共查询到20条相似文献,搜索用时 13 毫秒
1.
We present the results of a program of comet long-slit spectroscopy with the Kast Dual Spectrograph on the 3-m Shane Telescope at Lick Observatory. A total of 26 comets, from a variety of dynamical families, were observed on 39 different nights from 1996 to 2007. A new statistical method extracted the twilight sky from comet frames, because traditional sky subtraction techniques were inadequate. Because previously published Haser model parent and daughter scale lengths did not fit the data well, unbiased ranges of scale lengths were searched for the best-fitting pairs. Coma gas production rates for OH, CN, C2, C3, NH, NH2, and OH confirmed the widely reported carbon-chain depletion for a sub-class of comets, most notably high-perihelion Jupiter-family comets observed at rh > 1.5 AU, with different behaviors for C2 and C3. Our long-slit spectroscopy data was also adapted for the A(θ)fρ dust production parameter. The assumption that A(θ)fρ is constant throughout the nucleus was not upheld. High dust-to-gas ratios for comets with large perihelia were not a selection effect, and suggest that the dust was released earlier in the formation of the coma than the gas. The dust-to-gas ratio did not exhibit any evolutionary traces between different comet dynamical families. The comet survey illuminates the diversity among comets, including the unusually carbon poor Comet 96P/Machholz. 相似文献
2.
R. Vasundhara 《Icarus》2009,204(1):194-208
The pre-Deep Impact images of Comet Tempel-1 obtained at the Indian Astronomical Observatory are used to investigate the morphology of the dust coma of the comet. We show that the trajectory of a cometary grain under the influence of solar radiation pressure is a reliable diagnostic to estimate its initial velocity. Four main active regions at mean latitudes +45° ± 5°(D), 0° ± 5° (E),−30° ± 5°(A) and−60° ± 5°(F) are found to explain the morphology of the dust coma in the ground-based and published images obtained by the High Resolution Instrument(HRI) cameras aboard the Deep Impact flyby spacecraft. From a χ2 fit of the intensity distribution in the observed and the simulated images, we derive the fraction of the productivity of the active vents to the total dust emission of the comet to be 27%. Of this the southern source alone accounts for 19.8%. The grains are found to be ejected with a velocity distribution with an upper limit of 70 ± 7 m s−1. However, the broad region ‘A’ appears to eject slower grains with an upper limit of 24 ± 2.5 m s−1. This source, that is active throughout the cycle is likely to be driven by CO2 sublimation. We compute the dependence of the percentage contribution of the southern source on the heliocentric distance and show that this ratio varies over the apparition and reaches a maximum at around 260 days before perihelion. The published images of the nucleus of Comet Tempel-1 show significant departure from sphericity. Therefore, the torque exerted by the enhanced activity of the southern region may be significant enough to produce changes in the rotational state of the nucleus before each perihelion passage. 相似文献
3.
The neutral gas environment of a comet is largely influenced by dissociation of parent molecules created at the surface of the comet and collisions of all the involved species. We compare the results from a kinetic model of the neutral cometary environment with measurements from the Neutral Mass Spectrometer and the Dust Impact Detection System onboard the Giotto spacecraft taken during the fly-by at Comet 1P/Halley in 1986. We also show that our model is in good agreement with contemporaneous measurements obtained by the International Ultraviolet Explorer, sounding rocket experiments, and various ground based observations.The model solves the Boltzmann equation with a Direct Simulation Monte Carlo technique (Tenishev, V., Combi, M., Davidsson, B. [2008]. Astrophys. J. 685, 659-677) by tracking trajectories of gas molecules and dust grains under the influence of the comet’s weak gravity field with momentum exchange among particles modeled in a probabilistic manner. The cometary nucleus is considered to be the source of dust and the parent species (in our model: H2O, CO, H2CO, CO2, CH3OH, C2H6, C2H4, C2H2, HCN, NH3, and CH4) in the coma. Subsequently our model also tracks the corresponding dissociation products (H, H2, O, OH, C, CH, CH2, CH3, N, NH, NH2, C2, C2H, C2H5, CN, and HCO) from the comet’s surface all the way out to 106 km.As a result we are able to further constrain cometary the gas production rates of CO (13%), CO2 (2.5%), and H2CO (1.5%) relative to water without invoking unknown extended sources. 相似文献
4.
Anita L. Cochran 《Icarus》2008,198(1):181-188
We report on the detection of atomic oxygen lines in the spectra of 8 comets. These forbidden lines are a result of the photodissociation of the parent oxygen-bearing species directly into an excited state. We used high resolution spectra obtained at the McDonald Observatory 2.7 m telescope to resolve the cometary oxygen lines from the telluric oxygen lines and from other cometary emissions. We find that the relative intensities of the two red lines (6300.304 and 6363.776 Å) are consistent with theory. The green line (5577.339 Å) has an intensity which is about 10% of the sum of the intensities of the two red lines. We show that collisional quenching may be important in the inner coma. If we assume the relative excitation rates of potential parents which have appeared in the literature, then H2O would be the parent of the cometary green oxygen line. However, those rates have been questioned. We measured the width of the three oxygen lines and find that the green line is wider than either of the two red lines. The finding of a wider line could imply a different parent for the green and red lines. However, the constancy of the green to red line flux ratio suggests the parent is the same for these lines but that the exciting photons have different energies. 相似文献
5.
The European Space Agency (ESA) Rosetta spacecraft (Schulz, R., Alexander, C., Boehnhardt, H., Glassmeier, K.H. (Eds.) [2009]. “ROSETTA - ESA”) will encounter Comet 67P/Churyumov-Gerasimenko in 2014 and spend the next 18 months in the vicinity of the comet, permitting very high spatial and spectral resolution observations of the coma and nucleus. During this time, the heliocentric distance of the comet will change from ∼3.5 AU to ∼1.3 AU, accompanied by an increasing temperature of the nucleus and the development of the coma. The Microwave Instrument for the Rosetta Orbiter (MIRO) will observe the ground-state rotational transition (110-101) of H216O at 556.936 GHz, the two isotopologues H217O and H218O and other molecular transitions in the coma during this time (Gulkis, S. et al., [2007]. MIRO: Microwave Instrument for Rosetta Orbiter. Space Sci. Rev. 128, 561-597).The aim of this study is to simulate the water line spectra that could be obtained with the MIRO instrument and to understand how the observed line spectra with various viewing geometries can be used to study the physical conditions of the coma and the water excitation processes throughout the coma. We applied an accelerated Monte Carlo method to compute the excitations of the seven lowest rotational levels (101, 110, 212, 221, 303, 312, and 321) of ortho-water using a comet model with spherically symmetric water outgassing, density, temperature and expansion velocity at three different heliocentric distances 1.3 AU, 2.5 AU, and 3.5 AU. Mechanisms for the water excitation include water-water collisions, water-electron collisions, and infrared pumping by solar radiation.Synthetic line spectra are calculated at various observational locations and directions using the MIRO instrument parameters. We show that observations at varying viewing distances from the nucleus and directions have the potential to give diagnostic information on the continuum temperature and water outgassing rates at the surface of the nucleus, and the gas density, expansion velocity, and temperature of the coma as a function of distance from the nucleus. The gas expansion velocity and temperature affect the spectral line width and frequency shift of the line from the rest frequency, while the gas density (which is directly related to the outgassing rate) and the line excitation temperature determine the antenna temperature of the absorption and emission signal in the line profile. 相似文献
6.
The gas transport through non-volatile random porous media is investigated numerically. We extend our previous research of the transport of molecules inside the uppermost layer of a cometary surface (
[Skorov and Rickman, 1995] and [Skorov et al., 2001]). We assess the validity of the simplified capillary model and its assumptions to simulate the gas flux trough the porous dust mantle as it has been applied in cometary physics. A microphysical computational model for molecular transport in random porous media formed by packed spheres is presented. The main transport characteristics such as the mean free path distribution and the permeability are calculated for a wide range of model parameters and compared with those obtained by more idealized models. The focus in this comparison is on limitations inherent in the capillary model. Finally a practical way is suggested to adjust the algebraic Clausing formula taking into consideration the nonlinear dependence of permeability on layer porosity. The retrieved dependence allows us to accurately calculate the permeability of layers whose thickness and porosity vary in the range of values expected for the near-surface regions of a cometary nucleus. 相似文献
7.
The effects of a sample of 1300 individual stellar encounters spanning a wide range of parameter values (mass, velocity and encounter distance) are investigated. Power law fits for the number of injected comets demonstrate the long range effect of massive stars, whereas light stars affect comets mainly along their tracks. Similarly, we show that the efficiency of a star to fill the phase space region of the Oort cloud where the Galactic tides are able to inject comets into the observable region - the so-called “tidally active zone” (TAZ) - is also strongly dependent on the stellar mass. Power laws similar to those for direct injection are obtained for the efficiency of stars to fill the TAZ. This filling of the tidally active zone is crucial for the long term flux of comets from the Oort cloud. Based on long-term Monte Carlo simulations using a constant Galactic tide and a constant flux of stellar encounters, but neglecting the detailed effects of planetary perturbations, we show that this flux essentially results from a two step mechanism: (i) the stellar injection of comets into the TAZ; and (ii) the tidal injection of TAZ comets into the loss cone. We find that single massive stars are able to induce “comet drizzles” - corresponding to an increase of the cometary flux of about 40% - which may last for more than 100 Myr by filling the TAZ to a higher degree than normal. It appears that the stars involved in this process are the same that cause comet showers. 相似文献
8.
We report on observations of the dust trail of Comet 67P/Churyumov-Gerasimenko (CG) in visible light with the Wide Field Imager at the ESO/MPG 2.2 m telescope at 4.7 AU before aphelion, and at with the MIPS instrument on board the Spitzer Space Telescope at 5.7 AU both before and after aphelion. The comet did not appear to be active during our observations. Our images probe large dust grains emitted from the comet that have a radiation pressure parameter β<0.01. We compare our observations with simulated images generated with a dynamical model of the cometary dust environment and constrain the emission speeds, size distribution, production rate and geometric albedo of the dust. We achieve the best fit to our data with a differential size distribution exponent of −4.1, and emission speeds for a β=0.01 particle of 25 m/s at perihelion and 2 m/s at 3 AU. The dust production rate in our model is on the order of 1000 kg/s at perihelion and 1 kg/s at 3 AU, and we require a dust geometric albedo between 0.022 and 0.044. The production rates of large (>) particles required to reproduce the brightness of the trail are sufficient to also account for the coma brightness observed while the comet was inside 3 AU, and we infer that the cross-section in the coma of CG may be dominated by grains of the order of . 相似文献
9.
Michael Solontoi ?eljko Ivezi? Mark Claire Andrew Becker Patrick B. Hall Robert H. Lupton Tom Quinn Don Schneider 《Icarus》2010,205(2):605-618
Using a sample of serendipitously discovered active comets in the Sloan Digital Sky Survey (SDSS), we develop well-controlled selection criteria for greatly increasing the efficiency of comet identification in the SDSS catalogs. After follow-up visual inspection of images to reject remaining false positives, the total sample of SDSS comets presented here contains 19 objects, roughly one comet per 10 million other SDSS objects. The good understanding of selection effects allows a study of the population statistics, and we estimate the apparent magnitude distribution to r∼18, the ecliptic latitude distribution, and the comet distribution in SDSS color space. The most surprising results are the extremely narrow range of colors for comets in our sample (e.g. root-mean-square scatter of only ∼0.06 mag for the g-r color), and the similarity of comet colors to those of jovian Trojans. We discuss the relevance of our results for upcoming deep multi-epoch optical surveys such as the Dark Energy Survey, Pan-STARRS, and the Large Synoptic Survey Telescope (LSST), and estimate that LSST may produce a sample of about 10,000 comets over its 10-year lifetime. 相似文献
10.
This paper describes the first computations of dust distributions in the vicinity of an active cometary nucleus, using a multidimensional Direct Simulation Monte Carlo Method (DSMC). The physical model is simplistic: spherical grains of a broad range of sizes are liberated by H2O sublimation from a selection of nonrotating sunlit spherical nuclei, and submitted to the nucleus gravity, the gas drag, and the solar radiation pressure. The results are compared to those obtained by the previously described Dust Multi-Fluid Method (DMF) and demonstrate an excellent agreement in the regions where the DMF is usable. Most importantly, the DSMC allows the discovery of hitherto unsuspected dust coma properties in those cases which cannot be treated by the DMF. This leads to a thorough reconsideration of the properties of the near-nucleus dust dynamics. In particular, the results show that (1) none of the three forces considered here can be neglected a priori, in particular not the radiation pressure; (2) hitherto unsuspected new families of grain trajectories exist, for instance trajectories leading from the nightside surface to the dayside coma; (3) a wealth of balistic-like trajectories leading from one point of the surface to another point exist; on the dayside, such trajectories lead to the formation of “mini-volcanoes.” The present model and results are discussed carefully. It is shown that (1) the neglected forces (inertia associated with a nucleus rotation, solar tidal force) are, in general, not negligible everywhere, and (2) when allowing for these additional forces, a time-dependent model will, in general, have to be used. The future steps of development of the model are outlined. 相似文献
11.
Leif Holmlid 《Icarus》2006,180(2):555-564
The long-lived excited state of matter called Rydberg Matter (RM) may explain several spectroscopic features in space, like the diffuse interstellar bands (DIBs) and the unidentified infrared bands (UIR, UIB). RM is here used to interpret some previously unexplained or inconsistent features in comets: (1) line absorption in the emission from the nucleus, (2) IR band emission from the coma, (3) selective and variable molecular line emission from the coma, (4) extended sources of molecules in the coma, (5) degree of linear polarization of light scattered from the coma. (1) The unexplained IR absorptions observed in the flyby of the nucleus of the Comet Borrelly agree well with RM emission bands observed by stimulated emission in the laboratory. It is proposed that RM is the so-called ultrared matter or at least formed from it. (2) The IR bands previously attributed to silicate particles are shown to be better described by RM theory. Transitions in atoms in RM are shown to dominate. (3) The inverted RM medium will optically amplify light from molecular transitions in the comet comae, in agreement with observations that many of the molecular IR emission lines lie within the emission bands from RM, or much too close to Rydberg transitions to be accidental. (4) The unexplained extended sources observed, e.g., for CO are proposed to be due to release of molecules previously incorporated in the RM clusters at low temperature. Such clusters may be the very small particles observed by space probes. (5) Finally, the largely unexplained measurements of the degree of linear polarization of scattered sunlight from comets are explained as due to scattering by the planar RM clusters. Quantitative agreement is demonstrated. 相似文献
12.
Spitzer Infrared Spectrograph observations of the Deep Impact experiment in July 2005 have created a new paradigm for understanding the infrared spectroscopy of primitive solar nebular (PSN) material—the ejecta spectrum is the most detailed ever observed in cometary material. Here we take the composition model for the material excavated from Comet 9P/Tempel 1's interior and successfully apply it to Infrared Space Observatory spectra of material emitted from Comet C/1995 O1 (Hale-Bopp) and the circumstellar material found around the young stellar object HD 100546. Comparison of our results with analyses of the cometary material returned by the Stardust spacecraft from Comet 81P/Wild 2, the in situ Halley flyby measurements, and the Deep Impact data return provides a fundamental cross-check for the spectral decomposition models presented here. We find similar emission signatures due to silicates, carbonates, phyllosilicates, water ice, amorphous carbon, and sulfides in the two ISO-observed systems but there are significant differences as well. Compared to Tempel 1, no Fe-rich olivines and few crystalline pyroxenes are found in Hale-Bopp and HD 100546. The YSO also lacks amorphous olivine, while being super-rich in amorphous pyroxene. All three systems show substantial emission due to polycyclic aromatic hydrocarbons. The silicate and PAH material in Hale-Bopp is clearly less processed than in Tempel 1, indicating an earlier age of formation for Hale-Bopp. The observed material around HD 100546 is located ∼13 AU from the central source, and demonstrates an unusual composition due to either a very different, non-solar starting mix of silicates or due to disk material processing during formation of the interior disk cavity and planet(s) in the system. 相似文献
13.
We present a non-invasive technique for measuring the thermal conductivity of fragile and sensitive materials. In the context of planet-formation research, the investigation of the thermal conductivity of porous dust aggregates provide important knowledge about the influence of heating processes, like internal heating by radioactive decay of short-lived nuclei, e.g. 26Al, on the evolution and growth of planetesimals. The determination of the thermal conductivity was performed by a combination of laboratory experiments and numerical simulations. An IR camera measured the temperature distribution of the sample surface heated by a well-characterized laser beam. The thermal conductivity as free parameter in the model calculations, exactly emulating the experiment, was varied until the experimental and numerical temperature distributions showed best agreement. Thus, we determined for three types of porous dust samples, consisting of spherical, 1.5 μm-sized SiO2 particles, with volume filling factors in the range of 15-54%, the thermal conductivity to be 0.002-0.02 W m−1 K−1, respectively. From our results, we can conclude that the thermal conductivity mainly depends on the volume filling factor. Further investigations, which are planned for different materials and varied contact area sizes (produced by sintering), will prove the appropriate dependencies in more detail. 相似文献
14.
A summary is presented of our spectroscopic survey of comets extending for roughly 19 years from 1985 to 2004 comprising data for 92 comets of which 50 showed good emissions. All data were re-analyzed using consistent reduction techniques. Our observations of comets over several apparitions and comets observed over an extended period indicate no major changes in compositional classification. To our regret, no major unidentified cometary features were found in our surveyed spectral region of 5200-10400 Å. Absolute production rates for the dominant parent molecule H2O and the daughter species C2, NH2 and CN are determined within the limits of the Haser model as are values for the dust continuum, Afρ. From these data, production rate ratios are calculated for C2/H2O, NH2/H2O, CN/H2O and Afρ/H2O. Excluding the odd Comets Yanaka (1988r), 43P/Wolf-Harrington and 19P/Borrelly, with unusual spectra, our set of comets exhibited relatively uniform composition. Detailed analyses of our data resulted in four taxonomic classes:
- -
- Comets of typical composition (∼70%); exhibiting typical ratios with respect to water of C2, NH2, and CN.
- -
- Tempel 1 type (∼22%); having a deficiency in C2 but normal NH2 abundance.
- -
- G-Z type (∼6%); having both low C2 and NH2 ratios.
- -
- The unusual object Yanaka (1988r) (∼2%?); no detectable C2 or CN emission but normal NH2.
15.
The nucleus of Comet C/2001 A2 (LINEAR) split several times during its recent apparition, presenting an unusual opportunity to search for chemical differences in freshly exposed material. We conducted this search using NIRSPEC at the W.M. Keck Observatory on four dates in 2001: 9.5 and 10.5 July and 4.4 and 10.5 August. We detected the R0 and R1 lines of the ν3 vibrational band of CH4 near 3.3 μm on all dates. The R2 line was detected on 4.4 and 10.5 August. When we compare production rates of CH4 to H2O, we find evidence of a significant enhancement in August relative to that found in July. H2CO was securely detected via its ν1 and ν5 bands on 9.5 July. On 10.5 July, H2CO emission was much weaker, and its mixing ratio had dropped by a factor of about four. The mixing ratios for other detected volatile species did not change significantly over the course of the observations. We discuss the implications of this evidence for chemical heterogeneity in the nucleus of Comet C/2001 A2. 相似文献
16.
We present the first results of measurements on solid particles performed at the Instituto de Astrof?´sica de Andaluc?´a (IAA) cosmic dust laboratory located in Granada, Spain. The laboratory apparatus measures the complete scattering matrix as a function of the scattering angle of aerosol particles. The measurements can be performed at a wavelength (λ) of 483, 488, 520, 568, or 647 nm in the scattering angle range from 3° to 177°. Results of special test experiments are presented which show that our experimental results for scattering matrices are not significantly contaminated by multiple scattering and that the sizes/shapes of the particles do not change during the measurements. Moreover, the measured scattering matrix for a sample of green clay particles is compared with measurements previously performed in the Amsterdam light scattering setup for the same sample. New measurements on a white clay sample at 488 and 647 nm are also presented. The apparatus is devoted to experimentally studying the angle dependence of scattering matrices of dust samples of astrophysical interest. Moreover, there is a great interest in similar studies of aerosols that can affect the radiative balance of the atmosphere of the Earth and other planets such as silicates, desert dust, volcanic ashes, and carbon soot particles. 相似文献
17.
We present laboratory mid-infrared transmission/absorption spectra obtained from matrix of the hydrated Murchison CM meteorite experimentally shocked at peak pressures of 10-49 GPa, and compare them to astronomical observations of circumstellar dust in different stages of the formation of planetary systems. The laboratory spectra of the Murchison samples exhibit characteristic changes in the infrared features. A weakly shocked sample (shocked at 10 GPa) shows almost no changes from the unshocked sample dominated by hydrous silicate (serpentine). Moderately shocked samples (21-34 GPa) have typical serpentine features gradually replaced by bands of amorphous material and olivine with increasing shock pressure. A strongly shocked sample (36 GPa) shows major changes due to decomposition of the serpentine and due to devolatilization. A shock melted sample (49 GPa) shows features of olivine recrystallized from melted material.The infrared spectra of the shocked Murchison samples show similarities to astronomical spectra of dust in various young stellar objects and debris disks. The spectra of highly shocked Murchison samples (36 and 49 GPa) are similar to those of dust in the debris disks of HD113766 and HD69830, and the transitional disk of HD100546. The moderately shocked samples (21-34 GPa) exhibit spectra similar to those of dust in the debris disks of Beta Pictoris and BD+20307, and the transitional disk of GM Aur. An average of the spectra of all Murchison samples (0-49 GPa) has a similarity to the spectrum of the older protoplanetary disk of SU Auriga. In the gas-rich transitional and protoplanetary disks, the abundances of amorphous silicates and gases have widely been considered to be a primary property. However, our study suggests that impact processing may play a significant role in generating secondary amorphous silicates and gases in those disks. Infrared spectra of the shocked Murchison samples also show similarities to the dust from comets (C/2002 V1, C/2001 RX14, 9P/Tempel 1, and Hale Bopp), suggesting that the comets also contain shocked Murchison-like material. 相似文献
18.
Small-scale dust structures, SDSs, altogether ∼35 events with extent ∼30-220 km, have been recognized owing to electric field records, mostly near the closest approach of Vega-2 to Halley's nucleus. Several (8-9) morphological forms of SDS have been identified, and all they make one family. Among the family members, the key form (with respect to which, all other forms can be regarded as degenerate) is a sequence of 3-5 dust clouds. The morphological forms represent various Vega-2 passes through SDSs at different stages of development. SDSs observable as the key form consisted of several fairly regularly spaced dust subpopulations, whose plane of symmetry was parallel to the comet orbit plane. That regularity together with specific features of morphological forms strongly constrain disintegration scenarios and dynamics of fragments, and allow to draw a number of conclusions, the main of which are: SDS parent bodies were ice-free dust aggregates lifted from the nucleus near the comet perihelion, whose masses were in the range ∼0.1-1 of the biggest emitted mass (mass of a body accelerated to the escape velocity, i.e., ∼300-1500 kg); the disintegration scenario comprised a few steps, and the first-step disintegration consisted mainly in consecutive detachments of biggest first-step fragments (BF-SFs) from the parent body; a SDS observable as the key form included the dust minitail of parent body and a few BF-SF minitails, the former one being longer than the latter ones; SDS parent bodies had a fractal-like internal structure, and the BF-SF mass was a few percent of the parent body mass; the thermal conductivity of SDS parent body was less than ∼0.4 W m−1 K−1 or so, while the latent heat of gluing organics was roughly 80 kJ mol−1; the disintegration mechanism was a combination of sintering and sublimation of organics. The multistep disintegration of SDS parent bodies can be reconciled with the basically one-step disintegration of aggregates responsible for the dust boundary (Oberc, P., Icarus 1996, 124, 195-208). The fractal-like structure and the relation between BF-SF mass and parent body mass are in agreement with predictions from the Weidenschilling model of comet formation. Large ice-free dust bodies, in particular SDS parent bodies, can be identified with refractory boulders postulated by some comet nucleus models. 相似文献
19.
This work is dedicated to the application to 67P/Churyumov-Gerasimenko of a new quasi-3D approach for non-spherically shaped comet nuclei with the aim to interpret the current activity of the comet in terms of initial characteristics and to predict shape and internal stratification evolution of the nucleus. The model is applied to differently shaped nuclei taking into account the characteristics of Comet 67P/Churyumov-Gerasimenko deduced from observations. We focus our attention on the combined effects that shapes and obliquity have on the comet surface and sub-surface evolution. We discuss the results in terms of activity, local dust mantle formation and disruption, erosion of the surface and internal stratigraphy.The results show that differently shaped nuclei can have different internal structures leading to different activity patterns and behaviors. Our calculations have shown that local variations in the dust and gas fluxes can be induced by the nucleus shape. The distribution of “active” areas on Comet 67P/Churyumov-Gerasimenko is different because of different shapes, reflecting the illumination conditions on the surface. These shapes can influence the structure of the inner coma, but the coma far away from the nucleus is only marginally affected by the nucleus shape. However, different comet behaviors can arise from differently shaped comet nuclei, especially in terms of local activity, surface and sub-surface characteristics and properties. The water flux local distribution is the most influenced by the shape as it is directly linked to the illumination. Irregular shapes have large shadowing effects that can result in activity patterns on the comet surface.The effects of different pole directions are discussed to see the relations with the nucleus activity and internal structure. It is shown that the orientation of the rotation axis plays a strong role on the surface evolution of 67P/Churyumov-Gerasimenko, determining seasonal effects on the fluxes. The activity of the comet changes greatly with the nucleus obliquity leading to pre-post-perihelion differences in the activity and seasonal effects. The effects of the dust deposition and crust formation on the cometary activity have also been simulated and are discussed with respect to 67P/Churyumov-Gerasimenko observations. The dust mantling is also strongly obliquity dependent, with different surface distributions of the dust-covered regions according to the different comet pole orientations. Finally, we show that our model can reproduce the fluxes behavior near perihelion in terms of amplitude and asymmetry, and we estimate 20% of the illuminated surface to be active. 相似文献
20.
Michael A. DiSanti Geronimo L. Villanueva Boncho P. Bonev Karen Magee-Sauer Michael J. Mumma 《Icarus》2007,187(1):240-252
The Deep Impact encounter with the Jupiter family Comet 9P/Tempel 1 on UT 2005 July 4 was observed at high spectral resolving power (λ/δλ∼25,000) using the cross-dispersed near-infrared echelle spectrometer (NIRSPEC) at Keck-2. We report the temporal evolution of parent volatiles and dust (simultaneously measured) resulting from the event. Column abundances are presented for H2O and C2H6 beginning 30 min prior to impact (T−30) and ending 50 min following impact (T+50), and for H2O and HCN from T+50 until T+96, in time steps of approximately 6 min post-impact. The ejecta composition was revealed by an abrupt increase in H2O and C2H6 near T+25. This showed C2H6/H2O to be higher than its pre-impact value by a factor 2.4±0.5, while HCN/H2O was unchanged within the uncertainty of the measurements. The mixing ratios for C2H6 and HCN in the ejecta agree with those found in the majority of Oort cloud comets, perhaps indicating a common region of formation. The expanding dust plume was tracked by continuum measurements, both through the 3.5-μm spectral continuum and through 2-μm images acquired with the SCAM slit-viewing camera, and each showed a monotonic increase in continuum intensity following impact. A Monte Carlo model that included dust opacity was applied to the dust coma, and its parameters were constrained by observations; the simulated continuum intensities reproduced both spectral and SCAM data. The relatively sudden appearance of the volatile ejecta signature is attributed to heating of icy grains (perhaps to a threshold temperature) that are decreasingly shadowed by intervening (sunward) dust particles in an optically thick ejecta plume, perhaps coupled with an accelerated decrease in dust optical depth near T+25. 相似文献