首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We analyze the temporal variation of the tropospheric cloud and haze in the jovian equatorial zone. In order to investigate the time evolution of the haze, we utilize a comprehensive set of archival WFPC2 images in the 953 and 893-nm wavelengths spanning over a decade of HST observations of Jupiter. We find that the latitude of the peak haze reflectivity experienced a southerly shift in between late-1998 and early-2001 (not to be confused with southerly bulk transport of haze particles themselves); before this shift, the latitude of peak reflectivity had remained relatively stable at +7° (planetographic latitude). We examine the average haze reflectivity at three equatorial latitudes (−5°, 0°, +5°) and find variability of amplitude ±20%. Equatorial clouds, which lie deeper than the haze, showed zonal mean variability with an amplitude of about 5% except during the global upheaval of 2006-2007 in which cloud reflectivity dropped up to 16% depending on latitude. An analysis of temporal correlation between zonally averaged cloud reflectivity and zonally averaged haze reflectivity indicates a time-lag of about 1200 days (with a lower limit of 800 days) between changes in cloud reflectivity and later changes in haze reflectivity, but limitations in the temporal coverage of even this extensive dataset make it impossible to rule out even longer time-lags.  相似文献   

2.
We analyzed a data cube of Neptune acquired with the Hubble STIS spectrograph on August 3, 2003. The data covered the full afternoon hemisphere at 0.1 arcsec spatial resolution between 300 and 1000 nm wavelength at 1 nm resolution. Navigation was accurate to 0.004 arcsec and 0.05 nm. We constrained the vertical aerosol structure with radiative transfer calculations. Ultraviolet data confirmed the presence of a stratospheric haze of optical depth 0.04 at 370 nm wavelength. Bright, discrete clouds, most abundant near latitudes −40° and 30°, had their top near the tropopause. They covered 1.7% of the observed disk if they were optically thick. The methane abundance above the cloud tops was 0.0026 and 0.0017 km-am for southern and northern clouds, respectively, identical to earlier observations by Sromovsky et al. (Sromovsky, L.A., Fry, P.M., Dowling, T.E., Baines, K.H., Limaye, S.S., [2001b]. Icarus 149, 459-488). Aside from these clouds, the upper troposphere was essentially clear. Below the 1.4-bar layer, a vertically uniform haze extended at least down to 10 bars with optical depth of 0.10-0.16/bar, depending on the latitude. Haze particles were bright at wavelengths above 600 nm, but darkened toward the ultraviolet, at the equator more so than at mid and high latitudes. A dark band near −60° latitude was caused by a 0.01 decrease of the single scattering albedo in the visible, which was close to unity. A comparison of methane and hydrogen absorptions contradicted the current view that methane is uniformly mixed in latitude and altitude below the ∼1.5-bar layer. The 0.04 ± 0.01 methane mixing ratio is only uniform at low latitudes. At high southern latitudes, it is depressed roughly between the 1.2 and 3.3-bar layers compared to low-latitude values. The maximum depression factor is ∼2.7 at 1.8 bars. We present models with 2° latitude sampling across the full sunlit globe that fit the observed reflectivities to 2.8% rms.  相似文献   

3.
We present a study of the equatorial region of Jupiter, between latitudes ∼15°S and ∼15°N, based on Cassini ISS images obtained during the Jupiter flyby at the end of 2000, and HST images acquired in May and July 2008. We examine the structure of the zonal wind profile and report the detection of significant longitudinal variations in the intensity of the 6°N eastward jet, up to 60 m s−1 in Cassini and HST observations. These longitudinal variations are, in the HST case, associated with different cloud morphology. Photometric and radiative transfer analysis of the cloud features used as tracers in HST images show that at most there is only a small height difference, no larger than ∼0.5-1 scale heights, between the slow (∼100 m s−1) and fast (∼150 m s−1) moving features. This suggests that speed variability at 6°N is not dominated by vertical wind shears but instead we propose that Rossby wave activity is the responsible for the zonal variability. Removing this variability, we find that Jupiter’s equatorial jet is actually symmetric relative to equator with two peaks of ∼140-150 m s−1 located at latitudes 6°N and 6°S and at a similar pressure level. We also study the local dynamics of particular equatorial features such as several dark projections associated with 5 μm hot spots and a large, long-lived feature called the White Spot (WS) located at 6°S. Convergent flow at the dark projections appears to be a characteristic which depends on the particular morphology and has only been detected in some cases. The internal flow field in the White Spot indicates that it is a weakly rotating quasi-equatorial anticyclone relative to the ambient meridionally sheared flow.  相似文献   

4.
Five years of Cassini Imaging Science Subsystem images, from 2004 to 2009, are analyzed in this work to retrieve global zonal wind profiles of Saturn’s northern and southern hemispheres in the methane absorbing bands at 890 and 727 nm and in their respective adjacent continuum wavelengths of 939 and 752 nm. A complete view of Saturn’s global circulation, including the equator, at two pressure levels, in the tropopause (60 mbar to 250 mbar with the MT filters) and in the upper troposphere (from ∼350 mbar to ∼500 mbar with the CB filter set), is presented. Both zonal wind profiles (available at the Supplementary Material Section), show the same structure but with significant differences in the peak of the eastward jets and the equatorial region, including a region of positive vertical shear symmetrically located around the equator between the 10° < |φc| < 25° where zonal velocities close to the tropopause are higher than at 500 mbar. A comparison of previously published zonal wind sets obtained by Voyager 1 and 2 (1980-1981), Hubble Space Telescope, and ground-based telescopes (1990-2004) with the present Cassini profiles (2004-2009) covering a full Saturn year shows that the shape of the zonal wind profile and intensity of the jets has remained almost unchanged except at the equator, despite the seasonal insolation cycle and the variability of Saturn’s emitted power. The major wind changes occurred at equatorial latitudes, perhaps following the Great White Spot eruption in 1990. It is not evident from our study if the seasonal insolation cycle and its associated ring shadowing influence the equatorial circulation at cloud level.  相似文献   

5.
The three-dimensional structure of Saturn's intense equatorial jet from latitudes 8° N to 20° S is revealed from detailed measurements of the motions and spectral reflectivity of clouds at visible wavelengths on high resolution images obtained by the Cassini Imaging Science Subsystem (ISS) in 2004 and early 2005. Cloud speeds at two altitude levels are measured in the near infrared filters CB2 and CB3 matching the continuum (effective wavelengths 750 and 939 nm) and in the MT2 and MT3 filters matching two methane absorption bands (effective wavelengths 727 and 889 nm). Radiative transfer models in selective filters covering an ample spectral range (250-950 nm) require the existence of two detached aerosol layers in the equator: an uppermost thin stratospheric haze extending between the pressure levels ∼20 and 40 mbar (tropopause level) and below it, a dense tropospheric haze-cloud layer extending between 50 mbar and the base of the ammonia cloud (between ∼1 and 1.4 bar). Individual cloud elements are detected and tracked in the tropospheric dense haze at 50 and 700 mbar (altitude levels separated by 142 km). Between latitudes 5° N and 12° S the winds increase their velocity with depth from 265 m s−1 at the 50 mbar pressure level to 365 m s−1 at 700 mbar. These values are below the high wind speeds of 475 m s−1 measured at these latitudes during the Voyager era in 1980-1981, indicating that the equatorial jet has suffered a significant intensity change between that period and 1996-2005 or that the tracers of the flow used in the Voyager images were rooted at deeper levels than those in Cassini images.  相似文献   

6.
Nightside infrared limb spectra of the Venus upper atmosphere, obtained by Venus Express VIRTIS, show strong scattering of thermal radiation. This scattering of upward-going radiation into the line-of-sight is dominant below 82.5 km even at a wavelength of 5 μm, which is indicative of relatively large particles. We show that 1 μm-sized sulfuric acid particles (also known as mode 2 particles) provide a good fit to the VIRTIS limb data at high altitudes. We retrieve vertical profiles of the mode 2 number density between 75 and 90 km at two latitude ranges: 20-30°N and 47-50°N. Between 20 and 30°N, scattering by mode 2 particles is the main source of radiance for altitudes between 80 and 85 km. Above altitudes of 85 km smaller particles can also be used to fit the spectra. Between 47 and 50°N mode 2 number densities are generally lower than between 20 and 30°N and the profiles show more variability. This is consistent with the 47-50° latitude region being at the boundary between the low latitudes and high latitudes, with the latter showing lower cloud tops and higher ultraviolet brightness (Titov, D.V., Taylor, F.W., Svedhem, H., Ignatiev, N.I., Markiewicz, W.J., Piccioni, G., Drossart, P. [2008]. Nature 456, 620-623).  相似文献   

7.
O. Muñoz  F. Moreno  D. Grodent  V. Dols 《Icarus》2004,169(2):413-428
We have studied the vertical structure of hazes at six different latitudes (−60°, −50°, −30°, −10°, +30°, and +50°) on Saturn's atmosphere. For that purpose we have compared the results of our forward radiative transfer model to limb-to-limb reflectivity scans at four different wavelengths (230, 275, 673.2, and 893 nm). The images were obtained with the Hubble Space Telescope Wide Field Planetary Camera 2 in September 1997, during fall on Saturn's northern hemisphere. The spatial distribution of particles appears to be very variable with latitude both in the stratosphere and troposphere. For the latitude range +50° to −50°, an atmospheric structure consisting of a stratospheric haze and a tropospheric haze interspersed by clear gas regions has been found adequate to explain the center to limb reflectivities at the different wavelengths. This atmospheric structure has been previously used by Ortiz et al. (1996, Icarus 119, 53-66) and Stam et al. (2001, Icarus 152, 407-422). In this work the top of the tropospheric haze is found to be higher at the southern latitudes than at northern latitudes. This hemispherical asymmetry seems to be related to seasonal effects. Different latitudes experience different amount of solar insolation that can affect the atmospheric structure as the season varies with time. The haze optical thickness is largest (about 30 at 673.2 nm) at latitudes ±50 and −10 degrees, and smallest (about 18) at ±30 degrees. The stratospheric haze is found to be optically thin at all studied latitudes from −50 to +50 degrees being maximum at −10° (τ=0.033). At −60° latitude, where the UV images show a strong darkening compared to other regions on the planet, the cloud structure is remarkably different when compared to the other latitudes. Here, aerosol and gas are found to be uniformly mixed down to the 400 mbar level.  相似文献   

8.
For a variety of reasons, Jupiter's polar areas are probably the less observed regions of the planet. To study the dynamics and cloud vertical structure in the polar regions of the planet (latitudes 50° to 80° in both hemispheres) we have used images of Jupiter obtained from the ultraviolet to near infrared (258 to 939 nm) by the Cassini Imagining Science Subsystem (ISS) in December 2000. The temporal coverage was complemented with archived images from the Hubble Space Telescope (1993-2006) in a similar spectral range. The zonal wind velocities have been measured at three Cassini ISS wavelengths (CB2, MT3 and UV1, corresponding to 750, 890 and 258 nm) sounding different altitude levels. The three eastward jets detected in CB2 images (lower cloud) go to zero velocity when measured in the UV1 filter (upper haze). A radiative transfer analysis has been performed to characterize the vertical structure of cloud and hazes distribution at the poles. We also present a characterization (phase speed, amplitude and zonal wavenumber) of the previously detected circumpolar waves at 67° N and S at 890 nm and at about 50° N and −57° S at 258 nm that are a permanent phenomenon in Jupiter with some variability in its structure during the analyzed period. From the ensemble of data analyzed we propose the waves are Rossby waves whose dynamic behavior constrains plausible values for their meridional and vertical wavenumbers. This work demonstrates the long-term nature of Jupiter's polar waves, providing a dynamical and vertical characterization which supports a detailed analysis of these phenomena in terms of a Rossby wave model.  相似文献   

9.
We present a study of the vertical structure of clouds and hazes in the upper atmosphere of Saturn's Southern Hemisphere during 1994-2003, about one third of a Saturn year, based on Hubble Space Telescope images. The photometrically calibrated WFPC2 images cover the spectral region between the near-UV (218-255 nm) and the near-IR (953-1042 nm), including the 890 nm methane band. Using a radiative transfer code, we have reproduced the observed center-to-limb variations in absolute reflectivity at selected latitudes which allowed us to characterize the vertical structure of the entire hemisphere during this period. A model atmosphere with two haze layers has been used to study the variation of hazes with latitude and to characterize their temporal changes. Both hazes are located above a thick cloud, putatively composed of ammonia ice. An upper thin haze in the stratosphere (between 1 and 10 mbar) is found to be persistent and formed by small particles (radii ∼0.2 μm). The lower thicker haze close to the tropopause level shows a strong latitudinal dependence in its optical thickness (typically τ∼20-40 at the equator but τ∼5 at the pole, at 814 nm). This tropospheric haze is blue-absorbent and extends from 50 to 100 mbar to about ∼400 mbar. Both hazes show temporal variability, but at different time-scales. First, there is a tendency for the optical thickness of the stratospheric haze to increase at all latitudes as insolation increases. Second, the tropospheric haze shows mid-term changes (over time scales from months to 1-2 years) in its optical thickness (typically by a factor of 2). Such changes always occur within a rather narrow latitude band (width ∼5-10°), affecting almost all latitudes but at different times. Third, we detected a long-term (∼10 year) decrease in the blue single-scattering albedo of the tropospheric haze particles, most intense in the equatorial and polar areas. Long-term changes follow seasonal insolation variations smoothly without any apparent delay, suggesting photochemical processes that affect the particles optical properties as well as their size. In contrast, mid-term changes are sudden and show various time-scales, pointing to a dynamical origin.  相似文献   

10.
Five years of thermal infrared spectra from the Cassini Composite Infrared Spectrometer (CIRS) are analyzed to determine the response of Saturn’s atmosphere to seasonal changes in insolation. Hemispheric mapping sequences at 15.0 cm−1 spectral resolution are used to retrieve the variation in the zonal mean temperatures in the stratosphere (0.5-5.0 mbar) and upper troposphere (75-800 mbar) between October 2004 (shortly after the summer solstice in the southern hemisphere) and July 2009 (shortly before the autumnal equinox).Saturn’s northern mid-latitudes show signs of dramatic warming in the stratosphere (by 6-10 K) as they emerge from ring-shadow into springtime conditions, whereas southern mid-latitudes show evidence for cooling (4-6 K). The 40-K asymmetry in stratospheric temperatures between northern and southern hemispheres (at 1 mbar) slowly decreased during the timespan of the observations. Tropospheric temperatures also show temporal variations but with a smaller range, consistent with the increasing radiative time constant of the atmospheric response with increasing pressure. The tropospheric response to the insolation changes shows the largest magnitude at the locations of the broad retrograde jets. Saturn’s warm south-polar stratospheric hood has cooled over the course of the mission, but remains present.Stratospheric temperatures are compared to a radiative climate model which accounts for the spatial distribution of the stratospheric coolants. The model successfully predicts the magnitude and morphology of the observed changes at most latitudes. However, the model fails at locations where strong dynamical perturbations dominate the temporal changes in the thermal field, such as the hot polar vortices and the equatorial semi-annual oscillation (Orton, G., and 27 colleagues [2008]. Nature 453, 196-198). Furthermore, observed temperatures in Saturn’s ring-shadowed regions are larger than predicted by all radiative-climate models to date due to the incomplete characterization of the dynamical response to the shadow. Finally, far-infrared CIRS spectra are used to demonstrate variability of the para-hydrogen distribution over the 5-year span of the dataset, which may be related to observed changes in Saturn’s tropospheric haze in the spring hemisphere.  相似文献   

11.
Jupiter's equatorial atmosphere, much like the Earth's, is known to show quasi-periodic variations in temperature, particularly in the stratosphere, but variations in other jovian atmospheric tracers have not been studied for any correlations to these oscillations. Data taken at NASA's Infrared Telescope Facility (IRTF) from 1979 to 2000 were used to obtain temperatures at two levels in the atmosphere, corresponding to the upper troposphere (250 mbar) and to the stratosphere (20 mbar). We find that the data show periodic signals at latitudes corresponding to the troposphere zonal wind jets, with periods ranging from 4.4 (stratosphere, 95% confidence at 4° S planetographic latitude) to 7.7 years (troposphere, 97% confidence at 6° N). We also discuss evidence that at some latitudes the troposphere temperature variations are out of phase from the stratosphere variations, even where no periodicity is evident. Hubble Space Telescope images were used, in conjunction with Voyager and Cassini data, to track small changes in the troposphere zonal winds from 20° N to 20° S latitude over the 1994-2000 time period. Oscillations with a period of 4.5 years are found near 7°-8° S, with 80-85% significance. Further, the strongest evidence for a QQO-induced tropospheric wind change tied to stratospheric temperature change occurs near these latitudes, though tropospheric temperatures show little periodicity here. Comparison of thermal winds and measured zonal winds for three dates indicate that cloud features at other latitudes are likely tracked at pressures that can vary by up to a few hundred millibar, but the cloud altitude change required is too large to explain the wind changes measured at 7° S.  相似文献   

12.
We show that the peak velocity of Jupiter’s visible-cloud-level zonal winds near 24°N (planetographic) increased from 2000 to 2008. This increase was the only change in the zonal velocity from 2000 to 2008 for latitudes between ±70° that was statistically significant and not obviously associated with visible weather. We present the first automated retrieval of fast (∼130 m s−1) zonal velocities at 8°N planetographic latitude, and show that some previous retrievals incorrectly found slower zonal winds because the eastward drift of the dark projections (associated with 5-μm hot spots) “fooled” the retrieval algorithms.We determined the zonal velocity in 2000 from Cassini images from NASA’s Planetary Data System using a global method similar to previous longitude-shifting correlation methods used by others, and a new local method based on the longitudinal average of the two-dimensional velocity field. We obtained global velocities from images acquired in May 2008 with the Wide Field Planetary Camera 2 (WFPC2) on the Hubble Space Telescope (HST). Longer-term variability of the zonal winds is based on comparisons with published velocities based on 1979 Voyager 2 and 1995-1998 HST images. Fluctuations in the zonal wind speeds on the order of 10 m s−1 on timescales ranging from weeks to months were found in the 1979 Voyager 2 and the 1995-1998 HST velocities. In data separated by 10 h, we find that the east-west velocity uncertainty due to longitudinal fluctuations are nearly 10 m s−1, so velocity fluctuations of 10 m s−1 may occur on timescales that are even smaller than 10 h. Fluctuations across such a wide range of timescales limit the accuracy of zonal wind measurements. The concept of an average zonal velocity may be ill-posed, and defining a “temporal mean” zonal velocity as the average of several zonal velocity fields spanning months or years may not be physically meaningful.At 8°N, we use our global method to find peak zonal velocities of ∼110 m s−1 in 2000 and ∼130 m s−1 in 2008. Zonal velocities from 2000 Cassini data produced by our local and global methods agree everywhere, except in the vicinity of 8°N. There, the local algorithm shows that the east-west velocity has large variations in longitude; vast regions exceed ∼140 m s−1. Our global algorithm, and all of the velocity-extraction algorithms used in previously-published studies, found the east-west drift velocities of the visible dark projections, rather than the true zonal velocity at the visible-cloud level. Therefore, the apparent increase in zonal winds between 2000 and 2008 at 8°N is not a true change in zonal velocity.At 7.3°N, the Galileo probe found zonal velocities of 170 m s−1 at the 3-bar level. If the true zonal velocity at the visible-cloud level at this latitude is ∼140 m s−1 rather than ∼105 m s−1, then the vertical zonal wind shear is much less than the currently accepted value.  相似文献   

13.
The global circulation of the Venus atmosphere is characterized at cloud level by a zonal super rotation studied over the years with data from a battery of spacecrafts: orbiters, balloons and probes. Among them, the Galileo spacecraft monitored the Venus atmosphere in a flyby in February 1990 in its route toward Jupiter. Since the flyby was almost equatorial, published analysis of zonal winds obtained from displacements of cloud elements on images obtained by the SSI camera [Belton, M.J.S., and 20 colleagues, 1991. Science 253, 1531-1536] stop at latitudes 50° north and south. In this paper we present new results on Venus winds based on a reanalysis of an extended set of images obtained at two wavelengths, 418 nm (violet) and 986 nm (near infrared), that sense different altitude levels in the upper cloud. Our main result is that we have been able to extend the zonal wind profile up to the polar latitudes: 70° N and 70° S at 418 nm and 70° N at 986 nm. Binned and smoothed profiles are given in tabular form. We show that the zonal winds drop in their velocity poleward of latitudes 45° N and 50° S where an intense meridional wind shear develops at the two cloud levels. Our data confirm the magnitude of this shear, retrieved previously from radio occultation data, but disagrees with it in the latitudinal location of the sheared region. The new wind data can be used to recalibrate the zonal winds retrieved from the previous measurements of the temperature field and the cyclostrophic balance assumption. The meridional profiles of the zonal winds at the two cloud levels are used to assess the vertical wind shear in the upper cloud layer as a function of latitude and locate the most unstable region.  相似文献   

14.
We analyze observations taken with Cassini’s Visual and Infrared Mapping Spectrometer (VIMS), to determine the current methane and haze latitudinal distribution between 60°S and 40°N. The methane variation was measured primarily from its absorption band at 0.61 μm, which is optically thin enough to be sensitive to the methane abundance at 20-50 km altitude. Haze characteristics were determined from Titan’s 0.4-1.6 μm spectra, which sample Titan’s atmosphere from the surface to 200 km altitude. Radiative transfer models based on the haze properties and methane absorption profiles at the Huygens site reproduced the observed VIMS spectra and allowed us to retrieve latitude variations in the methane abundance and haze. We find the haze variations can be reproduced by varying only the density and single scattering albedo above 80 km altitude. There is an ambiguity between methane abundance and haze optical depth, because higher haze optical depth causes shallower methane bands; thus a family of solutions is allowed by the data. We find that haze variations alone, with a constant methane abundance, can reproduce the spatial variation in the methane bands if the haze density increases by 60% between 20°S and 10°S (roughly the sub-solar latitude) and single scattering absorption increases by 20% between 60°S and 40°N. On the other hand, a higher abundance of methane between 20 and 50 km in the summer hemisphere, as much as two times that of the winter hemisphere, is also possible, if the haze variations are minimized. The range of possible methane variations between 27°S and 19°N is consistent with condensation as a result of temperature variations of 0-1.5 K at 20-30 km. Our analysis indicates that the latitudinal variations in Titan’s visible to near-IR albedo, the north/south asymmetry (NSA), result primarily from variations in the thickness of the darker haze layer, detected by Huygens DISR, above 80 km altitude. If we assume little to no latitudinal methane variations we can reproduce the NSA wavelength signatures with the derived haze characteristics. We calculate the solar heating rate as a function of latitude and derive variations of ∼10-15% near the sub-solar latitude resulting from the NSA. Most of the latitudinal variations in the heating rate stem from changes in solar zenith angle rather than compositional variations.  相似文献   

15.
Erich Karkoschka 《Icarus》2011,215(2):759-773
The analysis of all suitable images taken of Neptune with the Wide Field Planetary Camera 2 on the Hubble Space Telescope between 1994 and 2008 revealed the following results. The activity of discrete cloud features located near Neptune’s tropopause remained roughly constant within each year but changed significantly on the time scale of ∼5 years. Discrete clouds covered 1% of the disk on average, but more than 2% in 2002. The other ∼99% of the disk probed Neptune’s hazes at lower altitudes. At red and near-infrared wavelengths, two dark bands around −70° and 10° latitude were perfectly steady and originated in the upper two scale heights of the troposphere, either by decreased haze opacity or by an increased methane relative humidity. At blue wavelengths, a dark band between −60° and −30° latitude was most obvious during the early years, caused by dark aerosols below the 3-bar level with single scattering albedos reduced by ∼0.04, and this contrast was constant between 410 and 630 nm wavelength. The dark band decayed exponentially with a time constant of 5 ± 1 years, which can be explained by settling of the dark aerosols at a rate of 1 bar pressure difference per year. The other latitudes brightened with the same time constant but lower amplitudes. The only exception was a darkening event in the 15-30° latitude region between 1994 and 1996, which coincides with two dark spots observed in the same region during the same time period, the only dark spots seen since Voyager. The dark aerosols had a similar latitudinal distribution as the discrete clouds near the tropopause, although both were separated by four scale heights. Photometric analysis revealed a phase coefficient of 0.0028 ± 0.0010 mag/deg for the 0-2° phase-angle range observable from Earth. Neptune’s sub-Earth latitude varied by less than 3° throughout the observation period providing a data set with almost constant viewing geometry. The trends observed up to 2008 continued into 2010 based on images taken with the Wide Field Camera 3.  相似文献   

16.
Infrared spectroscopy sensitive to thermal emission from Jupiter’s stratosphere reveals effects persisting 23 days after the impact of a body in late July 2009. Measurements obtained on 2009 August 11 UT at the impact latitude of 56°S (planetocentric), using the Goddard Heterodyne Instrument for Planetary Wind and Composition mounted on the NASA Infrared Telescope Facility, reveal increased ethane abundance and the effects of aerosol opacity. An interval of reduced thermal continuum emission at 11.744 μm is measured ∼60-80° towards planetary east of the impact site, estimated to be at 305° longitude (System III). Retrieved stratospheric ethane mole fraction in the near vicinity of the impact site is enhanced by up to ∼60% relative to quiescent regions at this latitude. Thermal continuum emission at the impact site, and somewhat west of it, is significantly enhanced in the same spectra that retrieve enhanced ethane mole fraction. Assuming that the enhanced continuum brightness near the impact site results from thermalized aerosol debris blocking contribution from the continuum formed in the upper troposphere and indicating the local temperature, then continuum emission by a haze layer can be approximated by an opaque surface inserted at the 45-60 mbar pressure level in the stratosphere in an unperturbed thermal profile, setting an upper limit on the pressure and therefore a lower limit on the altitude of the top of the impact debris at this time. The reduced continuum brightness east of the impact site can be modeled by an opaque surface near the cold tropopause, which is consistent with a lower altitude of ejecta/impactor-formed opacity. The physical extent of the observed region of reduced continuum implies a minimum average velocity of 21 m/s transporting material prograde (planetary east) from the impact.  相似文献   

17.
We use five and one-half years of limb- and nadir-viewing temperature mapping observations by the Composite Infrared Radiometer-Spectrometer (CIRS) on the Cassini Saturn orbiter, taken between July 2004 and December 2009 (LS from 293° to 4°; northern mid-winter to just after northern spring equinox), to monitor temperature changes in the upper stratosphere and lower mesosphere of Titan. The largest changes are in the northern (winter) polar stratopause, which has declined in temperature by over 20 K between 2005 and 2009. Throughout the rest of the mid to upper stratosphere and lower mesosphere, temperature changes are less than 5 K. In the southern hemisphere, temperatures in the middle stratosphere near 1 mbar increased by 1-2 K from 2004 through early 2007, then declined by 2-4 K throughout 2008 and 2009, with the changes being larger at more polar latitudes. Middle stratospheric temperatures at mid-northern latitudes show a small 1-2 K increase from 2005 through 2009. At north polar latitudes within the polar vortex, temperatures in the middle stratosphere show a ∼4 K increase during 2007, followed by a comparable decrease in temperatures in 2008 and into early 2009. The observed temperature changes in the north polar region are consistent with a weakening of the subsidence within the descending branch of the middle atmosphere meridional circulation.  相似文献   

18.
Imaging of Uranus in 2003 with the Keck 10-m telescope reveals banded zonal structure and dozens of discrete cloud features at J and H bands; several features in the northern hemisphere are also detectable at K′. By tracking features over four days, we extend the zonal wind profile well into the northern hemisphere. We report the first measurements of wind velocities at latitudes −13°, +19°, and northward of +43°, the first direct wind measurements near the equator, and the highest wind velocity seen yet on Uranus (+218 m/s). At northern mid-latitudes (+20° to +40°), the winds appear to have accelerated when compared to earlier HST and Keck observations; southern wind speeds (−20° to −43°) have not changed since Voyager measurements in 1986. The equator of Uranus exhibits a subtle wave structure, indicated by diffuse patches roughly every 30° in longitude. The largest discrete cloud features on Uranus show complex structure extending over tens of degrees, reminiscent of activity seen around Neptune's Great Dark Spot during the Voyager encounter with that planet. There is no sign of a northern “polar collar” as is seen in the south, but a number of discrete features seen at the “expected” latitudes may signal the early stages of development of a northern collar.  相似文献   

19.
H.G. Roe  I. de Pater 《Icarus》2004,169(2):440-461
All previous observations of seasonal change on Titan have been of physical phenomena such as clouds and haze. We present here the first observational evidence of chemical change in Titan's atmosphere. Images taken during 1999-2002 (late southern spring on Titan) with the W.M. Keck I 10-meter telescope at 8-13 μm show a significant accumulation of ethylene (C2H4) in the south polar stratosphere as well as north-south stratospheric temperature variation (colder at poles). Our observations restrict this newly discovered south polar ethylene accumulation to latitudes south of 60° S. The only other observations of the spatial distribution of C2H4 were those of Voyager I, which found a significant north polar accumulation in early northern spring. We see no build-up in the north, although the highest northern latitudes are obstructed from view in the current season. Our observations constrain any unobserved north polar accumulation of C2H4 to north of 50° N latitude. Comparison of the Voyager I results with our new results show seasonal chemical change has occurred in Titan's atmosphere.  相似文献   

20.
A series of narrow-band images of Saturn was acquired on 7-11 February 2002 with an acousto-optic imaging spectrometer (AImS) at about 160 wavelengths between 500 and 950 nm. Our unique data set with high spectral agility and wide spectral coverage enabled us to extensively study the cloud structure and aerosol properties of Saturn's equatorial region at −10° latitude. Theoretical center-limb profiles based on twelve cloud models were fit to the observations at 23 wavelengths across the 619-, 727-, and 890-nm methane bands. A simultaneous multiwavelength multivariable fitting algorithm was adopted in varying up to 9 free parameters to efficiently explore the vast multidimensional parameter space, and a total of ∼12,000 initial conditions were tested. From the acceptable ranges of the model parameters, we obtained the following major conclusions: (1) the brightening of Saturn's equatorial region observed near 890 nm in February 2002 (I/F∼0.25 at the central meridian) results from high altitudes of a stratospheric haze layer (τ?∼0.05 above ∼0.04-bar level) and an upper tropospheric cloud (τ∼6 above ∼0.25-bar level), (2) if the upper tropospheric cloud is composed of ammonia ice particles and the Mie theory is applied, the mean particle size is larger than about 0.5 μm, (3) an optically thick cloud layer exists at a level of 0.5-2.2 bar below the upper cloud deck in Saturn's equatorial region. The ongoing observations by the Cassini spacecraft over wider spectral range and from various phase angles will further constrain Saturn's cloud structure and aerosol properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号