共查询到20条相似文献,搜索用时 15 毫秒
1.
We compare three previously independently studied crater morphologies - excess ejecta craters, perched craters, and pedestal craters - each of which has been proposed to form from impacts into an ice-rich surface layer. Our analysis identifies the specific similarities and differences between the crater types; the commonalities provide significant evidence for a genetic relationship among the morphologies. We use new surveys of excess ejecta and perched craters in the southern hemisphere in conjunction with prior studies of all of the morphologies to create a comprehensive overview of their geographic distributions and physical characteristics. From these analyses, we conclude that excess ejecta craters and perched craters are likely to have formed from the same mechanism, with excess ejecta craters appearing fresh while perched craters have experienced post-impact modification and infilling. Impacts that led to these two morphologies overwhelmed the ice-rich layer, penetrating into the underlying martian regolith, resulting in the excavation of rock that formed the blocky ejecta necessary to armor the surface and preserve the ice-rich deposits. Pedestal craters, which tend to be smaller in diameter, have the same average deposit thickness as excess ejecta and perched craters, and form in the same geographic regions. They rarely have ejecta around their crater rims, instead exhibiting a smooth pedestal surface. We interpret this to mean that they form from impacts into the same type of ice-rich paleodeposit, but that they do not penetrate through the icy surface layer, and thus do not generate a blocky ejecta covering. Instead, a process related to the impact event appears to produce a thin, indurated surface lag deposit that serves to preserve the ice-rich material. These results provide a new basis to identify the presence of Amazonian non-polar ice-rich deposits, to map their distribution in space and time, and to assess Amazonian climate history. Specifically, the ages, distribution and physical attributes of the crater types suggest that tens to hundreds of meters of ice-rich material has been episodically emplaced at mid latitudes in both hemispheres throughout the Amazonian due to obliquity-driven climate variations. These deposits likely accumulated more frequently in the northern lowlands, resulting in a larger population of all three crater morphologies in the northern hemisphere. 相似文献
2.
Horton E. Newsom Nina L. Lanza Sandra M. Wiseman Giuseppe A. Marzo Chris H. Okubo Victoria E. Hamilton 《Icarus》2010,205(1):64-72
Morphological features on the western floor of Miyamoto crater in southwestern Meridiani Planum, Mars, are suggestive of past fluvial activity. Imagery from the High Resolution Imaging Science Experiment (HiRISE) gives a detailed view of raised curvilinear features that appear to represent inverted paleochannel deposits. The inverted terrain appears to be capped with a resistant, dark-toned deposit that is partially covered by unconsolidated surficial materials. Subsequent to deposition of the capping layer, erosion of the surrounding material has left the capping materials perched on pedestals of uneroded basal unit material. Neither the capping material nor the surrounding terrains show any unambiguous morphological evidence of volcanism or glaciation. The capping deposit may include unconsolidated or cemented stream deposits analogous to terrestrial inverted channels in the Cedar Mountain Formation near Green River, Utah. In addition to this morphological evidence for fluvial activity, phyllosilicates have been identified in the basal material on the floor of Miyamoto crater by orbital spectroscopy, providing mineralogical evidence of past aqueous activity. Based on both the morphological and mineralogical evidence, Miyamoto crater represents an excellent site for in situ examination and sampling of a potentially habitable environment. 相似文献
3.
Hale crater, a 125 × 150 km impact crater located near the intersection of Uzboi Vallis and the northern rim of Argyre basin at 35.7°S, 323.6°E, is surrounded by channels that radiate from, incise, and transport material within Hale’s ejecta. The spatial and temporal relationship between the channels and Hale’s ejecta strongly suggests the impact event created or modified the channels and emplaced fluidized debris flow lobes over an extensive area (>200,000 km2). We estimate ∼1010 m3 of liquid water was required to form some of Hale’s smaller channels, a volume we propose was supplied by subsurface ice melted and mobilized by the Hale-forming impact. If 10% of the subsurface volume was ice, based on a conservative porosity estimate for the upper martian crust, 1012 m3 of liquid water could have been present in the ejecta. We determine a crater-retention age of 1 Ga inside the primary cavity, providing a minimum age for Hale and a time at which we propose the subsurface was volatile-rich. Hale crater demonstrates the important role impacts may play in supplying liquid water to the martian surface: they are capable of producing fluvially-modified terrains that may be analogous to some landforms of Noachian Mars. 相似文献
4.
Alfred S. McEwen Brandon S. Preblich Natalia A. Artemieva Michelle Hurst Devon M. Burr 《Icarus》2005,176(2):351-381
A 10-km diameter crater named Zunil in the Cerberus Plains of Mars created ∼107 secondary craters 10 to 200 m in diameter. Many of these secondary craters are concentrated in radial streaks that extend up to 1600 km from the primary crater, identical to lunar rays. Most of the larger Zunil secondaries are distinctive in both visible and thermal infrared imaging. MOC images of the secondary craters show sharp rims and bright ejecta and rays, but the craters are shallow and often noncircular, as expected for relatively low-velocity impacts. About 80% of the impact craters superimposed over the youngest surfaces in the Cerberus Plains, such as Athabasca Valles, have the distinctive characteristics of Zunil secondaries. We have not identified any other large (?10 km diameter) impact crater on Mars with such distinctive rays of young secondary craters, so the age of the crater may be less than a few Ma. Zunil formed in the apparently youngest (least cratered) large-scale lava plains on Mars, and may be an excellent example of how spallation of a competent surface layer can produce high-velocity ejecta (Melosh, 1984, Impact ejection, spallation, and the origin of meteorites, Icarus 59, 234-260). It could be the source crater for some of the basaltic shergottites, consistent with their crystallization and ejection ages, composition, and the fact that Zunil produced abundant high-velocity ejecta fragments. A 3D hydrodynamic simulation of the impact event produced 1010 rock fragments ?10 cm diameter, leading to up to 109 secondary craters ?10 m diameter. Nearly all of the simulated secondary craters larger than 50 m are within 800 km of the impact site but the more abundant smaller (10-50 m) craters extend out to 3500 km. If Zunil is representative of large impact events on Mars, then secondaries should be more abundant than primaries at diameters a factor of ∼1000 smaller than that of the largest primary crater that contributed secondaries. As a result, most small craters on Mars could be secondaries. Depth/diameter ratios of 1300 small craters (10-500 m diameter) in Isidis Planitia and Gusev crater have a mean value of 0.08; the freshest of these craters give a ratio of 0.11, identical to that of fresh secondary craters on the Moon (Pike and Wilhelms, 1978, Secondary-impact craters on the Moon: topographic form and geologic process, Lunar Planet. Sci. IX, 907-909) and significantly less than the value of ∼0.2 or more expected for fresh primary craters of this size range. Several observations suggest that the production functions of Hartmann and Neukum (2001, Cratering chronology and the evolution of Mars, Space Sci. Rev. 96, 165-194) predict too many primary craters smaller than a few hundred meters in diameter. Fewer small, high-velocity impacts may explain why there appears to be little impact regolith over Amazonian terrains. Martian terrains dated by small craters could be older than reported in recent publications. 相似文献
5.
Shock-induced melting and vaporization of H2O ice during planetary impact events are widespread phenomena. Here, we investigate the mass of shock-produced liquid water remaining within impact craters for the wide range of impact conditions and target properties encountered in the Solar System. Using the CTH shock physics code and the new 5-phase model equation of state for H2O, we calculate the shock pressure field generated by an impact and fit scaling laws for melting and vaporization as a function of projectile mass, impact velocity, impact angle, initial temperature, and porosity. Melt production nearly scales with impact energy, and natural variations in impact parameters result in only a factor of two change in the predicted mass of melt. A fit to the π-scaling law for the transient cavity and transient-to-final crater diameter scaling are determined from recent simulations of the entire cratering process in ice. Combining melt production with π-scaling and the modified Maxwell Z-model for excavation, less than half of the melt is ejected during formation of the transient crater. For impact energies less than about 2 × 1020 J and impact velocities less than about 5 km s−1, the remaining melt lines the final crater floor. However, for larger impact energies and higher impact velocities, the phenomenon of discontinuous excavation in H2O ice concentrates the impact melt into a small plug in the center of the crater floor. 相似文献
6.
V. Ansan D. Loizeau S. Le Mouélic F. Poulet A. Lucas A. Gendrin Y. Langevin S. Murchie G. Neukum 《Icarus》2011,211(1):273-304
The 174 km diameter Terby impact crater (28.0°S-74.1°E) located on the northern rim of the Hellas basin displays anomalous inner morphology, including a flat floor and light-toned layered deposits. An analysis of these deposits was performed using multiple datasets from Mars Global Surveyor, Mars Odyssey, Mars Express and Mars Reconnaissance Orbiter missions, with visible images for interpretation, near-infrared data for mineralogical mapping, and topography for geometry. The geometry of layered deposits was consistent with that of sediments that settled mainly in a sub-aqueous environment, during the Noachian period as determined by crater counts. To the north, the thickest sediments displayed sequences for fan deltas, as identified by 100 m to 1 km long clinoforms, as defined by horizontal beds passing to foreset beds dipping by 6-10° toward the center of the Terby crater. The identification of distinct sub-aqueous fan sequences, separated by unconformities and local wedges, showed the accumulation of sediments from prograding/onlapping depositional sequences, due to lake level and sediment supply variations. The mineralogy of several layers with hydrated minerals, including Fe/Mg phyllosilicates, supports this type of sedimentary environment. The volume of fan sediments was estimated as >5000 km3 (a large amount considering classical martian fan deltas such as Eberswalde (6 km3)) and requires sustained liquid water activity. Such a large sedimentary deposition in Terby crater is characteristic of the Noachian/Phyllosian period during which the environment favored the formation of phyllosilicates. The latter were detected by spectral data in the layered deposits of Terby crater in three distinct layer sequences. During the Hesperian period, the sediments experienced strong erosion, possibly enhanced by more acidic conditions, forming the current morphology with three mesas and closed depressions. Small fluvial valleys and alluvial fans formed subsequently, attesting to late fluvial processes dated as late Early to early Late Hesperian. After this late fluvial episode, the Terby impact crater was submitted to aeolian processes and permanent cold conditions with viscous flow features. Therefore, the Terby crater displays, in a single location, geologic features that characterize the three main periods of time on Mars, with the presence of one of the thickest sub-aqueous fan deposits reported on Mars. The filling of Terby impact crater is thus one potential “reference geologic cross-section” for Mars stratigraphy. 相似文献
7.
We have identified two classes of crater clusters on Mars. One class is “small clusters” (crater diameter D∼ tens m, spread over few hundred m), fitting our earlier calculations for the breakup of weak stone meteoroids in the martian atmosphere [Popova, O.P., Nemtchinov, I.V., Hartmann, W.K., 2003. Meteorit. Planet. Sci. 38, 905-925]. The second class is “large clusters” (D∼ few hundred m, spread over 2 to 30 km), which do not fit any predictions for breakup of known meteoroid types. We consider a range of possible explanations. The best explanation relates to known, high-speed ejection of large, semi-coherent, fractured rock masses from the surface, as secondary debris from primary impacts. The clusters are probably due to breakup of partly fracture, few-hundred-meter scale weak blocks, especially during ascent (producing moderate lateral spreading velocities among the fragments during sub-orbital flight), and also during descent of the resulting swarm. These conclusions illuminate the launch conditions of martian meteorites, including fragmentation processes, although more work is needed on the lateral separation of fragments (during either atmosphere descent or ascent) due to the effects of volatiles in the projectiles. Martian meteorites probably come from smaller martian craters than the clusters' source craters. The latter probably have D?85 km, although we have not ruled out diameters as small as 15 km. 相似文献
8.
To improve the scaling parameter controlling the impact crater formation in the strength regime, we conducted impact experiments on sintered snow targets with the dynamic strength continuously changed from 20 to 200 kPa, and the largest crater size formed on small icy satellites was considered by using the revised scaling parameter. Ice and snow projectiles were impacted on a snow surface with 36% porosity at an impact velocity from 31 m s−1 to 150 m s−1. The snow target was sintered at the temperature from −5 °C to −18 °C, and the snow dynamic strength was changed with the sintering duration at each temperature. We found that the mass ejected from the crater normalized by the projectile mass, πV, was related to the ratio of the dynamic strength to the impact pressure, , as follows: , where the impact pressure was indicated by P = ρtC0tvi/2 with the target density of ρt, when the impact velocity, vi, was much smaller than the bulk sound velocity C0t (typically 1.8 km s−1 in our targets). The ratio of the largest crater diameter to the diameter of the target body, dmax/D, was estimated by calculating the crater diameter at the impact condition for catastrophic disruption and then compared to the observed dmax/D of jovian and saturnian small satellites, in order to discuss the formation condition of these large dmax/D in the strength regime. 相似文献
9.
David P. Page 《Icarus》2007,189(1):83-117
Outside polar latitudes, features corresponding to surface thaw have yet to be identified on Mars. The youthful gully landforms observed at mid-high latitude [Malin, M., Edgett, K., 2000. Science 288, 2330-2335] are the nearest candidate, but the source (and nature) of the gully carving agent remains controversial [e.g., Musselwhite, D.S., Swindle, T.D., Lunine, J.I., 2001. Geophys. Res. Lett. 28, 1283-1285; Mellon, M.T., Phillips, R.J., 2001. J. Geophys. Res. 106, 1-15; Knauth, L.P., Burt, D.M., 2002. Icarus 158, 267-271; Costard, F., Forget, F., Mangold, N., Peulvast, J.P., 2002. Science 295, 110-113; Christensen, P.R., 2003. Nature 422, 45-48; Treiman, A.H., 2003. J. Geophys. Res. 108]. At higher obliquity than the present epoch, near-surface ground ice should be present globally [Mellon, M.T., Jakosky, B.M., 1995. J. Geophys. Res. 100 (E6), 11781-11799], populated by condensation of atmospheric water vapour in the top few metres of the regolith, or emplaced as dusty ice sheets reaching down towards the equator. The latitudinal restriction of these gullies to regions poleward of ±30° appears to argue against a thaw component to their formation—since ground ice is present and stable at all latitudes at high obliquity, the current (low) obliquity regime should result in ground ice thaw at low latitudes, where insolation and daytime temperatures are currently greatest, and this is not observed. A previously undescribed meltwater sequence in the Cerberus plains, at 20° N/187° E, shows that comparable, but much more continuous, and mappable melting and surface runoff have occurred in the geologically recent past at near-equatorial latitudes on Mars. Polygonal ground in the Cerberus plains is seen by the Mars Global Surveyor Mars Orbiter Camera (MOC) to suffer sequential, regional-scale volatile-loss consistent with thaw of near-surface ground ice under periglacial conditions. This degradation is continuously sampled by a single MOC strip, showing an icy landscape undergoing thaw modification and collapse, and may form the first evidence of equatorial wet-based glaciation during late Amazonian time, with indications of melting within the last million years. The dissolution and re-formation of polygonal ground links this landform to freeze-thaw processes, providing the conclusion to a question that has been the subject of debate for three decades—whether Mars' polygonal grounds require ice to form—and a consistent explanation for the fate of the water that carved the great outflow channels, much of which may still reside as ground ice in the regolith. This thaw occurs in the Cerberus Formation; deposits that are considered to be magmatic in origin, and the type formation for late-stage, “plains-style” volcanism on Mars [Keszthelyi, L., McEwen, A.S., Thordarson T., 2000. J. Geophys. Res. 105, 15027-15049]. By superposing large numbers of small impact craters, polygonal ground in the Cerberus plains sustains previous suggestions of a non-magmatic origin for this and other landforms in the region [Page, D.P., Murray, J.B., 2006. Icarus 183, 46-54]. Together, these periglacial landforms document evidence of climate change much younger than is currently recognised by crater counts, with important implications for age constraints on young surfaces and absolute age determinations by this method. It is tentatively suggested that this melting may be occurring today, with a striking correspondence between permafrost thaw in the Cerberus plains, the high atmospheric methane flux currently observed over this region [Mumma, M.J., Novak, R.E., DiSanti, M.A., Bonev, B.P., Dello Russo, N., 2004. Bull. Am. Astron. Soc. 36, 1127; Krasnopolsky, V.A., Maillard, J.P., Owen, T.C., 2004. Icarus 172, 537-547; Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N., Giuranna, M., 2004. Science 306, 1758-1761], and the only latitude zone on Mars—equatorward of 30° N—where melting of ground ice is thought possible in the current climate [Haberle, R.M., McKay, C.P., Schaeffer, J., Cabrol, N.A., Grin, E.A., Zent, A.P., Quinn, R., 2001. J. Geophys. Res. 106 (E10), 23317-23326; Lobitz, B., Wood, B.L., Averner, M.M., McKay, C.P., 2001. Proc. Natl. Acad. Sci. 98, 2132-2137]. Low-latitude polygonal ground as transient, and hydrologically active over wide areas transforms our understanding of the recent climatic evolution of Mars, supporting models of atmospheric water-ice migration [Mischna, M., Richardson, M.I., Wilson, R.J., McCleese, D.J., 2003. J. Geophys. Res. 108 (E6). 5062], complex, volatile stratigraphies [Clifford, S.M., Parker, T.J., 2001. Icarus 154, 40-79], and hypothesised, geologically recent ‘ice ages’ [Head, J.W., Mustard, J.F., Kreslavsky, M.A., Milliken, R.E., Marchant, D.R., 2003. Nature 426, 797-802]. The temporal coincidence of glacial epochs on the Earth and Mars during the Quaternary and latest Amazonian would suggest a coupled system linking both [Sagan, C., Young, A.T., 1973. Nature 243, 459]. 相似文献
10.
The issue of crater retention age estimates on planetary surfaces is discussed with an attempt to quantify the effect of overlapping primary and secondary impact crater populations in restricted crater diameter ranges. The approach to this problem is illustrated with a simple model production function where the secondary crater input is artificially enhanced. Extrapolation of such a secondary crater model distribution to a global record results in extraordinarily high crater frequencies that do not exist on Mars, and implies the need of detailed studies of the size-frequency distribution for remote secondary craters, to date poorly known. A key case, the martian crater Zunil and its secondary crater field, illustrate that reasonable predictions for the secondary crater size-frequency distribution at small (<100 m) crater diameters affected the standard model crater retention age for the Cerberus plains less than the statistical uncertainty. These observations show that age determination based on appropriate crater counting statistics is valid in a wide primary crater diameter range. 相似文献
11.
An experimental technique to measure crater growth is presented whereby a high speed video captures profiles of a crater forming after impact obtained using a vertical laser sheet centered on the impact point. Unlike previous so called “quarter-space experiments,” where projectiles were launched along a transparent Plexiglas sheet so that growth of half a crater could be viewed, the use of the laser sheet permits viewing changes in crater shape without any physical interference to the cratering process. This technique indicates that for low velocity impacts (<300 m/s) into 220 μm glass beads that are without cohesion and where the projectile is not disrupted, craters initially grow somewhat proportionally, but that later their depths remain essentially constant while their diameters continue to expand. In addition, these experiments indicate that as the impact velocity increases, the rate of growth and the transient depth to diameter ratio at the end of ejecta excavation decreases. These last two observations are probably due to the large time of penetration of the projectile, which becomes a significant fraction of the time of crater formation. This is contrary to the expectations for the scaling rules, which assumes a point source. Very high curtain angles (>45°) are also seen, and could be due to the low friction angle of the target. Significant crater modification, which is rarely seen in “quarter-space experiments,” is also observed and appears to be controlled by the dynamic angle of repose of the target. These latter observations indicate that differences in target friction angles may need to be considered when determining near rim ejecta-mass distributions and large-scale crater modification processes on the planets. 相似文献
12.
An outstanding question in Mars’ climate history is whether or not pedestal craters represent the armored remnants of ice-rich paleodeposits. We address this question using new high-resolution images; in a survey of several hundred high-latitude pedestal craters, we have identified 12 examples in which visible and/or topographically expressed layers are exposed on the marginal scarp of the pedestal. One example, located on the south polar layered deposits, preserves ice-rich layers that have otherwise been completely removed from the polar cap. These observations provide empirical evidence that the pedestal crater formation mechanism is capable of armoring and preserving ice-rich layered paleodeposits. Although layered exposures have not yet been observed in mid-latitude pedestal craters, high-latitude instances of discontinuous, partially covered layers suggest that layers can be readily concealed, likely through mantling and/or mass wasting processes along the marginal scarp. This interpretation is supported by the observation that high-latitude pedestals with exposed layers along their margins are, on average, taller than mid-latitude examples, and have larger, steeper marginal scarps, which may help to maintain layer exposures. These observations favor the interpretation that mid- to high-latitude pedestal craters represent the armored remnants of ice- and dust-rich paleodeposits, which occurred transiently due to changes in the climate regime. Preservation of fine-scale layering of ice and dust at these latitudes implies that the climate change did not involve regional melting conditions. 相似文献
13.
Recent observations of the surface of Mars have shown several fresh mid-latitude craters. Some of these craters show exposed ice (Byrne, S. et al. [2009]. Science 325, 1674-1676.). In some craters, albedo of ice slowly decreases, while in others, it remains nearly constant. We attempt to determine influence of the regolith structure on the rate of sublimation of ice. For this purpose we performed numerical simulations describing evolution of the exposed ice in model craters located at middle latitudes.We consider a new model for the structure and evolution of the material at- and beneath the crater floors. In contrast to the previous study by Dundas and Byrne (Dundas, C.M., Byrne, S. [2010]. Icarus 206, 716-728.) we do not investigate sublimation of dirty ice, and the related formation of a sublimation lag. Instead, we consider sublimation of a pure ice layer on top of layered regolith. In our model the observed reflectivity decreases due to the sublimation-driven changes of the optical properties of thinning clean ice. This offers an alternative to the deposition of the dust embedded in ice (sublimation lag).We have shown that in our model among many parameters affecting ice sublimation rate, volumetric fraction of water ice in the subsurface beneath the crater has the strongest influence. Hence observed darkening of the ice patch on the crater floor might be sufficient to determine the content of water ice in the subsurface. Our calculations show that an albedo decrease of fresh ice patches in mid-latitude craters can be explained by either strong dust sedimentation or, if this is excluded, by sublimation of a thin layer of water ice from the regolith with large thermal inertia. This is consistent with a large volumetric fraction of water ice beneath the crater floor and contributes to evidence for an extended subsurface water reservoir on Mars.The overall conclusion of our work is that a thin post-impact surface ice coating over ice-rich ground beneath the crater floors is consistent with the observations. 相似文献
14.
Abundant evidence exists for glaciation being an important geomorphic process in the mid-latitude regions of both hemispheres of Mars, as well as in specific environments at near-equatorial latitudes, such as along the western flanks of the major Tharsis volcanoes. Detailed analyses of glacial landforms (lobate-debris aprons, lineated valley fill, concentric crater fill, viscous flow features) have suggested that this glaciation was predominantly cold-based. This is consistent with the view that the Amazonian has been continuously cold and dry, similar to conditions today. We present new data based on a survey of images from the Context Camera (CTX) on the Mars Reconnaissance Orbiter that some of these glaciers experienced limited surface melting, leading to the formation of small glaciofluvial valleys. Some of these valleys show evidence for proglacial erosion (eroding the region immediately in front of or adjacent to a glacier), while others are supraglacial (eroding a glacier’s surface). These valleys formed during the Amazonian, consistent with the inferred timing of glacial features based on both crater counts and stratigraphic constraints. The small scale of the features interpreted to be of glaciofluvial origin hindered earlier recognition, although their scale is similar to glaciofluvial counterparts on Earth. These valleys appear qualitatively different from valley networks formed in the Noachian, which can be much longer and often formed integrated networks and large lakes. The valleys we describe here are also morphologically distinct from gullies, which are very recent fluvial landforms formed during the last several million years and on much steeper slopes (∼20-30° for gullies versus ?10° for the valleys we describe). These small valleys represent a distinct class of fluvial features on the surface of Mars (glaciofluvial); their presence shows that the hydrology of Amazonian Mars is more diverse than previously thought. 相似文献
15.
The maximum size of impact craters on finite bodies marks the largest impact that can occur short of impact induced disruption of the body. Recently attention has started to focus on large craters on small bodies such as asteroids and rocky and icy satellites. Here the large crater on the recently imaged Asteroid (2867) Steins (with crater diameter to mean asteroid radius ratio of 0.79) is shown to follow a limit set by other similar sized bodies with moderate macroporosity (i.e. fractured asteroids). Thus whilst large, the crater size is not novel, nor does it require Steins to possess an extremely large porosity. In one of the components of the binary Asteroid (90) Antiope there is the recently reported presence of an extremely large depression, possibly a crater, with depression diameter to mean asteroid radius ratio of ∼(1.4–1.62). This is consistent with the maximum size of a crater expected from previous observations of very porous rocky bodies (i.e. rubble-pile asteroids). Finally, a relationship between crater diameter (normalised to body radius) is proposed as a function of body porosity which suggests that the doubling of porosity between fractured asteroids and rubble-pile asteroids, nearly doubles the size (D/R value) of the largest crater sustainable on a rocky body. 相似文献
16.
A double, oblique impact feature north of Olympus Mons provides a unique opportunity to investigate the event that formed it. The sizes of the craters, their ellipticity, shapes of ejecta blankets, separation from each other, and positions relative to each other, all give us information about the event. Coupling this information with an existing model of meteoritic flight through an atmosphere allows us to test several possible scenarios for the event (object type and origin, pre-entry trajectory, atmospheric trajectory, prevailing atmospheric density). We find it highly improbable that the impactor was simply an extra-martian asteroid or comet. We also find that it is unlikely to have been a double-asteroid or a tidally fractured one, but is more likely to have been a Mars-orbiting moonlet whose orbit tidally decayed, and that denser atmospheric conditions than today's may have prevailed when it impacted. 相似文献
17.
The South Polar Layered Deposits (PLD) are of fundamental importance to martian climatology, as they may comprise the largest reservoir of near-surface water on Mars. The South PLD exhibit relatively young crater retention surface ages, which are widely attributed to recent resurfacing. However, we show that both constructional and destructional resurfacing mechanisms (such as dust deposition and water ice sublimation, respectively) are inconsistent with the size, depth, and spatial distributions of South PLD craters. We demonstrate that another process—viscous creep relaxation of dusty water ice—is more compatible with the observed cratering of South PLD surfaces. The results of our finite element relaxation simulations suggest that, despite their apparent youthfulness, the PLD have been stable for at least several hundred million and perhaps even over a billion years. Consequently, our modeling implies that the time scales for the formation and preservation of the layers characteristic of the South (and possibly North) PLD are much longer than generally assumed. 相似文献
18.
Manish Mehta Nilton O. Renno John Marshall Anita Sengupta Jasper F. Kok Raymond E. Arvidson Mark T. Lemmon 《Icarus》2011,211(1):172-194
While steady thruster jets caused only modest surface erosion during previous spacecraft landings on the Moon and Mars, the pulsed jets from the Phoenix spacecraft led to extensive alteration of its landing site on the martian arctic, exposed a large fraction of the subsurface water ice under the lander, and led to the discovery of evidence for liquid saline water on Mars. Here we report the discovery of the ‘explosive erosion’ process that led to this extensive erosion. We show that the impingement of supersonic pulsed jets fluidizes porous soils and forms cyclic shock waves which propagate through the soil and produce erosion rates more than an order of magnitude larger than that of other jet-induced processes. The understanding of ‘explosive erosion’ allows the calculation of bulk physical properties of the soils altered by it, provides insight into a new behavior of granular flow at extreme conditions and explains the rapid alteration of the Phoenix landing site’s ground morphology at the northern arctic plains of Mars. 相似文献
19.
The geology and stratigraphy of Millochau crater (21.4° S, 275° W), located in the highlands of Tyrrhena Terra, Mars, are documented through geomorphic analyses and geologic mapping. Crater size-frequency distributions and superposition relationships are used to constrain relative ages of geologic units and determine the timing and duration of the geologic processes that modified Millochau rim materials and emplaced deposits on Millochau's floor. Crater size-frequency distributions show a Middle Noachian age for rim materials and Middle Noachian to Early Hesperian ages for most of the interior deposits. Valley networks and gullies incised within Millochau's rim materials and interior wall, respectively, indicate fluvial activity was an important erosional process. Millochau contains an interior plateau, offset northeast of Millochau's center, which rises up to 400 m above the surrounding crater floor and slopes downward to the south and west. Layers exposed along the northern and eastern scarp boundaries of the plateau are tens to hundreds of meters thick and laterally continuous in MOC images. These layers suggest most materials within Millochau were emplaced by sedimentary processes (e.g., fluvial or eolian), with the potential for lacustrine deposition in shallow transient bodies of water and contributions of volcanic airfall. Mass wasting may have also contributed significant quantities of material to Millochau's interior, especially to the deposits surrounding the plateau. Superposition relationships combined with impact crater statistics indicate that most deposition and erosion of Millochau's interior deposits is ancient, which implies that fluvial activity in this part of Tyrrhena Terra is much older than in the eastern Hellas region. Eolian processes mobilized sediment to form complicated patterns of long- and short-wavelength dunes, whose emplacement is controlled by local topography. These deposits are some of the youngest within Millochau (Amazonian) and eolian modification may be ongoing. 相似文献
20.
The present paper describes observations of crater growth up to the time of transient crater formation and presents a new empirical model for transient crater growth as a function of time. Polycarbonate projectiles were impacted vertically into soda-lime glass sphere targets using a single-stage light-gas gun. Using a new technique with a laser sheet illuminating the target [Barnouin-Jha, O.S., Yamamoto, S., Toriumi, T., Sugita, S., Matsui, T., 2007. Non-intrusive measurements of the crater growth. Icarus, 188, 506-521], we measured the temporal change in diameter of crater cavities (diameter growth). The rate of increase in diameter at early times follows a power law relation, but the data at later times (before the end of transient crater formation) deviates from the power law relation. In addition, the power law exponent at early times and the degree of deviation from a power law at later times depend on the target. In order to interpret these features, we proposed to modify Maxwell’s Z-model under the assumption that the strength of the excavation flow field decreases exponentially with time. We also derived a diameter growth model as: d(t)∝[1-exp(-βt)]γ, where d(t) is the apparent diameter of the crater cavity at time t after impact, and β and γ are constants. We demonstrated that the diameter growth model could represent well the experimental data for various targets with different target material properties, such as porosity or angle of repose. We also investigated the diameter growth for a dry sand target, which has been used to formulate previous scaling relations. The obtained results showed that the dry sand target has larger degree of deviation from a power law, indicating that the target material properties of the dry sand target have a significant effect on diameter growth, especially at later times. This may suggest that the previously reported scaling relations should be reexamined in order to account for the late-stage behavior with the effect of target material properties. 相似文献