首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present an analysis comparing observations acquired by the Mars Express Observatoire pour la Minéralogie l’Eau, les Glaces et l’Activité (OMEGA) and Phoenix lander measurements. Analysis of OMEGA data provides evidence for hydrous and ferric phases at the Phoenix landing site and the surrounding regions. The 3 μm hydration band deepens with increasing latitude, along with the appearance and deepening of a 1.9 μm H2O band as latitude increases ∼60° polewards. A water content of 10-11% is derived from the OMEGA data for the optical surface at the Phoenix landing site compared to 1-2% derived for subsurface soil by Phoenix lander measurements. The hydration of these regions is best explained by surface adsorbed water onto soil grains. No evidence for carbonate or perchlorate-bearing phases is evident from OMEGA data, consistent with the relatively small abundances of these phases detected by Phoenix. The identification of spectral features consistent with hydrated phases (possibly zeolites) from OMEGA data covering regions outside the landing site and the ubiquitous ferric absorption edge suggest that chemical weathering may play a role in the arctic soils.  相似文献   

2.
The near-infrared reflectance spectra of the martian surface present strong absorption features attributed to hydration water present in the regolith. In order to characterize the relationships between this water and atmospheric vapor and decipher the physical state of water molecules in martian regolith analogs, we designed and built an experimental setup to measure near-IR reflectance spectra under martian atmospheric conditions. Six samples were studied that cover part of the diversity of Mars surface mineralogy: a hydrated ferric oxide (ferrihydrite), two igneous samples (volcanic tuff, and dunite sand), and three potential water rich soil materials (Mg-sulfate, smectite powder and a palagonitic soil, the JSC Mars-1 regolith stimulant). Sorption and desorption isotherms were measured at 243 K for water vapor pressure varying from 10−5 to ∼0.3 mbar (relative humidity: 10−4 to 75%). These measurements reveal a large diversity of behavior among the sample suite in terms of absolute amount of water adsorbed, shape of the isotherm and hysteresis between the adsorption and desorption branches. Simultaneous in situ spectroscopic observations permit a detailed analysis of the spectral signature of adsorbed water and also point to clear differences between the samples. Ferric (oxy)hydroxides like ferrihydrite or other phases present in palagonitic soils are very strong water adsorbent and may play an important role in the current martian water cycle by allowing large exchange of water between dust-covered regions and atmosphere at diurnal and seasonal scales.  相似文献   

3.
This investigation uses linear mixture modeling employing cryogenic laboratory reference spectra to estimate surface compositions and water ice grain sizes of Europa’s ridged plains and smooth low albedo plains. Near-infrared spectra for 23 exposures of ridged plains materials are analyzed along with 11 spectra representing low albedo plains. Modeling indicates that these geologic units differ both in the relative abundance of non-ice hydrated species and in the abundance and grain sizes of water ice. The background ridged plains in our study area appear to consist predominantly of water ice (∼46%) with approximately equal amounts (on average) of hydrated sulfuric acid (∼27%) and hydrated salts (∼27%). The solutions for the smooth low albedo plains are dominated by hydrated salts (∼62%), with a relatively low mean abundance of water ice (∼10%), and an abundance of hydrated sulfuric acid similar to that found in ridged plains (∼27%). The model yields larger water ice grain sizes (100 μm versus 50-75 μm) in the ridged plains. The 1.5-μm water ice absorption band minimum is found at shorter wavelengths in the low albedo plains deposits than in the ridged plains (1.498 ± .003 μm versus 1.504 ± .001 μm). The 2.0-μm band minimum in the low albedo plains exhibits a somewhat larger blueshift (1.964 ± .006 μm versus 1.983 ± .006 μm for the ridged plains).The study area spans longitudes from 168° to 185°W, which includes Europa’s leading side-trailing side boundary. A well-defined spatial gradient of sulfuric acid hydrate abundance is found for both geologic units, with concentrations increasing in the direction of the trailing side apex. We associate this distribution with the exogenic effects of magnetospheric charged particle bombardment and associated chemical processing of surface materials (the radiolytic sulfur cycle). However, one family of low albedo plains exposures exhibits sulfuric acid hydrate abundances up to 33% lower than found for adjacent exposures, suggesting that these materials have undergone less processing, thus implying that these deposits may have been emplaced more recently.Modeling identifies high abundances (to 30%) of magnesium sulfate brines in the low albedo plains exposures. Our investigation marks the first spectroscopic identification of MgSO4 brine on Europa. We also find significantly higher abundances of sodium-bearing species (bloedite and mirabilite) in the low albedo plains. The results illuminate the role of radiolytic processes in modifying the surface composition of Europa, and may provide new constraints for models of the composition of Europa’s putative subsurface ocean.  相似文献   

4.
The origin and nature of the early atmosphere of Mars is still debated. The discovery of sulfate deposits on the surface, coupled with the evidence that there are not large abundances of carbonates detectable on Mars in the optically accessible part of the regolith, leaves open different paleoclimatic evolutionary pathways. Even if carbonates are responsible for the feature observed by TES and Mini-TES at 6.76 μm, alternative hypotheses suggest that it could be due to the presence of Hydrated Iron Sulfates (HIS). Carbonates can be discerned from HIS by investigating the spectral region in which a strong overtone carbonate band is present. The Planetary Fourier Spectrometer on board the Mars Express spacecraft has acquired several thousand martian spectra in the range 1.2-45 μm since January 2004, most of which show a weak absorption feature between 3.8 and 4 μm. A similar feature was observed previously from the Earth, but its origin could not be straightforwardly ascribed to surface materials, and specifically to carbonates. Here we show the surficial nature of this band that can be ascribed to carbonate mixed with the martian soil materials. The materials that best reproduce the detected feature are Mg-rich carbonates (huntite [CaMg3(CO3)4] and/or magnesite [MgCO3]). The presence of carbonates is demonstrated in both bright and dark martian regions. An evaluation of the likeliest abundance gives an upper limit of ∼10 wt%. The widespread distribution of carbonates supports scenarios that suggest carbonate formation occurred not by precipitation in a water-rich environment but by weathering processes.  相似文献   

5.
Volcanism has been a major process during most of the geologic history of Mars. Based on data collected from terrestrial basaltic eruptions, we assume that the volatile content of martian lavas was typically ∼0.5 wt.% water, ∼0.7 wt.% carbon dioxide, ∼0.14 wt.% sulfur dioxide, and contained several other important volatile constituents. From the geologic record of volcanism on Mars we find that during the late Noachian and through the Amazonian volcanic degassing contributed ∼0.8 bar to the martian atmosphere. Because most of the outgassing consisted of greenhouse gases (i.e., CO2 and SO2) warmer surface temperatures resulting from volcanic eruptions may have been possible. Our estimates suggest that ∼1.1 × 1021 g (∼8 ± 1 m m−2) of juvenile water were released by volcanism; slightly more than half the amount contained in the north polar cap and atmosphere. Estimates for released CO2 (1.6 × 1021 g) suggests that a large reservoir of carbon dioxide is adsorbed in the martian regolith or alternatively ∼300 cm cm−2 of carbonates may have formed, although these materials would not occur readily in the presence of excess SO2. Up to ∼120 cm cm−2 (2.2 × 1020 g) of acid rain (H2SO4) may have precipitated onto the martian surface as the result of SO2 degassing. The hydrogen flux resulting from volcanic outgassing may help explain the martian atmospheric D/H ratio. The amount of outgassed nitrogen (∼1.3 mbar) may also be capable of explaining the martian atmospheric 15N/14N ratio. Minor gas constituents (HF, HCl, and H2S) could have formed hydroxyl salts on the surface resulting in the physical weathering of geologic materials. The amount of hydrogen fluoride emitted (1.82 × 1018 g) could be capable of dissolving a global layer of quartz sand ∼5 mm thick, possibly explaining why this mineral has not been positively identified in spectral observations. The estimates of volcanic outgassing presented here will be useful in understanding how the martian atmosphere evolved over time.  相似文献   

6.
M. Parente  J.L. Bishop 《Icarus》2009,203(2):421-436
The objective of this work is to propose an automated unmixing technique for the analysis of 11-channel Mars Exploration Rover Panoramic Camera (MER/Pancam) spectra. Our approach is to provide a screening tool for identifying unique/distinct reflectance spectra. We demonstrate the utility of this unmixing technique in a study of the mineralogy of the bright salty soils exposed by the rover wheels in images of Gusev crater regions known as Paso Robles (Sols 400,426), Arad (Sol 721), and Tyrone (Sol 790). The unmixing algorithm is based on a novel derivation of the Nonnegative Matrix Factorization technique and includes added features that preclude the adverse effects of low abundance materials that would otherwise skew the unmixing. In order to create a full 11-channel spectrum out of the left and right eye stereo pairs, we also developed a new registration procedure that includes rectification and disparity calculation of the images. We identified two classes of endmember spectra for the bright soils imaged on Sols 426 and 790. One of these endmember classes is also observed for soils imaged on Sols 400 and 721 and has a unique spectral shape that is distinct from most iron oxide, sulfate and silicate spectra and differs from typical martian surface spectra. Instead, its unique spectral character resembles the spectral shape of the ferric sulfate minerals fibroferrite (Fe3+(SO4)(OH) · 5H2O) and ferricopiapite and the phosphate mineral ferristrunzite . The other endmember class is less consistent with specific minerals and is likely a mixture of altered volcanic material and some bright salts. Further analyses of data from Sols 400 and 790 using an anomaly detection algorithm as a tool for detecting low abundance materials additionally suggests the identification of the sulfate mineral paracoquimbite (Fe2(SO4)3 · 9H2O). This spectral study of Pancam images of the bright S- and P-enriched soils of Gusev crater identifies specific ferric sulfate and ferric phosphate minerals that are consistent with the unique spectral properties observed here in the 0.4-1 μm range.  相似文献   

7.
J.F. Bell III  T.M. Ansty 《Icarus》2007,191(2):581-602
We acquired high spectral and spatial resolution hyperspectral imaging spectrometer observations of Mars from near-UV to near-IR wavelengths (∼300 to 1020 nm) using the STIS instrument on the Hubble Space Telescope during the 1999, 2001, and 2003 oppositions. The data sets have been calibrated to radiance factor (I/F) and map-projected for comparison to each other and to other Mars remote sensing measurements. We searched for and (where detected) mapped a variety of iron-bearing mineral signatures within the data. The strong and smooth increase in I/F from the near-UV to the visible that gives Mars its distinctive reddish color indicates that poorly crystalline ferric oxides dominate the spectral properties of the high albedo regions (as well as many intermediate and low albedo regions), a result consistent with previous remote sensing studies of Mars at these wavelengths. In the near-IR, low albedo regions with a negative spectral slope and/or a distinctive ∼900 nm absorption feature are consistent with, but not unique indicators of, the presence of high-Ca pyroxene or possibly olivine. Mixed ferric-ferrous minerals could also be responsible for the ∼900 nm feature, especially in higher albedo regions with a stronger visible spectral slope. We searched for the presence of several known diagnostic absorption features from the hydrated ferric sulfate mineral jarosite, but did not find any unique evidence for its occurrence at the spatial scale of our observations. We identified a UV contrast reversal in some dark region spectra: at wavelengths shorter than about 340 nm these regions are actually brighter than classical bright regions. This contrast reversal may be indicative of extremely “clean” low albedo surfaces having very little ferric dust contamination. Ratios between the same regions observed during the planet-encircling dust storm of 2001 and during much clearer atmospheric conditions in 2003 provide a good direct estimate of the UV to visible spectral characteristics of airborne dust aerosols. These HST observations can help support the calibration of current and future Mars orbital UV to near-IR spectrometers, and they also provide a dramatic demonstration that even at the highest spatial resolution possible to achieve from the Earth, spectral variations on Mars at these wavelengths are subtle at best.  相似文献   

8.
Near-infrared spectral data indicate the presence of hydrated, poorly crystalline silica where high bulk silica contents have been previously identified in Hellas Basin. No other aqueous phases are identified in these regions and the deposits may be nearly pure. The silica-bearing surfaces are sporadically exposed along a 650 km stretch of the western basin rim within a limited elevation range and display a variety of surface textures suggesting that the materials have been reworked, but not transported large distances. The high abundances and lack of associated aqueous phases indicate that high water to rock ratios were present in the region during the Noachian period but without elevated temperatures or for durations necessary for quartz diagenesis. The silica-bearing materials may have formed via direct precipitation from silica saturated groundwater sources, although other formation mechanisms are also plausible.  相似文献   

9.
Rei Niimi  Toshihiko Kadono 《Icarus》2011,211(2):986-992
A large number of cometary dust particles were captured with low-density silica aerogels by NASA’s Stardust Mission. Knowledge of the details of the capture mechanism of hypervelocity particles in silica aerogel is needed in order to correctly derive the original particle features from impact tracks. However, the mechanism has not been fully understood yet. We shot hard spherical projectiles of several different materials into silica aerogel of density 60 mg cm−3 and observed their penetration processes using an image converter or a high-speed video camera. In order to observe the deceleration of projectiles clearly, we carried out impact experiments at two velocity ranges; ∼4 km s−1 and ∼200 m s−1. From the movies we took, it was indicated that the projectiles were decelerated by hydrodynamic force which was proportional to v2 (v: projectile velocity) during the faster penetration process (∼4 km s−1) and they were merely overcoming the aerogel crushing strength during the slower penetration process (∼200 m s−1). We applied these deceleration mechanisms for whole capture process to calculate the track length. Our model well explains the track length in the experimental data set by Burchell et al. (Burchell, M.J., Creighton, J.A., Cole, M.J., Mann, J., Kearsley, A.T. [2001]. Meteorit. Planet. Sci. 36, 209-221).  相似文献   

10.
We present near-infrared spectral measurements of Themis family Asteroid (379) Huenna (D ∼ 98 km) and its 6 km satellite using SpeX on the NASA IRTF. The companion was farther than 1.5″ from the primary at the time of observations and was approximately 5 magnitudes dimmer. We describe a method for separating and extracting the signal of a companion asteroid when the signal is not entirely resolved from the primary. The spectrum of (379) Huenna has a broad, shallow feature near 1 μm and a low slope, characteristic of C-type asteroids. The secondary’s spectrum is consistent with the taxonomic classification of C-complex or X-complex. The quality of the data was not sufficient to identify any subtle feature in the secondary’s spectrum.  相似文献   

11.
HiRISE images together with other recent orbital data from Mars define new characteristics of enigmatic Hesperian-aged deposits in Sirenum Fossae that are mostly 100-200 m thick, drape kilometers of relief, and often display generally low relief surfaces. New characteristics of the deposits, previously mapped as the “Electris deposits,” include local detection of meter-scale beds that show truncating relationships, a generally light-toned nature, and a variably blocky, weakly indurated appearance. Boulders shed by erosion of the deposits are readily broken down and contribute little to talus. Thermal inertia values for the deposits are ∼200 J m−2 K−1 s−1/2 and they may incorporate hydrated minerals derived from weathering of basalt. The deposits do not contain anomalous amounts of water or water ice. Deflation may dominate degradation of the deposits over time and points to an inventory of fine-grained sediment. Together with constraints imposed by the regional setting on formation processes, these newly resolved characteristics are most consistent with an eolian origin as a loess-like deposit comprised of redistributed and somewhat altered volcanic ash. Constituent sediments may be derived from airfall ash deposits in the Tharsis region. An origin directly related to airfall ash or similar volcanic materials is less probable and emplacement by alluvial/fluvial, impact, lacustrine, or relict polar processes is even less likely.  相似文献   

12.
《Astroparticle Physics》2012,35(6):346-353
The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron-plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in the Earth’s magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between ∼6 and ∼13 GeV with an estimated uncertainty of ∼2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.  相似文献   

13.
Mikhail Yu. Zolotov 《Icarus》2009,204(1):183-193
The dwarf planet Ceres has a density of 2040-2250 kg m−3, and a dark non-icy surface with signs of hydrated minerals. As opposed to a differentiated internal structure with a nonporous rocky core and a water mantle, there are arguments for undifferentiated porous interior structure. Ceres’ mass and dimensions are uncertain and do not exclude undifferentiated interior even if hydrostatic equilibrium is attained. The rocky surface may be inconsistent with a large-scale water-rock differentiation. A differentiated structure with a thick water mantle below a rocky crust is gravitationally unstable and an overturn would have led to abundant surface salt deposits, which are not observed. A formation of hydrated surface minerals caused by internal heating implies a major density increase through devolatilization of the interior. A later accumulation of hydrated materials is inconsistent with anhydrous surfaces of many asteroids and with a low rate of the cosmic dust deposition in the inner Solar System. Ceres’ internal pressures (<140-200 MPa) are insufficient to significantly reduce porosity of chondritic materials and there is no need for abundant water phases to be present to account for the bulk density. Having the porosity of ordinary chondrites (∼10%), Ceres can consist of rocks with the grain density of pervasively hydrated CI carbonaceous chondrites. However, additional low-density phases (e.g., water ice) require to be present in the body with the grain density of CM chondrites. The likely low-density mineralogy of the interior implies Ceres’ accretion from pervasively aqueously altered carbonaceous planetesimals depleted in short-lived radionuclide 26Al. Abundant water ice may not have accreted. Limited heat sources after accretion may not have caused major mineral dehydration leading to formation of water mantle. These inferences can be tested with the Dawn spacecraft in 2015.  相似文献   

14.
Analysis of visible to near infrared reflectance data from the MRO CRISM hyperspectral imager has revealed the presence of an ovoid-shaped landform, approximately 3 by 5 km in size, within the layered terrains surrounding the Mawrth Vallis outflow channel. This feature has spectral absorption features consistent with the presence of the ferric sulfate mineral jarosite, specifically a K-bearing jarosite (KFe3(SO4)2(OH)6). Terrestrial jarosite is formed through the oxidation of iron sulfides in acidic environments or from basaltic precursor minerals with the addition of sulfur. Previously identified phyllosilicates in the Mawrth Vallis layered terrains include a basal sequence of layers containing Fe-Mg smectites and an upper set of layers of hydrated silica and aluminous phyllosilicates. In terms of its fine scale morphology revealed by MRO HiRISE imagery, the jarosite-bearing unit has fracture patterns very similar to that observed in Fe-Mg smectite-bearing layers, but unlike that observed in the Al-bearing phyllosilicate unit. The ovoid-shaped landform is situated in an east-west bowl-shaped depression superposed on a north sloping surface. Spectra of the ovoid-shaped jarosite-bearing landform also display an anomalously high 600 nm shoulder, which may be consistent with the presence of goethite and a 1.92 μm absorption which could indicate the presence of ferrihydrite. Goethite, jarosite, and ferrihydrite can be co-precipitated and/or form through transformation of schwertmannite, both processes generally occurring under low pH conditions (pH 2-4). To date, this location appears to be unique in the Mawrth Vallis region and could represent precipitation of jarosite in acidic, sulfur-rich ponded water during the waning stages of drying.  相似文献   

15.
An extensive layered formation covers the high plateaus around Valles Marineris. Mapping based on HiRISE, CTX and HRSC images reveals these layered deposits (LDs) crop out north of Tithonium Chasma, south of Ius Chasma, around West Candor Chasma, and southwest of Juventae Chasma and Ganges Chasma. The estimated area covered by LDs is ∼42,300 km2. They consist of a series of alternating light and dark beds, a 100 m in total thickness that is covered by a dark unconsolidated mantle possibly resulting from their erosion. Their stratigraphic relationships with the plateaus and the Valles Marineris chasmata indicate that the LDs were deposited during the Early- to Late Hesperian, and possibly later depending on the region, before the end of the backwasting of the walls near Juventae Chasma, and probably before Louros Valles sapping near Ius Chasma. Their large spatial coverage and their location mainly on highly elevated plateaus lead us to conclude that LDs correspond to airfall dust and/or volcanic ash. The surface of LDs is characterized by various morphological features, including lobate ejecta and pedestal craters, polygonal fractures, valleys and sinuous ridges, and a pitted surface, which are all consistent with liquid water and/or water ice filling the pores of LDs. LDs were episodically eroded by fluvial processes and were possibly modified by sublimation processes. Considering that LDs correspond to dust and/or ash possibly mixed with ice particles in the past, LDs may be compared to Dissected Mantle Terrains currently observed in mid- to high latitudes on Mars, which correspond to a mantle of mixed dust and ice that is partially or totally dissected by sublimation. The analysis of CRISM and OMEGA hyperspectral data indicates that the basal layer of LDs near Ganges Chasma exhibits spectra with absorption bands at ∼1.4 μm, and ∼1.9 μm and a large deep band between ∼2.21 and ∼2.26 μm that are consistent with previous spectral analysis in other regions of LDs. We interpret these spectral characteristics as an enrichment of LDs in opaline silica or by Al-phyllosilicate-rich layers being overlain by hydroxylated ferric sulfate-rich layers. These alteration minerals are consistent with the aqueous alteration of LDs at low temperatures.  相似文献   

16.
Recently, an unidentified 3.3-3.4 μm feature found in the solar occultation spectra of the atmosphere of Titan observed by Cassini/VIMS was tentatively attributed to the C-H stretching mode of aliphatic hydrocarbon chains attached to large organic molecules, but without properly extracting the feature from adjacent influences of strong CH4 and weak C2H6 absorptions (Bellucci et al., 2009). In this work, we retrieve the detailed spectral feature using a radiative transfer program including absorption and fluorescent emission of both molecules, as well as absorption and scattering by haze particles. The spectral features of the haze retrieved from the VIMS data at various altitudes are similar to each other, indicating relatively uniform spectral properties of the haze with altitude. However, slight deviations observed near 127 km and above 300 km suggest inhomogeneity at these altitudes. We find that the positions of the major spectral peaks occur at 3.33-3.37 μm, which are somewhat different from the typical 3.3 μm aromatic or 3.4 μm aliphatic C-H stretches usually seen in the spectra of dust particles of the interstellar medium and comets. The peaks, however, coincide with those of the solid state spectra of C2H6, CH4, and CH3CN; and a broad shoulder from 3.37 to 3.50 μm coincides with those of C5H12 and C6H12 as well as those of typical aliphatic C-H stretches. This result combined with high-altitude (∼1000 km) haze formation process recently reported by Waite et al. (2007) opens a new question on the chemical composition of the haze particles. We discuss the possibility that the 3 μm feature may be due to the solid state absorption bands of these molecules (or some other molecules) and we advocate additional laboratory measurements for the ices of hydrocarbon and nitrogen-bearing molecules present in Titan's atmosphere for the identification of this 3 μm feature.  相似文献   

17.
Steven W. Ruff 《Icarus》2004,168(1):131-143
Spectral features observed in Mars Global Surveyor Thermal Emission Spectrometer data (∼1670-220 cm−1) of martian surface dust provide clues to its mineralogy. An emissivity peak at ∼1630 cm−1 is consistent with the presence of an H2O-bearing mineral. This spectral feature can be mapped globally and shows a distribution related to the classical bright regions on Mars that are known to be dust covered. An important spectral feature at ∼830 cm−1 present in a newly derived average spectrum of surface dust likely is a transparency feature arising from the fine particulate nature of the dust. Its shape and location are consistent with plagioclase feldspars and also zeolites, which essentially are the hydrous form of feldspar. The generally favored visible/near-infrared spectral analog for martian dust, JSC Mars-1 altered tephra, does not display the ∼830 cm−1 feature. Zeolites commonly form from the interaction of low temperature aqueous fluids and volcanic glass in a variety of geologic settings. The combination of spectral features that are consistent with zeolites and the likelihood that Mars has (or had) geologic conditions necessary to produce them makes a strong case for recognizing zeolite minerals as likely components of the martian regolith.  相似文献   

18.
More than half of the C-type asteroids, the dominant type of asteroid in the outer half of the main-belt, show evidence of hydration in their reflectance spectra. In order to understand the collisional evolution of asteroids and the production of interplanetary dust and to model the infrared signature of small particles in the Solar System it is important to characterize the dust production from primary impact disruption events, and compare the disruption of hydrous and anhydrous targets. We performed a hypervelocity impact disruption experiment on an ∼30 g target of the Murchison CM2 hydrated carbonaceous chondrite meteorite, and compared the results with our previous disruption experiments on anhydrous meteorites including Allende, a CV3 carbonaceous chondrite, and nine ordinary chondrites. Murchison is significantly more friable than the ordinary chondrites or Allende. Nonetheless, on a plot of mass of the largest fragment versus specific impact energy, the Murchison disruption plots within the field of the anhydrous meteorites points, suggesting that Murchison is at least as resistant to impact disruption as the anhydrous meteorites, which require about twice the energy for disruption as terrestrial anhydrous basalt targets. We determined the mass-frequency distribution of the debris from the Murchison disruption over a nine order-of-magnitude mass range, from ∼10−9 g to the mass of the largest fragment produced in the disruption. The cumulative mass-frequency distribution from the Murchison disruption is fit by three power-law segments. For masses >10−2 g the slope is only slightly steeper than that of the corresponding segment from the disruption of most anhydrous meteorites. Over the range from ∼10−6 to 10−2 g the slope is significantly steeper than that for the anhydrous meteorites. For masses <10−6 g the slopes of both the Murchison and the anhydrous meteorites are almost flat. Thus the Murchison disruption significantly over-produced small fragments (10−6-10−3 g) compared to anhydrous meteorite targets. If the Murchison results are representative of hydrous asteroids, the hydrous asteroids may dominate over anhydrous asteroids in the production of interplanetary dust >100 μm in size, the size of micrometeorites recovered from the polar ices, while both types of asteroids might produce comparable amounts of ∼10 μm interplanetary dust. This would explain the puzzle that polar micrometeorites (>100 μm in size) are similar to hydrous meteorites, while the majority of the ∼10 μm interplanetary dust particles are anhydrous.  相似文献   

19.
Many recent studies have implicated hydrothermal systems as the origin of martian minerals across a wide range of martian sites. Particular support for hydrothermal systems include silica (SiO2) deposits, in some cases >90% silica, in the Gusev Crater region, especially in the Columbia Hills and at Home Plate. We have developed a model called CHEMCHAU that can be used up to 100 °C to simulate hot springs associated with hydrothermal systems. The model was partially derived from FREZCHEM, which is a colder temperature model parameterized for broad ranges of temperature (<−70 to 25 °C), pressure (1-1000 bars), and chemical composition. We demonstrate the validity of Pitzer parameters, volumetric parameters, and equilibrium constants in the CHEMCHAU model for the Na-K-Mg-Ca-H-Cl-ClO4-SO4-OH-HCO3-CO3-CO2-O2-CH4-Si-H2O system up to 100 °C and apply the model to hot springs and silica deposits.A theoretical simulation of silica and calcite equilibrium shows how calcite is least soluble with high pH and high temperatures, while silica behaves oppositely. Such influences imply that differences in temperature and pH on Mars could lead to very distinct mineral assemblages. Using measured solution chemistries of Yellowstone hot springs and Icelandic hot springs, we simulate salts formed during the evaporation of two low pH cases (high and low temperatures) and a high temperature, alkaline (high pH) sodic water. Simulation of an acid-sulfate case leads to precipitation of Fe and Al minerals along with silica. Consistency with martian mineral assemblages suggests that hot, acidic sulfate solutions are plausibility progenitors of minerals in the past on Mars. In the alkaline pH (8.45) simulation, formation of silica at high temperatures (355 K) led to precipitation of anhydrous minerals (CaSO4, Na2SO4) that was also the case for the high temperature (353 K) low pH case where anhydrous minerals (NaCl, CaSO4) also precipitated. Thus we predict that secondary minerals associated with massive silica deposits are plausible indicators on Mars of precipitation environments and aqueous chemistry. Theoretical model calculations are in reasonable agreement with independent experimental silica concentrations, which strengthens the validity of the new CHEMCHAU model.  相似文献   

20.
Based on the vapor pressure behavior of Pluto’s surface ices, Pluto’s atmosphere is expected to be predominantly composed of N2 gas. Measurement of the N2 isotopologue 15N/14N ratio within Pluto’s atmosphere would provide important clues to the evolution of Pluto’s atmosphere from the time of formation to its present state. The most straightforward way of determining the N2 isotopologue 15N/14N ratio in Pluto’s atmosphere is via spectroscopic observation of the 14N15N gas species. Recent calculations of the 80–100 nm absorption behavior of the 14N2 and 14N15N isotopologues by Heays et al. (Heays, A.N. et al. [2011]. J. Chem. Phys. 135, 244301), Lewis et al. (Lewis, B.R., Heays, A.N., Gibson, S.T., Lefebvre-Brion, H., Lefebvre, R. [2008]. J. Chem. Phys. 129, 164306); Lewis et al. (Lewis, B.R., Gibson, S.T., Zhang, W., Lefebvre-Brion, H., Robbe, J.-M. [2005]. J. Chem. Phys. 122, 144302), and Haverd et al. (Haverd, V.E., Lewis, B.R., Gibson, S.T., Stark, G. [2005]. J. Chem. Phys. 123, 214304) show that the peak magnitudes of the 14N2 and 14N15N absorption bandhead cross-sections are similar, but the locations of the bandhead peaks are offset in wavelength by ∼0.05–0.1 nm. These offsets make the segregation of the 14N2 and 14N15N absorption signatures possible. We use the most recent N2 isotopologue absorption cross-section calculations and the atmospheric density profiles resulting from photochemical models developed by Krasnopolsky and Cruickshank (Krasnopolsky, V.A., Cruickshank, D.P. [1999]. J. Geophys. Res. 104, 21979–21996) to predict the level of solar light that will be transmitted through Pluto’s atmosphere as a function of altitude during a Pluto solar occultation. We characterize the detectability of the isotopic absorption signature per altitude assuming 14N15N concentrations ranging from 0.1% to 2% of the 14N2 density and instrumental spectral resolutions ranging from 0.01 to 0.3 nm. Our simulations indicate that optical depth of unity is attained in the key 14N15N absorption bands located between 85 and 90 nm at altitudes ∼1100–1600 km above Pluto’s surface. Additionally, an 14N15N isotope absorption depth ∼4–15% is predicted for observations obtained at these altitudes at a spectral resolution of ∼0.2–0.3 nm, if the N2 isotopologue 15N/14N percent ratio is comparable to the 0.37–0.6% ratio observed at Earth, Titan and Mars. If we presume that the predicted absorption depth must be at least 25% greater than the expected observational uncertainty, then it follows that a statistically significant detection of these signatures and constraint of the N2 isotopologue 14N/15N ratio within Pluto’s atmosphere will be possible if the attainable observational signal-to noise (S/N) ratio is ?9. The New Horizons (NH) Mission will be able to obtain high S/N, 0.27–0.35 nm full-width half-max 80–100 nm spectral observations of Pluto using the Alice spectrograph. Based on the NH/Alice specifications we have simulated 0.3 nm spectral resolution solar occultation spectra for the 1100–1600 km altitude range, assuming 30 s integration times. These simulations indicate that NH/Alice will obtain spectral observations within this altitude range with a S/N ratio ∼25–50, and should be able to reliably detect the 14N15N gas absorption signature between 85 and 90 nm if the 14N15N concentration is ∼0.3% or greater. This, additionally, implies that the non-detection of the 14N15N species in the 1100–1600 km range by NH/Alice may be used to reliably establish an upper limit to the N2 isotopologue 15N/14N ratio within Pluto’s atmosphere. Similar results may be derived from 0.2 to 0.3 nm spectral resolution observations of any other N2-rich Solar System or exoplanet atmosphere, provided the observations are attained with similar S/N levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号