direction tangent to the Parker spiral magnetic field line at the source location.  相似文献   

18.
The solar wind parameters were analyzed using the concept which is being developed by the authors and assumes the existence of several systems of magnetic fields of different scales on the Sun. It was demonstrated that the simplest model with one source surface and a radial expansion does not describe the characteristics of the quiet solar wind adequately. Different magnetic field subsystems on the Sun affect the characteristics of the solar wind plasma in a different way, even changing the sign of correlation. New multiparameter schemes were developed to compute the velocity and the magnetic field components of the solar wind. The radial component of the magnetic field in the solar corona and the tilt of the heliospheric current sheet, which determines the degree of divergence of field lines in the heliosphere, were taken into account when calculating the magnetic field in the solar wind. Both the divergence of field lines in the corona and the strength of the solar magnetic field are allowed for in calculating the solar wind speed. The suggested schemes provide a considerably higher computation accuracy than that given by commonly used one-parameter models.  相似文献   

19.
The identification of solar-wind sources is an important question in solar physics. The existing solar-wind models (e.g., the Wang–Sheeley–Arge model) provide the approximate locations of the solar wind sources based on magnetic field extrapolations. It has been suggested recently that plasma outflows observed at the edges of active regions may be a source of the slow solar wind. To explore this we analyze an isolated active region (AR) adjacent to small coronal hole (CH) in July/August 2009. On 1 August, Hinode/EUV Imaging Spectrometer observations showed two compact outflow regions in the corona. Coronal rays were observed above the active-region coronal hole (ARCH) region on the eastern limb on 31 July by STEREO-A/EUVI and at the western limb on 7 August by CORONAS-Photon/TESIS telescopes. In both cases the coronal rays were co-aligned with open magnetic-field lines given by the potential field source surface model, which expanded into the streamer. The solar-wind parameters measured by STEREO-B, ACE, Wind, and STEREO-A confirmed the identification of the ARCH as a source region of the slow solar wind. The results of the study support the suggestion that coronal rays can represent signatures of outflows from ARs propagating in the inner corona along open field lines into the heliosphere.  相似文献   

20.
Very Low Frequency (VLF) radio waves propagate through the Earth-ionosphere waveguide. Irregularities caused by excess or deficient extreme ultra-violet and X-rays, which otherwise sustain the ionosphere, change the waveguide properties and hence the signals are modified. We report the results of monitoring of the NWC transmitter (19.8?kHz) by a receiver placed at Khukurdaha (22°27′N, 87°45′E) during the partial solar eclipse (75?%) of 15th January, 2010. The propagation path from the transmitter to the receiver crosses the annular eclipse belt. We got a clear depression in the data during the period of the eclipse. Most interestingly, there was also a X-ray flaring activity in the sun on that day which reached its peak (C-type) right after the time when the eclipse reached its maximum. We saw the effects of the occultation of this flare in our VLF signal since a part of the X-ray active region was clearly blocked by the moon. We quantitatively compared by using analogies with previous observations and found best fitting parameters for the time when the flare was occulted. We then reconstructed the VLF signal in the absence of the occulted flare. To our knowledge, this is the first such incident where the solar flare was observed through lunar occultation and that too during a partial eclipse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号