首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large expanses of linear dunes cover Titan’s equatorial regions. As the Cassini mission continues, more dune fields are becoming unveiled and examined by the microwave radar in all its modes of operation (SAR, radiometry, scatterometry, altimetry) and with an increasing variety of observational geometries. In this paper, we report on Cassini’s radar instrument observations of the dune fields mapped through May 2009 and present our key findings in terms of Titan’s geology and climate. We estimate that dune fields cover ∼12.5% of Titan’s surface, which corresponds to an area of ∼10 million km2, roughly the area of the United States. If dune sand-sized particles are mainly composed of solid organics as suggested by VIMS observations (Cassini Visual and Infrared Mapping Spectrometer) and atmospheric modeling and supported by radiometry data, dune fields are the largest known organic reservoir on Titan. Dune regions are, with the exception of the polar lakes and seas, the least reflective and most emissive features on this moon. Interestingly, we also find a latitudinal dependence in the dune field microwave properties: up to a latitude of ∼11°, dune fields tend to become less emissive and brighter as one moves northward. Above ∼11° this trend is reversed. The microwave signatures of the dune regions are thought to be primarily controlled by the interdune proportion (relative to that of the dune), roughness and degree of sand cover. In agreement with radiometry and scatterometry observations, SAR images suggest that the fraction of interdunes increases northward up to a latitude of ∼14°. In general, scattering from the subsurface (volume scattering and surface scattering from buried interfaces) makes interdunal regions brighter than the dunes. The observed latitudinal trend may therefore also be partially caused by a gradual thinning of the interdunal sand cover or surrounding sand sheets to the north, thus allowing wave penetration in the underlying substrate. Altimetry measurements over dunes have highlighted a region located in the Fensal dune field (∼5° latitude) where the icy bedrock of Titan is likely exposed within smooth interdune areas. The hemispherical assymetry of dune field properties may point to a general reduction in the availability of sediments and/or an increase in the ground humidity toward the north, which could be related to Titan’s asymmetric seasonal polar insolation. Alternatively, it may indicate that either the wind pattern or the topography is less favorable for dune formation in Titan’s northern tropics.  相似文献   

2.
E.P. Turtle  J.E. Perry  A.S. McEwen 《Icarus》2011,212(2):957-959
Recent observations by Cassini’s Imaging Science Subsystem reveal that part of the shoreline of Titan’s Ontario Lacus has retreated by several kilometers and may indicate that the dark area that appeared at Arrakis Planitia (80°S, 120°W) in late 2004 has subsequently faded. These changes provide constraints on aspects of Titan’s methane cycle, as well as on the properties of Titan’s surface materials.  相似文献   

3.
Since Saturn orbital insertion in July 2004, the Cassini orbiter has been observing Titan throughout most of the northern winter season (October 2002–August 2009) and the beginning of spring, allowing a detailed monitoring of Titan’s cloud coverage at high spatial resolution with close flybys on a monthly basis. This study reports on the analysis of all the near-infrared images of Titan’s clouds acquired by the Visual and Infrared Mapping Spectrometer (VIMS) during 67 targeted flybys of Titan between July 2004 and April 2010.The VIMS observations show numerous sporadic clouds at southern high and mid-latitudes, rare clouds in the equatorial region, and reveal a long-lived cloud cap above the north pole, ubiquitous poleward of 60°N. These observations allow us to follow the evolution of the cloud coverage during almost a 6-year period including the equinox, and greatly help to further constrain global circulation models (GCMs). After 4 years of regular outbursts observed by Cassini between 2004 and 2008, southern polar cloud activity started declining, and completely ceased 1 year before spring equinox. The extensive cloud system over the north pole, stable between 2004 and 2008, progressively fractionated and vanished as Titan entered into northern spring. At southern mid-latitudes, clouds were continuously observed throughout the VIMS observing period, even after equinox, in a latitude band between 30°S and 60°S. During the whole period of observation, only a dozen clouds were observed closer to the equator, though they were slightly more frequent as equinox approached.We also investigated the distribution of clouds with longitude. We found that southern polar clouds, before disappearing in mid-2008, were systematically concentrated in the leading hemisphere of Titan, in particular above and to the east of Ontario Lacus, the largest reservoir of hydrocarbons in the area. Clouds are also non-homogeneously distributed with longitude at southern mid-latitudes. The n = 2-mode wave pattern of the distribution, observed since 2003 by Earth-based telescopes and confirmed by our Cassini observations, may be attributed to Saturn’s tides.Although the latitudinal distribution of clouds is now relatively well reproduced and understood by the GCMs, the non-homogeneous longitudinal distributions and the evolution of the cloud coverage with seasons still need investigation. If the observation of a few single clouds at the tropics and at northern mid-latitudes late in winter and at the start of spring cannot be further interpreted for the moment, the obvious shutdown of the cloud activity at Titan’s poles provides clear signs of the onset of the general circulation turnover that is expected to accompany the beginning of Titan’s northern spring. According to our GCM, the persistence of clouds at certain latitudes rather suggests a ‘sudden’ shift in near future of the meteorology into the more illuminated hemisphere. Finally, the observed seasonal change in cloud activity occurred with a significant time lag that is not predicted by our model. This may be due to an overall methane humidity at Titan’s surface higher than previously expected.  相似文献   

4.
We analyze observations taken with Cassini’s Visual and Infrared Mapping Spectrometer (VIMS), to determine the current methane and haze latitudinal distribution between 60°S and 40°N. The methane variation was measured primarily from its absorption band at 0.61 μm, which is optically thin enough to be sensitive to the methane abundance at 20-50 km altitude. Haze characteristics were determined from Titan’s 0.4-1.6 μm spectra, which sample Titan’s atmosphere from the surface to 200 km altitude. Radiative transfer models based on the haze properties and methane absorption profiles at the Huygens site reproduced the observed VIMS spectra and allowed us to retrieve latitude variations in the methane abundance and haze. We find the haze variations can be reproduced by varying only the density and single scattering albedo above 80 km altitude. There is an ambiguity between methane abundance and haze optical depth, because higher haze optical depth causes shallower methane bands; thus a family of solutions is allowed by the data. We find that haze variations alone, with a constant methane abundance, can reproduce the spatial variation in the methane bands if the haze density increases by 60% between 20°S and 10°S (roughly the sub-solar latitude) and single scattering absorption increases by 20% between 60°S and 40°N. On the other hand, a higher abundance of methane between 20 and 50 km in the summer hemisphere, as much as two times that of the winter hemisphere, is also possible, if the haze variations are minimized. The range of possible methane variations between 27°S and 19°N is consistent with condensation as a result of temperature variations of 0-1.5 K at 20-30 km. Our analysis indicates that the latitudinal variations in Titan’s visible to near-IR albedo, the north/south asymmetry (NSA), result primarily from variations in the thickness of the darker haze layer, detected by Huygens DISR, above 80 km altitude. If we assume little to no latitudinal methane variations we can reproduce the NSA wavelength signatures with the derived haze characteristics. We calculate the solar heating rate as a function of latitude and derive variations of ∼10-15% near the sub-solar latitude resulting from the NSA. Most of the latitudinal variations in the heating rate stem from changes in solar zenith angle rather than compositional variations.  相似文献   

5.
Some 20% of Titan’s surface is covered in large linear dunes that resemble in morphology, size and spacing (1-3 km) those seen on Earth. Although gravity, atmospheric density and sand composition are very different on these two worlds, this coincident size scale suggests that the controlling parameter limiting the growth of giant dunes, namely the boundary layer thickness (Andreotti et al., 2009). Nature, 457, 1120-1123], is similar. We show that a ∼3 km boundary layer thickness is supported by Huygens descent data and is consistent with results from Global Circulation Models taking the distinctive thermal inertia and albedo of the dune sands into account. While the boundary layer thickness on Earth controlling dunes can vary by an order of magnitude depending on the proximity of oceans, which have very different thermal properties from dry land, the relative invariance of dune spacing on Titan is consistent with relatively uniform thermal properties near the dunes and no prominent variation with latitude is seen.  相似文献   

6.
We present results from the two radio occultations of the Cassini spacecraft by Titan in 2006, which probed mid-southern latitudes. Three of the ingress and egress soundings occurred within a narrow latitude range, 31-34°S near the surface, and the fourth at 52.8°S. Temperature-altitude profiles for all four occultation soundings are presented, and compared with the results of the Voyager 1 radio occultation (Lindal, G.F., Wood, G.E., Hotz, H.B., Sweetnam, D.N., Eshleman, V.R., Tyler, G.L. [1983]. Icarus 53, 348-363), the HASI instrument on the Huygens descent probe (Fulchignoni, M. et al. [2005]. Nature 438, 785-791), and Cassini CIRS results (Flasar, F.M. et al. [2005]. Science 308, 975-978; Achterberg, R.K., Conrath, B.J., Gierasch, P.J., Flasar, F.M., Nixon, C.A. [2008b]. Icarus 194, 263-277). Sources of error in the retrieved temperature-altitude profiles are also discussed, and a major contribution is from spacecraft velocity errors in the reconstructed ephemeris. These can be reduced by using CIRS data at 300 km to make along-track adjustments of the spacecraft timing. The occultation soundings indicate that the temperatures just above the surface at 31-34°S are about 93 K, while that at 53°S is about 1 K colder. At the tropopause, the temperatures at the lower latitudes are all about 70 K, while the 53°S profile is again 1 K colder. The temperature lapse rate in the lowest 2 km for the two ingress (dawn) profiles at 31 and 33°S lie along a dry adiabat except within ∼200 m of the surface, where a small stable inversion occurs. This could be explained by turbulent mixing with low viscosity near the surface. The egress profile near 34°S shows a more complex structure in the lowest 2 km, while the egress profile at 53°S is more stable.  相似文献   

7.
Cassini radar images show a variety of fluvial channels on Titan's surface, often several hundreds of kilometers in length. Some (predominantly at low- and mid-latitude) are radar-bright and braided, resembling desert washes where fines have been removed by energetic surface liquid flow, presumably from methane rainstorms. Others (predominantly at high latitudes) are radar-dark and meandering and drain into or connect polar lakes, suggesting slower-moving flow depositing fine-grained sediments. A third type, seen predominantly at mid- and high latitudes, have radar brightness patterns indicating topographic incision, with valley widths of up to 3 km across and depth of several hundred meters. These observations show that fluvial activity occurs at least occasionally at all latitudes, not only at the Huygens landing site, and can produce channels much larger in scale than those observed there. The areas in which channels are prominent so far amount to about 1% of Titan's surface, of which only a fraction is actually occupied by channels. The corresponding global sediment volume inferred is not enough to account for the extensive sand seas. Channels observed so far have a consistent large-scale flow pattern, tending to flow polewards and eastwards.  相似文献   

8.
Priyanka Sharma  Shane Byrne 《Icarus》2010,209(2):723-737
Titan’s north polar hydrocarbon lakes offer a unique opportunity to indirectly characterize the statistical properties of Titan’s landscape. The complexity of a shoreline can be related to the complexity of the landscape it is embedded in through fractal theory. We mapped the shorelines of 290 of the north polar titanian lakes in the Cassini synthetic aperture radar dataset. Out of these, we used a subset of 190 lake shorelines for our analysis. The fractal dimensions of the shorelines were calculated via two methods: the divider/ruler method and the box-counting method, at length scales of (1-10) km and found to average 1.27 and 1.32, respectively. The inferred power-spectral exponent of Titan’s topography (β) from theoretical and empirical relations is found to be ?2, which is lower than the values obtained from the global topography of the Earth or Venus. Some of the shorelines exhibit multi-fractal behavior (different fractal dimensions at different scales), which we interpret to signify a transition from one set of dominant surface processes to another. We did not observe any spatial variation in the fractal dimension with latitude; however we do report significant spatial variation of the fractal dimension with longitude. A systematic difference between the dimensions of orthogonal sections of lake shorelines is also noted, which signifies possible anisotropy in Titan’s topography. The topographic information thus gleaned can be used to constrain landscape evolution modeling to infer the dominant surface processes that sculpt the landscape of Titan.  相似文献   

9.
Observations of Titan obtained by the Cassini Visual and Infrared Mapping Spectrometer (VIMS) have revealed Selk crater, a geologically young, bright-rimmed, impact crater located ∼800 km north-northwest of the Huygens landing site. The crater rim-crest diameter is ∼90 km; its floor diameter is ∼60 km. A central pit/peak, 20-30 km in diameter, is seen; the ratio of the size of this feature to the crater diameter is consistent with similarly sized craters on Ganymede and Callisto, all of which are dome craters. The VIMS data, unfortunately, are not of sufficient resolution to detect such a dome. The inner rim of Selk crater is fluted, probably by eolian erosion, while the outer flank and presumed ejecta blanket appear dissected by drainages (particularly to the east), likely the result of fluvial erosion. Terracing is observed on the northern and western walls of Selk crater within a 10-15 km wide terrace zone identified in VIMS data; the terrace zone is bright in SAR data, consistent with it being a rough surface. The terrace zone is slightly wider than those observed on Ganymede and Callisto and may reflect differences in thermal structure and/or composition of the lithosphere. The polygonal appearance of the crater likely results from two preexisting planes of weakness (oriented at azimuths of 21° and 122° east of north). A unit of generally bright terrain that exhibits similar infrared-color variation and contrast to Selk crater extends east-southeast from the crater several hundred kilometers. We informally refer to this terrain as the Selk “bench.” Both Selk and the bench are surrounded by the infrared-dark Belet dune field. Hypotheses for the genesis of the optically bright terrain of the bench include: wind shadowing in the lee of Selk crater preventing the encroachment of dunes, impact-induced cryovolcanism, flow of a fluidized-ejecta blanket (similar to the bright crater outflows observed on Venus), and erosion of a streamlined upland formed in the lee of Selk crater by fluid flow. Vestigial circular outlines in this feature just east of Selk’s ejecta blanket suggest that this might be a remnant of an ancient, cratered crust. Evidently the southern margin of the feature has sufficient relief to prevent the encroachment of dunes from the Belet dune field. We conclude that this feature either represents a relatively high-viscosity, fluidized-ejecta flow (a class intermediate to ejecta blankets and long venusian-style ejecta flows) or a streamlined upland remnant that formed downstream from the crater by erosive fluid flow from the west-northwest.  相似文献   

10.
Joint Cassini VIMS and RADAR SAR data of ∼700-km-wide Hotei Regio reveal a rich collection of geological features that correlate between the two sets of images. The degree of correlation is greater than anywhere else seen on Titan. Central to Hotei Regio is a basin filled with cryovolcanic flows that are anomalously bright in VIMS data (in particular at 5 μm) and quite variable in roughness in SAR. The edges of the flows are dark in SAR data and appear to overrun a VIMS-bright substrate. SAR-stereo topography shows the flows to be viscous, 100-200 m thick. On its southern edge the basin is ringed by higher (∼1 km) mountainous terrain. The mountains show mixed texture in SAR data: some regions are extremely rough, exhibit low and spectrally neutral albedo in VIMS data and may be partly coated with darker hydrocarbons. Around the southern margin of Hotei Regio, the SAR image shows several large, dendritic, radar-bright channels that flow down from the mountainous terrain and terminate in dark blue patches, seen in VIMS images, whose infrared color is consistent with enrichment in water ice. The patches are in depressions that we interpret to be filled with fluvial deposits eroded and transported by liquid methane in the channels. In the VIMS images the dark blue patches are encased in a latticework of lighter bands that we suggest to demark a set of circumferential and radial fault systems bounding structural depressions. Conceivably the circular features are tectonic structures that are remnant from an ancient impact structure. We suggest that impact-generated structures may have simply served as zones of weakness; no direct causal connection, such as impact-induced volcanism, is implied. We also speculate that two large dark features lying on the northern margin of Hotei Regio could be calderas. In summary the preservation of such a broad suite of VIMS infrared color variations and the detailed correlation with features in the SAR image and SAR topography evidence a complex set of geological processes (pluvial, fluvial, tectonic, cryovolcanic, impact) that have likely remained active up to very recent geological time (<104 year). That the cryovolcanic flows are excessively bright in the infrared, particularly at 5 μm, might signal ongoing geological activity. One study [Nelson, R.M., and 28 colleagues, 2009. Icarus 199, 429-441] reported significant 2-μm albedo changes in VIMS data for Hotei Arcus acquired between 2004 and 2006, that were interpreted as evidence for such activity. However in our review of that work, we do not agree that such evidence has yet been found.  相似文献   

11.
Cassini RADAR images of Titan’s south polar region acquired during southern summer contain lake features which disappear between observations. These features show a tenfold increases in backscatter cross-section between images acquired one year apart, which is inconsistent with common scattering models without invoking temporal variability. The morphologic boundaries are transient, further supporting changes in lake level. These observations are consistent with the exposure of diffusely scattering lakebeds that were previously hidden by an attenuating liquid medium. We use a two-layer model to explain backscatter variations and estimate a drop in liquid depth of approximately 1-m-per-year. On larger scales, we observe shoreline recession between ISS and RADAR images of Ontario Lacus, the largest lake in Titan’s south polar region. The recession, occurring between June 2005 and July 2009, is inversely proportional to slopes estimated from altimetric profiles and the exponential decay of near-shore backscatter, consistent with a uniform reduction of 4 ± 1.3 m in lake depth.Of the potential explanations for observed surface changes, we favor evaporation and infiltration. The disappearance of dark features and the recession of Ontario’s shoreline represents volatile transport in an active methane-based hydrologic cycle. Observed loss rates are compared and shown to be consistent with available global circulation models. To date, no unambiguous changes in lake level have been observed between repeat images in the north polar region, although further investigation is warranted. These observations constrain volatile flux rates in Titan’s hydrologic system and demonstrate that the surface plays an active role in its evolution. Constraining these seasonal changes represents the first step toward our understanding of longer climate cycles that may determine liquid distribution on Titan over orbital time periods.  相似文献   

12.
We describe for the first time the generation and measurement of capillary waves in a water surface in a wind tunnel running with air at pressures of 15-1000 mbar. These experiments suggest a stronger dependence of wave generation on atmospheric density than the simple proportionality that might be expected from energy transfer arguments. Additionally, airflow over a nonaqueous fluid (kerosene) was found to produce waves of higher amplitude than for water under the same conditions. These preliminary results may indicate different efficiencies of wave generation on other planets, for which empirical terrestrial relations therefore do not apply, and thus may have a bearing on the lack of strong shoreline features on Mars and the possibility of specular glints from hydrocarbon lakes on Titan.  相似文献   

13.
The Cassini Titan Radar Mapper is providing an unprecedented view of Titan’s surface geology. Here we use Synthetic Aperture Radar (SAR) image swaths (Ta-T30) obtained from October 2004 to December 2007 to infer the geologic processes that have shaped Titan’s surface. These SAR swaths cover about 20% of the surface, at a spatial resolution ranging from ∼350 m to ∼2 km. The SAR data are distributed over a wide latitudinal and longitudinal range, enabling some conclusions to be drawn about the global distribution of processes. They reveal a geologically complex surface that has been modified by all the major geologic processes seen on Earth - volcanism, tectonism, impact cratering, and erosion and deposition by fluvial and aeolian activity. In this paper, we map geomorphological units from SAR data and analyze their areal distribution and relative ages of modification in order to infer the geologic evolution of Titan’s surface. We find that dunes and hummocky and mountainous terrains are more widespread than lakes, putative cryovolcanic features, mottled plains, and craters and crateriform structures that may be due to impact. Undifferentiated plains are the largest areal unit; their origin is uncertain. In terms of latitudinal distribution, dunes and hummocky and mountainous terrains are located mostly at low latitudes (less than 30°), with no dunes being present above 60°. Channels formed by fluvial activity are present at all latitudes, but lakes are at high latitudes only. Crateriform structures that may have been formed by impact appear to be uniformly distributed with latitude, but the well-preserved impact craters are all located at low latitudes, possibly indicating that more resurfacing has occurred at higher latitudes. Cryovolcanic features are not ubiquitous, and are mostly located between 30° and 60° north. We examine temporal relationships between units wherever possible, and conclude that aeolian and fluvial/pluvial/lacustrine processes are the most recent, while tectonic processes that led to the formation of mountains and Xanadu are likely the most ancient.  相似文献   

14.
Analysis of Titan’s hemispheric brightness asymmetry from mapped Cassini images reveals an axis of symmetry that is tilted with respect to the rotational axis of the solid body. Twenty images taken from 2004 through 2007 show a mean axial offset of 3.8 ± 0.9° relative to the solid body’s pole, directed 79 ± 24° to the west of the sub-solar longitude. These values are consistent with recent measurements of an implied atmospheric spin axis determined from isothermal mapping by [Achterberg, R.K., Conrath, B.J., Gierasch, P.J., Flasar, F.M., Nixon, C.A., 2008. Icarus 197, 549-555].  相似文献   

15.
Tetsuya Tokano 《Icarus》2009,204(2):619-636
The detection of large hydrocarbon seas/lakes near the poles by the Cassini spacecraft raises the question as to whether and how polar seas affect the meteorology on Titan. The polar meteorology and methane hydrological cycle in the presence of seas are investigated by a three-dimensional atmospheric general circulation model coupled to a one-dimensional sea energy balance model considering the observed sea/lake geography. The sea composition has a large control on the seasonal evolution of seas, temperature and wind system in the polar region, particularly in the north where large seas are located. The surface of ethane-rich seas, which do not evaporate methane, undergo a large seasonal temperature variation and the sea surface is often warmer than the surrounding land surface. Land breeze in summer towards the seas causes a moisture convergence over the seas, which leads to enhanced summer precipitation in the sea area. On the other hand, methane-rich seas evaporate some methane and are therefore colder than the surroundings. This causes a sea breeze across the north pole in summer, which blows away the moisture from the polar region, so precipitation becomes scarce in the north polar region. The breeze can become stronger than the tidal wind. Sea evaporation peaks in winter, when the temperature and average methane mixing ratio in the planetary boundary layer become lowest. The sea level predominantly rises in summer by precipitation and retreats in winter by evaporation. The meteorology in the south polar region is less sensitive to the composition of the lakes because of the paucity and smallness of southern lakes. Lake-effect precipitation can occur either by moisture convergence by the breeze or humidity enhancement over the seas, but is more characteristic of warm seasons than of cold seasons.  相似文献   

16.
We report on mid-resolution (R∼2000) spectroscopic observations of Titan, acquired in November 2000 with the Very Large Telescope and covering the range 4.75-5.07 μm. These observations provide a detailed characterization of the CO (1-0) vibrational band, clearly separating for the first time individual CO lines (P10 to P19 lines of 13CO). They indicate that the CO/N2 mixing ratio in Titan’s troposphere is 32±10 ppm. Comparison with photochemical models indicates that CO is not in a steady state in Titan’s atmosphere. The observations confirm that Titan’s 5-μm continuum geometric albedo is ∼0.06, and further indicates a ∼20% albedo decrease over 4.98-5.07 μm. Nonzero flux is detected at the 0.01 geometric albedo level in the saturated core of the 12CO (1-0) band, at 4.75-4.85 μm, providing evidence for backscattering on the stratospheric haze. Finally, emission lines are detected at 4.75-4.835 μm, coinciding in position with lines from the CO(1-0) and/or CO(2-1) bands. Matching them by thermal emission would require Titan’s stratosphere to be much warmer (by ∼ 25 K at 0.1 mbar) than indicated by the methane 7.7-μm emission and the Voyager radio-occultation. We show instead that a nonthermal mechanism, namely solar-excited fluorescence, is a more plausible source for these emissions. Improved observations and laboratory measurements on the vibrational-translational relaxation of CO are needed for further interpretation of these emissions in terms of a CO stratospheric mixing ratio.  相似文献   

17.
Fine-resolution (500 m/pixel) Cassini Visual and Infrared Mapping Spectrometer (VIMS) T20 observations of Titan resolve that moon's sand dunes. The spectral variability in some dune regions shows that there are sand-free interdune areas, wherein VIMS spectra reveal the exposed dune substrate. The interdunes from T20 are, variously, materials that correspond to the equatorial bright, 5-μm-bright, and dark blue spectral units. Our observations show that an enigmatic “dark red” spectral unit seen in T5 in fact represents a macroscopic mixture with 5-μm-bright material and dunes as its spectral endmembers. Looking more broadly, similar mixtures of varying amounts of dune and interdune units of varying composition can explain the spectral and albedo variability within the dark brown dune global spectral unit that is associated with dunes. The presence of interdunes indicates that Titan's dunefields are both mature and recently active. The spectrum of the dune endmember reveals the sand to be composed of less water ice than the rest of Titan; various organics are consistent with the dunes' measured reflectivity. We measure a mean dune spacing of 2.1 km, and find that the dunes are oriented on the average in an east-west direction, but angling up to 10° from parallel to the equator in specific cases. Where no interdunes are present, we determine the height of one set of dunes photoclinometrically to be between 30 and 70 m. These results pave the way for future exploration and interpretation of Titan's sand dunes.  相似文献   

18.
As on Earth, Titan’s atmosphere plays a major role in the cooling of heated surfaces. We have assessed the mechanisms by which Titan’s atmosphere, dominantly N2 at a surface pressure of 1.5 × 105 Pa, cools a warm or heated surface. These heated areas can be caused by impacts generating melt sheets and (possibly) by endogenic processes emplacing cryolavas (a low-temperature liquid that freezes on the surface). We find that for a cooling cryolava flow, lava lake, or impact melt body, heat loss is mainly driven by atmospheric convection. Radiative heat loss, a dominant heat loss mechanism with terrestrial silicate lava flows, plays only a minor role on Titan. Long-term cooling and solidification are dependent on melt sheet or flow thickness, and also local climate, because persistent winds will speed cooling. Relatively rapid cooling caused by winds reduces the detectability of these thermal events by instruments measuring surface thermal emission. Because surface temperature drops by ≈50% within ≈1 day of emplacement, fresh flows or impact melt may be difficult to detect via thermal emission unless an active eruption is directly observed. Cooling of flow or impact melt surfaces are orders of magnitude faster on Titan than on airless moons (e.g., Enceladus or Europa).Although upper surfaces cool fast, the internal cooling and solidification process is relatively slow. Cryolava flow lengths are, therefore, more likely to be volume (effusion) limited, rather than cooling-limited. More detailed modeling awaits constraints on the thermophysical properties of the likely cryomagmas and surface materials.  相似文献   

19.
We use five and one-half years of limb- and nadir-viewing temperature mapping observations by the Composite Infrared Radiometer-Spectrometer (CIRS) on the Cassini Saturn orbiter, taken between July 2004 and December 2009 (LS from 293° to 4°; northern mid-winter to just after northern spring equinox), to monitor temperature changes in the upper stratosphere and lower mesosphere of Titan. The largest changes are in the northern (winter) polar stratopause, which has declined in temperature by over 20 K between 2005 and 2009. Throughout the rest of the mid to upper stratosphere and lower mesosphere, temperature changes are less than 5 K. In the southern hemisphere, temperatures in the middle stratosphere near 1 mbar increased by 1-2 K from 2004 through early 2007, then declined by 2-4 K throughout 2008 and 2009, with the changes being larger at more polar latitudes. Middle stratospheric temperatures at mid-northern latitudes show a small 1-2 K increase from 2005 through 2009. At north polar latitudes within the polar vortex, temperatures in the middle stratosphere show a ∼4 K increase during 2007, followed by a comparable decrease in temperatures in 2008 and into early 2009. The observed temperature changes in the north polar region are consistent with a weakening of the subsidence within the descending branch of the middle atmosphere meridional circulation.  相似文献   

20.
Chia C. Wang  Ruth Signorell 《Icarus》2010,206(2):787-264
Layered methane clouds in Titan’s troposphere with an upper methane ice cloud, a lower liquid methane-nitrogen cloud, and a gap in between were suggested from in situ measurements and ground-based observations. Here we report laboratory investigations under conditions that mimic Titan’s troposphere providing a detailed picture of the cloud layers. A solid methane cloud with a nitrogen content of less than 14% and a liquid methane-nitrogen cloud with a nitrogen content of ∼30% form above ∼19 km and below ∼16 km altitude, respectively. Contrary to previous assertions, long-lived supercooled liquid methane-nitrogen droplets can be sustained in the region in between. The results demonstrate that a cloud gap could only form in the presence of high amounts of other traces species (ethane nuclei, tholin particles, etc.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号