首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used the complete set of Mars Global Surveyor (MGS) Mars Daily Global Maps (MDGMs) to study martian weather in the southern hemisphere, focusing on curvilinear features, including frontal events and streaks. “Frontal events” refer to visible events that are morphologically analogous to terrestrial baroclinic storms. MDGMs show that visible frontal events were mainly concentrated in the 210-300°E (60-150°W) sector and the 0-60°E sector around the southern polar cap during Ls = 140-250° and Ls = 340-60°. The non-uniform spatial and temporal distributions of activity were also shown by MGS Thermal Emission Spectrometer transient temperature variations near the surface. “Streaks” refer to long curvilinear features in the polar hood or over the polar cap. They are an indicator of the shape of the polar vortex. Streaks in late winter usually show wavy segments between the 180° meridian and Argyre. Model results suggest that the zonal wave number m = 3 eastward traveling waves are important for their formation.  相似文献   

2.
Takeshi Imamura  Yuko Ito 《Icarus》2011,211(1):498-503
A Hovmöller diagram analysis of the dust optical depth measured by the Mars Global Surveyor Thermal Emission Spectrometer shows the occurrence of quasi-periodic westwardly-propagating disturbances with timescales of 10-20 sols during summer in the south polar region of Mars. Dust clouds emerge repeatedly around the region with a latitude of around 70-80°S and a longitude of 240-300°E, move westward at speeds of 3-6 m s−1, reach the region with a longitude of 60-120°E, and finally disappear. This longitude range coincides with elevated terrains in the south polar region, and in this region an increase of dust optical depth encircling the south pole is also observed. This implies that the quasi-periodic dust events will contribute to the enhancement of the atmospheric dust loading in this region. These dust events might be related to baroclinic instability caused by the thermal contrast across the CO2 cap edge, or the horizontal advection or vertical convection with radiative-dynamical feedback. The westward movement of the dust clouds suggests steady westward winds blowing in the near-surface layer, where the quasi-periodic dust lifting is expected to occur. Such a westward cap-edge flow will be created by the Coriolis force acting on the flow from the ice side to the regolith side.  相似文献   

3.
Mars Global Surveyor (MGS) visible (solarband bolometer) and thermal infrared (IR) spectral limb observations from the Thermal Emission Spectrometer (TES) support quantitative profile retrievals for dust opacity and particle sizes during the 2001 global dust event on Mars. The current analysis considers the behavior of dust lifted to altitudes above 30 km during the course of this storm; in terms of dust vertical mixing, particle sizes, and global distribution. TES global maps of visible (solarband) limb brightness at 60 km altitude indicate a global-scale, seasonally evolving (over 190-240° solar longitudes, LS) longitudinal corridor of vertically extended dust loading (which may be associated with a retrograde propagating, wavenumber 1 Rossby wave). Spherical radiative transfer analysis of selected limb profiles for TES visible and thermal IR radiances provide quantitative vertical profiles of dust opacity, indicating regional conditions of altitude-increasing dust mixing ratios. Observed infrared spectral dependences and visible-to-infrared opacity ratios of dust scattering over 30-60 km altitudes indicate particle sizes characteristic of lower altitudes (cross-section weighted effective radius, ), during conditions of significant dust transport to these altitudes. Conditions of reduced dust loading at 30-60 km altitudes present smaller dust particle sizes . These observations suggest rapid meridional transport at 30-80 km altitudes, with substantial longitudinal variation, of dust lifted to these altitudes over southern hemisphere atmospheric regions characterized by extraordinary (m/s) vertical advection velocities. By LS=230° dust loading above 50 km altitudes decreased markedly at southern latitudes, with a high altitude (60-80 km) haze of fine (likely) water ice particles appearing over 10°S-40°N latitudes.  相似文献   

4.
We study the thermal fields over Olympus Mons separating seasons (northern spring and summer against southern spring and summer) and local time observations (day side versus night side). Temperature vertical profiles retrieved from Planetary Fourier Spectrometer on board Mars Express (PFS-MEX) data have been used. In many orbits (running north to south along a meridian) passing over the top of the volcano there is evidence of a hot air on top of the volcano, of two enhancement of the air temperature both north and south of it and in between a collar of air that is colder than nearby at low altitudes, and warmer than nearby at high altitudes. Mapping together many orbits passing over or near the volcano we find that the hot air has the tendency to form an hot ring around it. This hot structure occurs mostly between LT = 10.00 and 15.00 and during the northern summer. Distance of the hot structure from the top of the volcano is about 600 km (10° of latitude). The hot atmospheric region is 300-420 km (5-7°) wide. Hot ring temperature contrasts of about 40 K occur at 2 km above the surface and decrease to 20 K at 5 km and to 10 K at 10 km. The atmospheric circulation over an area of 40° × 40° (latitudes and longitudes) is affected by the topography and the presence of Olympus Mons (−133°W, 18°N). We discuss also the thermal stability of the atmosphere over the selected area using the potential temperatures. The temperature field over the top of the volcano shows unstable atmosphere within 10 km from the surface. Finally, we interpret the hot temperatures around volcano as an adiabatic compression of down-welling branch coming from over the top of volcano.Different air temperature profiles are observed in the same seasons during the night, or in different seasons. In northern spring-summer during the night the isothermal contours do not show the presence of the volcano until we reach close to the surface very much, where a thermal inversion is observed. The surface temperature shows higher values (by 10 K) in correspondence of the scarp (an abrupt altimetry variation of roughly 5 km) on south (6°N) and north (30°N) sides of volcano. During the southern spring-summer, on the contrary the isothermal curves run parallel to the surface even on top the volcano, just like the GCM have predicted.  相似文献   

5.
We present measurements of the altitude and eastward velocity component of mesospheric clouds in 35 imaging sequences acquired by the Mars Odyssey (ODY) spacecraft’s Thermal Emission Imaging System visible imaging subsystem (THEMIS-VIS). We measure altitude by using the parallax drift of high-altitude features, and the velocity by exploiting the time delay in the THEMIS-VIS imaging sequence.We observe two distinct classes of mesospheric clouds: equatorial mesospheric clouds observed between 0° and 180° Ls; and northern mid-latitude clouds observed only in twilight in the 200–300° Ls period. The equatorial mesospheric clouds are quite rare in the THEMIS-VIS data set. We have detected them in only five imaging sequences, out of a total of 2048 multi-band equatorial imaging sequences. All five fall between 20° south and 0° latitude, and between 260° and 295° east longitude. The mid-latitude mesospheric clouds are apparently much more common; for these we find 30 examples out of 210 northern winter mid-latitude twilight imaging sequences. The observed mid-latitude clouds are found, with only one exception, in the Acidalia region, but this is quite likely an artifact of the pattern of THEMIS-VIS image targeting. Comparing our THEMIS-VIS images with daily global maps generated from Mars Orbiter Camera Wide Angle (MOC-WA) images, we find some evidence that some mid-latitude mesospheric cloud features correspond to cloud features commonly observed by MOC-WA. Comparing the velocity of our mesospheric clouds with a GCM, we find good agreement for the northern mid-latitude class, but also find that the GCM fails to match the strong easterly winds measured for the equatorial clouds.Applying a simple radiative transfer model to some of the equatorial mesospheric clouds, we find good model fits in two different imaging sequences. By using the observed radiance contrast between cloud and cloud-free regions at multiple visible-band wavelengths, these fits simultaneously constrain the optical depths and particles sizes of the clouds. The particle sizes are constrained primarily by the relative contrasts at the available wavelengths, and are found to be quite different in the two imaging sequences: reff = 0.1 μm and reff = 1.5 μm. The optical depths (constrained by the absolute contrasts) are substantial: 0.22 and 0.5, respectively. These optical depths imply a mass density that greatly exceeds the saturated mass density of water vapor at mesospheric temperatures, and so the aerosol particles are probably composed mainly of CO2 ice. Our simple radiative transfer model is not applicable to twilight, when the mid-latitude mesospheric clouds were observed, and so we leave the properties of these clouds as a question for further work.  相似文献   

6.
Stephen D. Eckermann  Jun Ma 《Icarus》2011,211(1):429-442
Using a Curtis-matrix model of 15 μm CO2 radiative cooling rates for the martian atmosphere, we have computed vertical scale-dependent IR radiative damping rates from 0 to 200 km altitude over a broad band of vertical wavenumbers ∣m∣ = 2π(1-500 km)−1 for representative meteorological conditions at 40°N and average levels of solar activity and dust loading. In the middle atmosphere, infrared (IR) radiative damping rates increase with decreasing vertical scale and peak in excess of 30 days−1 at ∼50-80 km altitude, before gradually transitioning to scale-independent rates above ∼100 km due to breakdown of local thermodynamic equilibrium. We incorporate these computed IR radiative damping rates into a linear anelastic gravity-wave model to assess the impact of IR radiative damping, relative to wave breaking and molecular viscosity, in the dissipation of gravity-wave momentum flux. The model results indicate that IR radiative damping is the dominant process in dissipating gravity-wave momentum fluxes at ∼0-50 km altitude, and is the dominant process at all altitudes for gravity waves with vertical wavelengths ?10-15 km. Wave breaking becomes dominant at higher altitudes only for “fast” waves of short horizontal and long vertical wavelengths. Molecular viscosity plays a negligible role in overall momentum flux deposition. Our results provide compelling evidence that IR radiative damping is a major, and often dominant physical process controlling the dissipation of gravity-wave momentum fluxes on Mars, and therefore should be incorporated into future parameterizations of gravity-wave drag within Mars GCMs. Lookup tables for doing so, based on the current computations, are provided.  相似文献   

7.
D. Reiss  M. Zanetti  G. Neukum 《Icarus》2011,215(1):358-369
Active dust devils were observed in Syria Planum in Mars Observer Camera - Wide Angle (MOC-WA) and High Resolution Stereo Camera (HRSC) imagery acquired on the same day with a time delay of ∼26 min. The unique operating technique of the HRSC allowed the measurement of the traverse velocities and directions of motion. Large dust devils observed in the HRSC image could be retraced to their counterparts in the earlier acquired MOC-WA image. Minimum lifetimes of three large (avg. ∼700 m in diameter) dust devils are ∼26 min, as inferred from retracing. For one of these large dust devil (∼820 m in diameter) it was possible to calculate a minimum lifetime of ∼74 min based on the measured horizontal speed and the length of its associated dust devil track. The comparison of our minimum lifetimes with previous published results of minimum and average lifetimes of small (∼19 m in diameter, avg. min. lifetime of ∼2.83 min) and medium (∼185 m in diameter, avg. min. lifetime of ∼13 min) dust devils imply that larger dust devils on Mars are active for much longer periods of time than smaller ones, as it is the case for terrestrial dust devils. Knowledge of martian dust devil lifetimes is an important parameter for the calculation of dust lifting rates. Estimates of the contribution of large dust devils (>300-1000 m in diameter) indicate that they may contribute, at least regionally, to ∼50% of dust entrainment by dust devils into the atmosphere compared to the dust devils <300 m in diameter given that the size-frequency distribution follows a power-law. Although large dust devils occur relatively rarely and the sediment fluxes are probably lower compared to smaller dust devils, their contribution to the background dust opacity by dust devils on Mars could be at least regionally large due to their longer lifetimes and ability of dust lifting into high atmospheric layers.  相似文献   

8.
The European Space Agency’s Rosetta spacecraft, en route to a 2014 encounter with comet 67P/Churyumov-Gerasimenko, made a gravity assist swing-by of Mars on 25 February 2007, closest approach being at 01:54 UT. The Alice instrument on board Rosetta, a lightweight far-ultraviolet imaging spectrograph optimized for in situ cometary spectroscopy in the 750-2000 Å spectral band, was used to study the daytime Mars upper atmosphere including emissions from exospheric hydrogen and oxygen. Offset pointing, obtained five hours before closest approach, enabled us to detect and map the H i Lyman-α and Lyman-β emissions from exospheric hydrogen out beyond 30,000 km from the planet’s center. These data are fit with a Chamberlain exospheric model from which we derive the hydrogen density at the 200 km exobase and the H escape flux. The results are comparable to those found from the Ultraviolet Spectrometer experiment on the Mariner 6 and 7 fly-bys of Mars in 1969. Atomic oxygen emission at 1304 Å is detected at altitudes of 400-1000 km above the limb during limb scans shortly after closest approach. However, the derived oxygen scale height is not consistent with recent models of oxygen escape based on the production of suprathermal oxygen atoms by the dissociative recombination of .  相似文献   

9.
Spectral gravity wave parameterization suitable for planetary thermospheres applied to wind and temperature from Mars Climate Database reveals enormously strong drag incompatible with the wind distribution. It points out to a possible wind reversal in the 110-140 km layer similar to the one in the Earth’s lower thermosphere.  相似文献   

10.
Laboratory simulations using the Arizona State University Vortex Generator (ASUVG) were run to simulate sediment flux in dust devils in terrestrial ambient and Mars-analog conditions. The objective of this study was to measure vortex sediment flux in the laboratory to yield estimations of natural dust devils on Earth and Mars, where all parameters may not be measured. These tests used particles ranging from 2 to 2000 μm in diameter and 1300 to 4800 kg m−3 in density, and the results were compared with data from natural dust devils on Earth and Mars. Typically, the cores of dust devils (regardless of planetary environment) have a pressure decrease of ∼0.1-1.5% of ambient atmospheric pressure, which enhances the lifting of particles from the surface. Core pressure decreases in our experiments ranged from ∼0.01% to 5.00% of ambient pressure (10 mbar Mars cases and 1000 mbar for Earth cases) corresponding to a few tenths of a millibar for Mars cases and a few millibars for Earth cases. Sediment flux experiments were run at vortex tangential wind velocities of 1-45 m s−1, which typically correspond to ∼30-70% above vortex threshold values for the test particle sizes and densities. Sediment flux was determined by time-averaged measurements of mass loss for a given vortex size. Sediment fluxes of ∼10−6-100 kg m−2 s−1 were obtained, similar to estimates and measurements for fluxes in dust devils on Earth and Mars. Sediment flux is closely related to the vortex intensity, which depends on the strength of the pressure decrease in the core (ΔP). This study found vortex size is less important for lifting materials because many different diameters can have the same ΔP. This finding is critical in scaling the laboratory results to natural dust devils that can be several orders of magnitude larger than the laboratory counterparts.  相似文献   

11.
S.M. Metzger  M.C. Towner 《Icarus》2011,214(2):766-772
In situ (mobile) sampling of 33 natural dust devil vortices reveals very high total suspended particle (TSP) mean values of 296 mg m−3 and fine dust loadings (PM10) mean values ranging from 15.1 to 43.8 mg m−3 (milligrams per cubic meter). Concurrent three-dimensional wind profiles show mean tangential rotation of 12.3 m s−1 and vertical uplift of 2.7 m s−1 driving mean vertical TSP flux of 1689 mg m−3 s−1 and fine particle flux of ∼1.0 to ∼50 mg m−3 s−1. Peak PM10 dust loading and flux within the dust column are three times greater than mean values, suggesting previous estimates of dust devil flux might be too high. We find that deflation rates caused by dust devil erosion are ∼2.5-50 μm per year in dust devil active zones on Earth. Similar values are expected for Mars, and may be more significant there where competing erosional mechanisms are less likely.  相似文献   

12.
Bruce A. Cantor 《Icarus》2007,186(1):60-96
From 15 September 1997 through 21 January 2006, only a single planet-encircling martian dust storm was observed by MGS-MOC. The onset of the storm occurred on 26 June 2001 (Ls=184.7°), earliest recorded to date. It was initiated in the southern mid-to-low latitudes by a series of local dust storm pulses that developed along the seasonal cap edge in Malea and in Hellas basin (Ls=176.2°-184.4°). The initial expansion of the storm, though asymmetric, was very rapid in all directions (3-32 m s−1). The main direction of propagation, however, was to the east, with the storm becoming planet encircling in the southern hemisphere on Ls=192.3°. Several distinct centers of active dust lifting were associated with the storm, with the longest persisting for 86 sols (Syria-Claritas). These regional storms helped generate and sustain a dust cloud (“haze”), which reached an altitude of about 60 km and a peak opacity of τdust∼5.0. By Ls=197.0°, the cloud had encircled the entire planet between 59.0° S and 60.0° N, obscuring all but the largest volcanoes. The decay phase began around Ls∼200.4° with atmospheric dust concentrations returning to nominal seasonal low-levels at Ls∼304.0°. Exponential decay time constants ranged from 30-117 sols. The storm caused substantial regional albedo changes (darkening and brightening) as a result of the redistribution (removal and deposition) of a thin veneer of surface dust at least 0.1-11.1 μm thick. It also caused changes in meteorological phenomena (i.e., dust storms, dust devils, clouds, recession of the polar caps, and possibly surface temperatures) that persisted for just a few weeks to more than a single Mars year. The redistribution of dust by large annual regional storms might help explain the long period (∼30 years) between the largest planet-encircling dust storms events.  相似文献   

13.
We present here the annual behavior of atmospheric water vapor on Mars, as observed by the OMEGA spectrometer on board Mars Express during its first martian year. We consider all the different features of the cycle of water vapor: temporal evolution, both at a seasonal and at a diurnal scale; longitudinal distribution; and the vertical profile, through the variations in the saturation height. We put our results into the context of the current knowledge on the water cycle through a systematic comparison with the already published datasets. The seasonal behavior is in very good agreement with past and simultaneous retrievals both qualitatively and quantitatively, within the uncertainties. The average water vapor abundance during the year is ∼10 pr. μm, with an imbalance between northern and southern hemisphere, in favor of the first. The maximum of activity, up to 60 pr. μm, occurs at high northern latitudes during local summer and shows the dominance of the northern polar cap within the driving processes of the water cycle. A corresponding maximum at southern polar latitudes during the local summer is present, but less structured and intense. It reaches ∼25 pr. μm at its peak. Global circulation has some influence in shaping the water cycle, but it is less prominent than the results from previous instruments suggest. No significant correlation between water vapor column density and local hour is detected. We can constrain the amount of water vapor exchanged between the surface and the atmosphere to few pr. μm. This is consistent with recent results by OMEGA and PFS-LW. The action of the regolith layer on the global water cycle seems to be minor, but it cannot be precisely constrained. The distribution of water vapor on the planet, after removing the topography, shows the already known two-maxima system, over Tharsis and Arabia Terra. However, the Arabia Terra increase is quite fragmented compared with previous observations. A deep zone of minimum separates the two regions. The saturation height of water vapor is mainly governed by the variations of insolation during the year. It is confined within 5-15 km from the surface at aphelion, while in the perihelion season it stretches up to 55 km of altitude.  相似文献   

14.
Recent geological observations in the northern mid-latitudes of Mars show evidence for past glacial activity during the late Amazonian, similar to the integrated glacial landsystems in the Dry Valleys of Antarctica. The large accumulation of ice (many hundreds of meters) required to create the observed glacial deposits points to significant atmospheric precipitation, snow and ice accumulation, and glacial flow. In order to understand the climate scenario required for these conditions, we used the LMD (Laboratoire de Météorologie Dynamique) Mars GCM (General Circulation Model), which is able to reproduce the present-day water cycle, and to predict past deposition of ice consistent with geological observations in many cases. Prior to this analysis, however, significant mid-latitude glaciation had not been simulated by the model, run under a range of parameters.In this analysis, we studied the response of the GCM to a wider range of orbital configurations and water ice reservoirs, and show that during periods of moderate obliquity (? = 25-35°) and high dust opacity (τdust = 1.5-2.5), broad-scale glaciation in the northern mid-latitudes occurs if water ice deposited on the flanks of the Tharsis volcanoes at higher obliquity is available for sublimation. We find that high dust contents of the atmosphere increase its water vapor holding capacity, thereby moving the saturation region to the northern mid-latitudes. Precipitation events are then controlled by topographic forcing of stationary planetary waves and transient weather systems, producing surface ice distribution and amounts that are consistent with the geological record. Ice accumulation rates of ∼10 mm yr−1 lead to the formation of a 500-1000 m thick regional ice sheet that will produce glacial flow patterns consistent with the geological observations.  相似文献   

15.
T.J. Ringrose  M.C. Towner 《Icarus》2003,163(1):78-87
Dust devil data from Mars is limited by a lack of data relating to diurnal dust devil behaviour. Previous work looking at the Viking Lander meteorological data highlighted seasonal changes in temporal occurrence of dust devils and gave an indication of typical dust devil diameter, size, and internal dynamics. The meteorological data from Viking Lander 2 for sols 1 to 60 have been revisited to provide detailed diurnal dust devil statistics. Results of our analysis show that the Viking Lander 2 experienced a possible 38 convective vortices in the first 60 sols of its mission with a higher occurrence in the morning compared to Earth, possibly as a result of turbulence generated by the Lander body. Dust devil events have been categorised by statistical confidence and intensity. Some initial analysis and discussion of the results is also presented. Assuming a similar dust loading to the vortices seen by Mars Pathfinder, it is estimated that the amount of dust lofted in the locality of the Lander is approximately 800 ± 10 kgsol−1km−2.  相似文献   

16.
Ozone is a tracer of photochemistry in the atmosphere of Mars and an observable used to test predictions of photochemical models. We present a comparison of retrieved ozone abundances on Mars using ground-based infrared heterodyne measurements by NASA Goddard Space Flight Center’s Heterodyne Instrument for Planetary Wind And Composition (HIPWAC) and space-based Mars Express Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars (SPICAM) ultraviolet measurements. Ozone retrievals from simultaneous measurements in February 2008 were very consistent (0.8 μm-atm), as were measurements made close in time (ranging from <1 to >8 μm-atm) during this period and during opportunities in October 2006 and February 2007. The consistency of retrievals from the two different observational techniques supports combining the measurements for testing photochemistry-coupled general circulation models and for investigating variability over the long-term between spacecraft missions. Quantitative comparison with ground-based measurements by NASA/GSFC’s Infrared Heterodyne Spectrometer (IRHS) in 1993 reveals 2-4 times more ozone at low latitudes than in 2008 at the same season, and such variability was not evident over the shorter period of the Mars Express mission. This variability may be due to cloud activity.  相似文献   

17.
The interval from Ls = 330° in Mars Year (MY) 26 until Ls = 84° in MY 27 has been used to compare and validate measurements from the Mars Global Surveyor Thermal Emission Spectrometer (TES) and the Mars Express Planetary Fourier Spectrometer (PFS). We studied differences between atmospheric temperatures observed by the two instruments. The best agreement between atmospheric temperatures was found at 50 Pa between 40°S and 40°N latitude, where differences were within ±5 K. For other atmospheric levels, differences as large as ∼25 K were observed between the two instruments at some locations. The largest temperature differences occurred mainly over the Hellas Planitia, Argyre Planitia, Tharsis and Valles Marineris regions.On this basis we report on the variability of the martian atmosphere during the 5.5 martian years of Mars climatology obtained by combining the two data sets from TES and PFS. Atmospheric temperatures at 50 Pa responded to the global-scale dust storms of MY 25 and in MY 28 raising temperatures from ∼220 K to ∼250 K during the daytime. An atmospheric temperature of ∼140 K at 50 Pa was observed poleward of 70°N during northern winter and poleward of 60°S during southern winter each year in both the PFS and TES results. Water vapor observed by the two spectrometers showed consistent seasonal and latitudinal variations.  相似文献   

18.
Jane L. Fox  Aleksander Ha? 《Icarus》2010,208(1):176-191
The production of energetic and escaping neutral O atoms at the current epoch in the martian thermosphere is thought to be dominated by the dissociative recombination process:
  相似文献   

19.
Long-term MGS drag density observations at 390 km reveal variations of the density with season LS (by a factor of 2) and solar activity index F10.7 (by a factor of 3 for F10.7 = 40-100). According to Forbes et al. (Forbes, J.M., Lemoine, F.G., Bruinsma, S.L., Smith, M.D., Zhang, X. [2008]. Geophys. Res. Lett. 35, L01201, doi:10.1029/2007GL031904), the variation with F10.7 reflects variations of the exospheric temperature from 192 to 284 K. However, the derived temperature range corresponds to variation of the density at 390 km by a factor of 8, far above the observed factor of 3. The recent thermospheric GCMs agree with the derived temperatures but do not prove their adequacy to the MGS densities at 390 km. A model used by Forbes et al. neglects effects of eddy diffusion, chemistry and escape on species densities above 138 km. We have made a 1D-model of neutral and ion composition at 80-400 km that treats selfconsistently chemistry and transport of species with F10.7, T, and [CO2]80 km as input parameters. Applying this model to the MGS densities at 390 km, we find variation of T from 240 to 280 K for F10.7 = 40 and 100, respectively. The results are compared with other observations and models. Temperatures from some observations and the latest models disagree with the MGS densities at low and mean solar activity. Linear fits to the exospheric temperatures are T = 122 + 2.17F10.7 for the observations, T = 131 + 1.46F10.7 for the latest models, and T = 233 + 0.54F10.7 for the MGS densities at 390 km. Maybe the observed MGS densities are overestimated near solar minimum when they are low and difficult to measure. Seasonal variations of Mars’ thermosphere corrected for the varying heliocentric distance are mostly due to the density variations in the lower and middle atmosphere and weakly affect thermospheric temperature. Nonthermal escape processes for H, D, H2, HD, and He are calculated for the solar minimum and maximum conditions.Another problem considered here refers to Mars global photochemistry in the lower and middle atmosphere. The models gave too low abundances of CO, smaller by an order of magnitude than those observed. Our current work shows that modifications in the boundary conditions proposed by Zahnle et al. (Zahnle, K., Haberle, R.M., Catling, D.C., Kasting, J.F. [2008]. J. Geophys. Res. 113, E11004, doi:10.1029/2008JE003160) are reasonable but do not help to solve the problem.  相似文献   

20.
We report on new retrievals of water vapor column abundances from the Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) data. The new retrievals are from the TES nadir data taken above the ‘cold’ surface areas in the North polar region (Tsurf < 220 K, including seasonal frost and permanent ice cap) during spring and summer seasons, where retrievals were not performed initially. Retrievals are possible (with some modifications to the original algorithm) over cold surfaces overlaid by sufficiently warm atmosphere. The retrieved water vapor column abundances are compared to the column abundances observed by other spacecrafts in the Northern polar region during spring and summer and good agreement is found. We detect an annulus of water vapor growing above the edge of the retreating seasonal cap during spring. The formation of the vapor annulus is consistent with the previously proposed mechanism for water cycling in the polar region, according to which vapor released by frost sublimation during spring re-condenses on the retreating seasonal CO2 cap. The source of the vapor in the vapor annulus, according to this model, is the water frost on the surface of the CO2 at the retreating edge of the cap and the frost on the ground that is exposed by the retreating cap. Small contribution from regolith sources is possible too, but cannot be quantified based on the TES vapor data alone. Water vapor annulus exhibits interannual variability, which we attribute to variations in the atmospheric temperature. We propose that during spring and summer the water ice sublimation is retarded by high relative humidity of the local atmosphere, and that higher atmospheric temperatures lead to higher vapor column abundances by increasing the water holding capacity of the atmosphere. Since the atmospheric temperatures are strongly influenced by the atmospheric dust content, local dust storms may be controlling the release of vapor into the polar atmosphere. Water vapor abundances above the residual polar cap also exhibit noticeable interannual variability. In some years abundances above the cap are lower than the abundances outside of the cap, consistent with previous observations, while in the other years the abundances above the cap are higher or similar to abundances outside of the cap. We speculate that the differences may be due to weaker off-cap transport in the latter case, keeping more vapor closer to the source at the surface of the residual cap. Despite the large observed variability in water vapor column abundances in the Northern polar region during spring and summer, the latitudinal distribution of the vapor mass in the atmosphere is very similar during the summer season. If the variability in vapor abundances is caused by the variability of vapor sources across the residual cap then this would mean that they annually contribute relatively little vapor mass to significantly affect the vapor mass budget. Alternatively this may suggest that the vapor variability is caused by the variability of the polar atmospheric circulation. The new water vapor retrievals should be useful in tuning the Global Circulation Models of the martian water cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号