首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The twin STEREO spacecraft provide a unique tool to study the temporal evolution of the solar-wind properties in the ecliptic since their longitudinal separation increases with time. We derive the characteristic temporal variations at ~?1 AU between two different plasma parcels ejected from the same solar source by excluding the spatial variations from our datasets. As part of the onboard IMPACT instrument suite, the SWEA electron experiment provides the solar-wind electron core density at two different heliospheric vantage points. We analyze these density datasets between March and August 2007 and find typical solar minimum conditions. After adjusting for the theoretical time lag between the two spacecraft, we compare the two density datasets. We find that their correlation decreases as the time difference increases between two ejections. The correlation coefficient is about 0.80 for a time lag of a half day and 0.65 for two days. These correlation coefficients from the electron core density are somewhat lower than the ones from the proton bulk velocity obtained in an earlier study, though they are still high enough to consider the solar wind as persistent after two days. These quantitative results reflect the variability of the solar-wind properties in space and time, and they might serve as input for solar-wind models.  相似文献   

2.
Leitner  M.  Farrugia  C. J.  Galvin  A.  Simunac  K. D. C.  Biernat  H. K.  Osherovich  V. A. 《Solar physics》2009,259(1-2):381-388
Solar Physics - The solar wind quasi-invariant (QI) is defined as the ratio of the solar wind magnetic energy density to the plasma kinetic energy density (i.e., the inverse square of the...  相似文献   

3.
The multi-antenna scintillation method of measuring the solar-wind velocity has been very effective, particularly near the Sun and at high heliographic latitudes where direct measurements are rare or non-existent. However, scintillation observations inherently involve an LOS integration. Several methods have been used to deal with this problem, but they all require the basic assumption that contributions from different parts of the LOS add linearly. This assumption is valid for weak scintillations where the Born approximation holds, but it is not correct for strong scintillations. In this article we compare simultaneous observations of the same radio source, and therefore the same solar wind, at radio wavelengths of 32 cm and 92 cm. The 32-cm observations at the European Incoherent Scatter Radar (EISCAT) were made in weak-scattering and those at 92 cm at the Solar-Terrestrial Environment Laboratory (STEL) were made in strong-scattering mode. The results showed no significant bias in velocity caused by strong scattering, confirming that the LOS inversion techniques can be extended into the strong-scattering regime.  相似文献   

4.
We analyze in situ measurements of the solar wind velocity obtained by the Advanced Composition Explorer (ACE) and the Helios spacecraft during the years 1998?–?2012 and 1975?–?1983, respectively. The data mainly belong to solar cycles 23 (1996?–?2008) and 21 (1976?–?1986). We used the directed horizontal-visibility-graph (DHVg) algorithm and estimated a graph functional, namely, the degree distance (D), which is defined using the Kullback–Leibler divergence (KLD) to understand the time irreversibility of solar wind time-series. We estimated this degree-distance irreversibility parameter for these time-series at different phases of the solar activity cycle. The irreversibility parameter was first established for known dynamical data and was then applied to solar wind velocity time-series. It is observed that irreversibility in solar wind velocity fluctuations show a similar behavior at 0.3 AU (Helios data) and 1 AU (ACE data). Moreover, the fluctuations change over the phases of the activity cycle.  相似文献   

5.
We study the relationship of the 27-day variations of the galactic cosmic ray intensity with similar variations of the solar wind velocity and the interplanetary magnetic field based on observational data for the Bartels rotation period # 2379 of 23 November 2007 – 19 December 2007. We develop a three-dimensional (3-D) model of the 27-day variation of galactic cosmic ray intensity based on the heliolongitudinally dependent solar wind velocity. A consistent, divergence-free interplanetary magnetic field is derived by solving Maxwell’s equations with a heliolongitudinally dependent 27-day variation of the solar wind velocity reproducing in situ observations. We consider two types of 3-D models of the 27-day variation of galactic cosmic ray intensity, i) with a plane heliospheric neutral sheet, and ii) with the sector structure of the interplanetary magnetic field. The theoretical calculations show that the sector structure does not significantly influence the 27-day variation of galactic cosmic ray intensity, as had been shown before, based on observational data. Furthermore, good agreement is found between the time profiles of the theoretically expected and experimentally obtained first harmonic waves of the 27-day variation of the galactic cosmic ray intensity (with a correlation coefficient of 0.98±0.02). The expected 27-day variation of the galactic cosmic ray intensity is inversely correlated with the modulation parameter ζ (with a correlation coefficient of −0.91±0.05), which is proportional to the product of the solar wind velocity V and the strength of the interplanetary magnetic field B (ζ∼VB). The high anticorrelation between these quantities indicates that the predicted 27-day variation of the galactic cosmic ray intensity mainly is caused by this basic modulation effect.  相似文献   

6.
7.
The technique of interplanetary scintillation (IPS) is the observation of rapid fluctuations of the radio signal from an astronomical compact source as the signal passes through the ever-changing density of the solar wind. Cross-correlation of simultaneous observations of IPS from a single radio source, received at multiple sites of the European Incoherent SCATter (EISCAT) radio antenna network, is used to determine the velocity of the solar wind material passing over the lines of sight of the antennas. Calculated velocities reveal the slow solar wind to contain rapid velocity variations when viewed on a time-scale of several minutes. Solar TErrestrial RElations Observatory (STEREO) Heliospheric Imager (HI) observations of white-light intensity have been compared with EISCAT observations of IPS to identify common density structures that may relate to the rapid velocity variations in the slow solar wind. We have surveyed a one-year period, starting in April 2007, of the EISCAT IPS observing campaigns beginning shortly after the commencement of full science operations of the STEREO mission in a bid to identify common density structures in both EISCAT and STEREO HI datasets. We provide a detailed investigation and presentation of joint IPS/HI observations from two specific intervals on 23 April 2007 and 19 May 2007 for which the IPS P-Point (point of closest approach of the line of sight to the Sun) was between 72 and 87 solar radii out from the Sun’s centre. During the 23 April interval, a meso-scale (of the order of 105 km or larger) transient structure was observed by HI-1A to pass over the IPS ray path near the P-Point; the observations of IPS showed a micro-scale structure (of the order of 102 km) within the meso-scale transient. Observations of IPS from the second interval, on 19 May, revealed similar micro-scale velocity changes, however, no transient structures were detected by the HIs during that period. We also pose some fundamental thoughts on the slow solar wind structure itself.  相似文献   

8.
Measurements of Faraday rotation through the solar corona were collected using the radio beacon aboard the MESSENGER spacecraft during the longest solar minimum in a century. As MESSENGER entered superior conjunction, the plane of polarization of its radio signal was observed to rotate as it traversed the circularly birefringent plasma of the Sun’s atmosphere. On time scales of less than three hours, these uncalibrated plane of polarization observations of Faraday rotation can be used to investigate the dynamic processes in the solar plasma, such as magnetohydrodynamic (MHD) waves and coronal mass ejections (CMEs). Here we describe the MESSENGER Faraday rotation experiment, the data processing conducted to obtain the plane of polarization, and the estimation of error.  相似文献   

9.
10.
The Triana PlasMag Faraday Cup (FC) will be able to determine speed, flow angles, temperature, and density of the main solar wind ion species with a time resolution of better than one second. Thus, the Triana PlasMag FC will enable resolution of spatial structures as small as a few hundred kilometers as the structures convect past the spacecraft. Under typical solar wind conditions, that size is comparable to a few proton gyroradii. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Relationships between solar wind speed and expansion rate of the coronal magnetic field have been studied mainly by in-ecliptic observations of artificial satellites and some off-ecliptic data by Ulysses. In this paper, we use the solar wind speed estimated by interplanetary scintillation (IPS) observations in the whole heliosphere. Two synoptic maps of SWS estimated by IPS observations are constructed for two Carrington rotations CR 1830 and 1901; CR 1830 starting on the 11th of June, 1990 is in the maximum phase of solar activity cycle and CR 1901 starting on the 29th of September, 1995 is in the minimum phase. Each of the maps consist of 64800 (360×180) data points. Similar synoptic maps of expansion rate of the coronal magnetic field (RBR) calculated by the so-called potential model are also constructed under a radial field assumption for CR 1830 and CR1901. Highly significant correlation (r=–0.66) is found between the SWS and the RBR during CR1901 in the solar minimum phase; that is, high-speed winds emanate from photospheric areas corresponding to low expansion rate of the coronal magnetic field and low speed winds emanate from photospheric areas of high expansion rate. A similar result is found during CR 1830 in solar maximum phase, though the correlation is relatively low (r=–0.29). The correlation is improved when both the data during CR 1830 and CR 1901 are used together; the correlation coefficient becomes –0.67 in this case. These results suggest that the correlation analysis between the SWS and the RBR can be applied to estimate the solar wind speed from the expansion rate of the coronal magnetic field, though the correlation between them may depend on the solar activity cycle. We need further study of correlation analysis for the entire solar cycle to get an accurate empirical equation for the estimation of solar wind speed. If the solar wind speed is estimated successfully by an empirical equation, it can be used as an initial condition of a solar wind model for space weather forecasts.  相似文献   

12.
Images observed by the twin spacecraft Solar TErrestrial RElations Observatory (STEREO) A and B appear as complex structures for two coronal mass ejections (CMEs) on 1 August 2010. Therefore, a series of sky maps of Thomson-scattered white light by interplanetary coronal mass ejections (ICMEs) on 1 August 2010 are simulated using the Hakamada–Akasofu–Fry (HAF) three-dimensional solar-wind model. A comparison between the simulated images and observations of STEREO-A and -B clarifies the structure and evolution of ICMEs (including shocks) in the observed images. The results demonstrate that the simulated images from the HAF model are very useful in the interpretation of the observed images when the ICMEs overlap within the fields of view of the instruments onboard STEREO-A and -B.  相似文献   

13.
L. Zhao  L. Fisk 《Solar physics》2011,274(1-2):379-397
The properties of the heliospheric magnetic field and the solar wind were substantially different in the unusual solar minimum between Cycles 23 and 24: the magnetic-field strength was substantially reduced, as were the flow properties of the solar wind, such as the mass flux. Explanations for these changes are offered that do not require any substantial reconsideration of the general understandings of the behavior of the heliospheric magnetic field and the solar wind that were developed in the minimum of Cycle 22?–?23. Solar-wind composition data are used to demonstrate that there are two distinct regions of solar wind: solar wind likely to originate from the stalk of the streamer belt (the highly elongated loops that underlie the heliospheric current sheet), and solar wind from outside this region. The region outside the streamer-stalk region is noticeably larger in the minimum of Cycle 23?–?24; however, the increased area can account for the reduction in the heliospheric magnetic-field strength in this minimum. Thus, the total magnetic flux contained in this region is the same in the two minima. Various correlations among the solar-wind mass flux and coronal electron temperature inferred from solar-wind charge states were developed for the Cycle 22?–?23 solar minimum. The data for the minimum of Cycle 23?–?24 suggest that the correlations still hold, and thus the basic acceleration mechanism is unchanged in this minimum.  相似文献   

14.
We search for persistent and quasi-periodic release events of streamer blobs during 2007 with the Large Angle Spectrometric Coronagraph on the Solar and Heliospheric Observatory and assess the velocity of the slow solar wind along the plasma sheet above the corresponding streamer by measuring the dynamic parameters of blobs. We find ten quasi-periodic release events of streamer blobs lasting for three to four days. In each day of these events, we observe three – five blobs. The results are in line with previous studies using data observed near the last solar minimum. Using the measured blob velocity as a proxy for that of the mean flow, we suggest that the velocity of the background slow solar wind near the Sun can vary significantly within a few hours. This provides an observational manifestation of the large velocity variability of the slow solar wind near the Sun.  相似文献   

15.
Vaquero  J.M.  Sánchez-bajo  F.  Gallego  M.C. 《Solar physics》2002,207(2):219-222
In this paper we present a measure of the synodic solar rotation rate derived from an analysis of a Flamsteed drawing, corroborating the decrease of the solar rotation in the deep Maunder minimum (1666–1700).  相似文献   

16.
We use statistical data giving the number of stars formed as a function of the age, assigned using the observed deterministic relation between chromospheric activity and age, to show that the temporal behaviour of star formation in the solar neighbourhood must have been chaotic during time intervals of less than 1 Gyr. We also offer evidence that systems of gas and stars typified by that in the solar vicinity show behaviour analogous to that of the logistic map. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Meridional motions and differential rotation of stable recurrent sunspot groups from the Greenwich data set are investigated. Simple and complex, as well as younger and older sunspot groups are treated separately. There is no difference in behavior of the meridional motions for the simple and complex sunspot groups, while complex groups rotate faster than the simple ones. If we attribute the differences of rotational velocities to the errors in position determination, it can be concluded that the rotational velocities determined by using sunspot groups as tracers are slightly overestimated. Both the meridional motions and differential rotation show the same dependence on the age, when simple and complex recurrent sunspot groups are considered. Alexander von Humboldt Research Fellow.  相似文献   

18.
Three-dimensional electron density distributions in the solar corona are reconstructed for 100 Carrington rotations (CR 2054?–?2153) during 2007/03?–?2014/08 using the spherically symmetric method from polarized white-light observations with the inner coronagraph (COR1) onboard the twin Solar Terrestrial Relations Observatory (STEREO). These three-dimensional electron density distributions are validated by comparison with similar density models derived using other methods such as tomography and a magnetohydrodynamics (MHD) model as well as using data from the Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronagraph (LASCO)-C2. Uncertainties in the estimated total mass of the global corona are analyzed based on differences between the density distributions for COR1-A and -B. Long-term variations of coronal activity in terms of the global and hemispheric average electron densities (equivalent to the total coronal mass) reveal a hemispheric asymmetry during the rising phase of Solar Cycle 24, with the northern hemisphere leading the southern hemisphere by a phase shift of 7?–?9 months. Using 14 CR (\(\approx13\)-month) running averages, the amplitudes of the variation in average electron density between Cycle 24 maximum and Cycle 23/24 minimum (called the modulation factors) are found to be in the range of 1.6?–?4.3. These modulation factors are latitudinally dependent, being largest in polar regions and smallest in the equatorial region. These modulation factors also show a hemispheric asymmetry: they are somewhat larger in the southern hemisphere. The wavelet analysis shows that the short-term quasi-periodic oscillations during the rising and maximum phases of Cycle 24 have a dominant period of 7?–?8 months. In addition, it is found that the radial distribution of the mean electron density for streamers at Cycle 24 maximum is only slightly larger (by \(\approx30\%\)) than at cycle minimum.  相似文献   

19.
The extended Greenwich data set consisting of positions of sunspot groups is used for the investigation of cycle-related variations of the solar rotation in the years 1874–1981. Applying the residual method, which yields a single number for each year describing the average deviation from the mean value of the solar rotation, the dependence of the rotation velocity residual on the phase of the solar cycle is investigated. A secular deceleration of the solar rotation was found: the slope being statistically significant at the 3σ level. Periods of 33, 22, 11, 5.2, and 3.5 years can be identified in the power spectra. The rotation velocity residuals were averaged for all years with the same solar cycle phase relative to the nearest preceding sunspot minimum. The variation pattern reveals a higher than average rotation velocity in the minimum of activity and, to a lesser extent, also around the maximum of activity. The analysis was repeated with several changes in the reduction method, such as elimination of the secular trend, application of statistical weights, different cutoffs of the central meridian distance, division of the latitude into subregions and treating data from the years of activity minima separately. The results obtained are compared with those from the literature, and an interpretation of the observed phenomena is proposed.  相似文献   

20.
The images taken by the Heliospheric Imagers (HIs), part of the SECCHI imaging package onboard the pair of STEREO spacecraft, provide information on the radial and latitudinal evolution of the plasma compressed inside corotating interaction regions (CIRs). A plasma density wave imaged by the HI instrument onboard STEREO-B was found to propagate towards STEREO-A, enabling a comparison between simultaneous remote-sensing and in situ observations of its structure to be performed. In situ measurements made by STEREO-A show that the plasma density wave is associated with the passage of a CIR. The magnetic field compressed after the CIR stream interface (SI) is found to have a planar distribution. Minimum variance analysis of the magnetic field vectors shows that the SI is inclined at 54° to the orbital plane of the STEREO-A spacecraft. This inclination of the CIR SI is comparable to the inclination of the associated plasma density wave observed by HI. A small-scale magnetic cloud with a flux rope topology and radial extent of 0.08 AU is also embedded prior to the SI. The pitch-angle distribution of suprathermal electrons measured by the STEREO-A SWEA instrument shows that an open magnetic field topology in the cloud replaced the heliospheric current sheet locally. These observations confirm that HI observes CIRs in difference images when a small-scale transient is caught up in the compression region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号