首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both Uranus and Neptune are thought to have strong zonal winds with velocities of several 100 m s−1. These wind velocities, however, assume solid-body rotation periods based on Voyager 2 measurements of periodic variations in the planets’ radio signals and of fits to the planets’ magnetic fields; 17.24 h and 16.11 h for Uranus and Neptune, respectively. The realization that the radio period of Saturn does not represent the planet’s deep interior rotation and the complexity of the magnetic fields of Uranus and Neptune raise the possibility that the Voyager 2 radio and magnetic periods might not represent the deep interior rotation periods of the ice giants. Moreover, if there is deep differential rotation within Uranus and Neptune no single solid-body rotation period could characterize the bulk rotation of the planets. We use wind and shape data to investigate the rotation of Uranus and Neptune. The shapes (flattening) of the ice giants are not measured, but only inferred from atmospheric wind speeds and radio occultation measurements at a single latitude. The inferred oblateness values of Uranus and Neptune do not correspond to bodies rotating with the Voyager rotation periods. Minimization of wind velocities or dynamic heights of the 1 bar isosurfaces, constrained by the single occultation radii and gravitational coefficients of the planets, leads to solid-body rotation periods of ∼16.58 h for Uranus and ∼17.46 h for Neptune. Uranus might be rotating faster and Neptune slower than Voyager rotation speeds. We derive shapes for the planets based on these rotation rates. Wind velocities with respect to these rotation periods are essentially identical on Uranus and Neptune and wind speeds are slower than previously thought. Alternatively, if we interpret wind measurements in terms of differential rotation on cylinders there are essentially no residual atmospheric winds.  相似文献   

2.
H.B. Hammel  G.W. Lockwood 《Icarus》2007,186(1):291-301
Long-term photometric measurements of Uranus and Neptune through 2005 show variations in brightness. For Uranus, much of the variation can be interpreted as seasonal, i.e., caused by viewing angle changes of an oblate planet. The photometry suggests that if seasonal variations on Uranus are north-south symmetric, then the northern pole should begin to brighten in 2006. However, seasonal “aspect” changes cannot explain all the variation; the Uranus observations require intrinsic atmospheric change. Furthermore, Uranus observations spanning many scale heights in the atmosphere may show similar change. For Neptune, variations in sub-solar latitude may explain the general shape of the long-term light curve, but significant deviations occur that have no explanation at present. Observations are needed over a longer temporal baseline than currently exists to fully characterize both atmospheres.  相似文献   

3.
Jade C. Bond  Dante S. Lauretta 《Icarus》2010,205(2):321-19170
No terrestrial planet formation simulation completed to date has considered the detailed chemical composition of the planets produced. While many have considered possible water contents and late veneer compositions, none have examined the bulk elemental abundances of the planets produced as an important check of formation models. Here we report on the first study of this type. Bulk elemental abundances based on disk equilibrium studies have been determined for the simulated terrestrial planets of O’Brien et al. [O’Brien, D.P., Morbidelli, A., Levison, H.F., 2006. Icarus 184, 39-58]. These abundances are in excellent agreement with observed planetary values, indicating that the models of O’Brien et al. [O’Brien, D.P., Morbidelli, A., Levison, H.F., 2006. Icarus 184, 39-58] are successfully producing planets comparable to those of the Solar System in terms of both their dynamical and chemical properties. Significant amounts of water are accreted in the present simulations, implying that the terrestrial planets form “wet” and do not need significant water delivery from other sources. Under the assumption of equilibrium controlled chemistry, the biogenic species N and C still need to be delivered to the Earth as they are not accreted in significant proportions during the formation process. Negligible solar photospheric pollution is produced by the planetary formation process. Assuming similar levels of pollution in other planetary systems, this in turn implies that the high metallicity trend observed in extrasolar planetary systems is in fact primordial.  相似文献   

4.
Stephen R. Kane 《Icarus》2011,214(1):327-333
With more than 15 years since the first radial velocity discovery of a planet orbiting a Sun-like star, the time baseline for radial velocity surveys is now extending out beyond the orbit of Jupiter analogs. The sensitivity to exoplanet orbital periods beyond that of Saturn orbital radii however is still beyond our reach such that very few clues regarding the prevalence of ice giants orbiting solar analogs are available to us. Here we simulate the radial velocity, transit, and photometric phase amplitude signatures of the Solar System giant planets, in particular Uranus and Neptune, and assess their detectability. We scale these results for application to monitoring low-mass stars and compare the relative detection prospects with other potential methods, such as astrometry and imaging. These results quantitatively show how many of the existing techniques are suitable for the detection of ice giants beyond the snow line for late-type stars and the challenges that lie ahead for the detection true Uranus/Neptune analogs around solar-type stars.  相似文献   

5.
The interior of giant planets can give valuable information on formation and evolution processes of planetary systems. However, the interior and evolution of Uranus and Neptune is still largely unknown. In this paper, we compare water-rich three-layer structure models of these planets with predictions of shell structures derived from magnetic field models. Uranus and Neptune have unusual non-dipolar magnetic fields contrary to that of the Earth. Extensive three-dimensional simulations of Stanley and Bloxham (Stanley, S., Bloxham, J. [2004]. Nature 428, 151-153) have indicated that such a magnetic field is generated in a rather thin shell of at most 0.3 planetary radii located below the H/He rich outer envelope and a conducting core that is fluid but stably stratified. Interior models rely on equation of state data for the planetary materials which have usually considerable uncertainties in the high-pressure domain. We present interior models for Uranus and Neptune that are based on ab initio equation of state data for hydrogen, helium, and water as the representative of all heavier elements or ices. Based on a detailed high-pressure phase diagram of water we can specify the region where superionic water should occur in the inner envelope. This superionic region correlates well with the location of the stably-stratified region as found in the dynamo models. Hence we suggest a significant impact of the phase diagram of water on the generation of the magnetic fields in Uranus and Neptune.  相似文献   

6.
Photoelectric intermediate-band b and y photometry of Uranus and Neptune obtained at each apparition since 1972, combined with broadband B and V photometry from 1950 to 1966, provide a record of planetary variability covering 2/3 of Uranus' 84-year orbital period and 1/3 of Neptune's 165-year orbital period. Almost all of the data were obtained with a dedicated 21-inch photometric telescope at Lowell Observatory. The data are quite homogeneous, with yearly uncertainties typically smaller than 0.01 mag (1%). The lightcurve of Uranus is sinusoidal with peaks at the solstices. The b amplitude slightly exceeds the expected 0.025 mag purely geometrical variation caused by oblateness as the planetary aspect changes, seen from Earth. The y amplitude is several times larger, indicating a strong equator-to-pole albedo gradient. The lightcurve is asymmetrical with respect to southern solstice, evidence of a temporal albedo variation. Neptune's post-1972 lightcurve exhibits a generally rising trend since 1972 interpreted by Sromovsky et al. [Sromovsky, L.A., Fry, P.M., Limaye, S.S., Baines, K.H., 2003. Icarus 163, 256-261] as a lagged sinusoidal seasonal variation. However, the 1950-1966 lightcurve segments are much fainter than expected, missing the proposed seasonal sinusoid by 0.1-0.2 mag. A major unknown component is therefore needed to explain Neptune's long-term variation. The apparent relationship between Neptune's brightness variation and the 11-year solar cycle seen in cycles 21-22 (1972-1996) has apparently now faded away. Further interpretation of the data in this paper will be found in a companion paper by Hammel and Lockwood [Hammel, H.B., Lockwood, G.W., 2005. Icarus. Submitted for publication].  相似文献   

7.
J.E. Chambers 《Icarus》2010,208(2):505-19170
The formation of 1-1000 km diameter planetesimals from dust grains in a protoplanetary disk is a key step in planet formation. Conventional models for planetesimal formation involve pairwise sticking of dust grains, or the sedimentation of dust grains to a thin layer at the disk midplane followed by gravitational instability. Each of these mechanisms is likely to be frustrated if the disk is turbulent. Particles with stopping times comparable to the turnover time of the smallest eddies in a turbulent disk can become concentrated into dense clumps that may be the precursors of planetesimals. Such particles are roughly millimeter-sized for a typical protoplanetary disk. To survive to become planetesimals, clumps need to form in regions of low vorticity to avoid rotational breakup. In addition, clumps must have sufficient self gravity to avoid break up due to the ram pressure of the surrounding gas. Given these constraints, the rate of planetesimal formation can be estimated using a cascade model for the distribution of particle concentration and vorticity within eddies of various sizes in a turbulent disk. We estimate planetesimal formation rates and planetesimal diameters as a function of distance from a star for a range of protoplanetary disk parameters. For material with a solar composition, the dust-to-gas ratio is too low to allow efficient planetesimal formation, and most solid material will remain in small particles. Enhancement of the dust-to-gas ratio by 1-2 orders of magnitude, either vertically or radially, allows most solid material to be converted into planetesimals within the typical lifetime of a disk. Such dust-to-gas ratios may occur near the disk midplane as a result of vertical settling of short-lived clumps prior to clump breakup. Planetesimal formation rates are sensitive to the assumed size and rotational speed of the largest eddies in the disk, and formation rates increase substantially if the largest eddies rotate more slowly than the disk itself. Planetesimal formation becomes more efficient with increasing distance from the star unless the disk surface density profile has a slope of −1.5 or steeper as a function of distance. Planetesimal formation rates typically increase by an order-of-magnitude or more moving outward across the snow line for a solid surface density increase of a factor of 2. In all cases considered, the modal planetesimal size increases with roughly the square root of distance from the star. Typical modal diameters are 100 km and 400 km in the regions corresponding to the asteroid belt and Kuiper belt in the Solar System, respectively.  相似文献   

8.
Jens Teiser  Markus Küpper 《Icarus》2011,215(2):596-598
We have examined the influence of impact angle in collisions between small dust aggregates and larger dust targets through laboratory experiments. Targets consisted of μm-sized quartz dust and had a porosity of about 67%; the projectiles, between 1 and 5 mm in diameter, were slightly more compact (64% porosity). The collision velocity was centered at 20 m/s and impact angles range from 0° to 45°. At a given impact angle, the target gained mass for projectiles smaller than a threshold size, which decreases with increasing angle from about 3 mm to 1 mm. The fact that growth is possible up to the largest angles studied supports the idea of planetesimal formation by sweep-up of small dust aggregates.  相似文献   

9.
Nathan A. Kaib  Thomas Quinn 《Icarus》2008,197(1):221-238
We study the influence of an open cluster environment on the formation and current structure of the Oort cloud. To do this, we have run 19 different simulations of the formation of the Oort cloud for 4.5 Gyrs. In each simulation, the Solar System spends its first 100 Myrs in a different open cluster environment before transitioning to its current field environment. We find that, compared to forming in the field environment, the inner Oort cloud is preferentially loaded with comets while the Sun resides in the open cluster and that most of this material remains locked in the interior of the cloud for the next 4.4 Gyrs. In addition, the outer Oort cloud trapping efficiencies we observe in our simulations are lower than previous formation models by about a factor of 2, possibly implying an even more massive early planetesimal disk. Furthermore, some of our simulations reproduce the orbits of observed extended scattered disk objects, which may serve as an observational constraint on the Sun's early environment. Depending on the particular open cluster environment, the properties of the inner Oort cloud and extended scattered disk can vary widely. On the other hand, the outer portions of the Oort cloud in each of our simulations are all similar.  相似文献   

10.
Chiang et al. [Chiang, E., Lithwick, Y., Murray-Clay, R., Buie, M., Grundy, W., Holman, M., 2007. In: Protostars and Planets V, pp. 895-911] have recently proposed that the observed structure of the Kuiper belt could be the result of a dynamical instability of a system of ∼5 primordial ice-giant planets in the outer Solar System. According to this scenario, before the instability occurred, these giants were growing in a highly collisionally damped environment according to the arguments in Goldreich et al. [Goldreich, P., Lithwick, Y., Sari, R., 2004. Astrophys. J. 614, 497-507; Annu. Rev. Astron. Astrophys. 42, 549-601]. Here we test this hypothesis with a series of numerical simulations using a new code designed to incorporate the dynamical effects of collisions. We find that we cannot reproduce the observed Solar System. In particular, Goldreich et al. [Goldreich, P., Lithwick, Y., Sari, R., 2004. Astrophys. J. 614, 497-507; Annu. Rev. Astron. Astrophys. 42, 549-601] and Chiang et al. [Chiang, E., Lithwick, Y., Murray-Clay, R., Buie, M., Grundy, W., Holman, M., 2007. In: Protostars and Planets V, pp. 895-911] argue that during the instability, all but two of the ice giants would be ejected from the Solar System by Jupiter and Saturn, leaving Uranus and Neptune behind. We find that ejections are actually rare and that instead the systems spread outward. This always leads to a configuration with too many planets that are too far from the Sun. Thus, we conclude that both Goldreich et al.'s scheme for the formation of Uranus and Neptune and Chiang et al.'s Kuiper belt formation scenario are not viable in their current forms.  相似文献   

11.
Previous studies have used models of three-dimensional (3D) Boussinesq convection in a rotating spherical shell to explain the zonal flows on the gas giants, Jupiter and Saturn. In this paper we demonstrate that this approach can also generate flow patterns similar to those observed on the ice giants, Uranus and Neptune. The equatorial jets of Uranus and Neptune are often assumed to result from baroclinic cloud layer processes and have been simulated with shallow layer models. Here we show that vigorous, 3D convection in a spherical shell can produce the retrograde (westward) equatorial flows that occur on the ice giants as well as the prograde (eastward) equatorial flows of the gas giants. In our models, the direction of the equatorial jet depends on the ratio of buoyancy to Coriolis forces in the system. In cases where Coriolis forces dominate buoyancy, cylindrical Reynolds stresses drive prograde equatorial jets. However, as buoyancy forces approach and exceed Coriolis forces, the cylindrical nature of the flow is lost and 3D mixing homogenizes the fluid's angular momentum; the equatorial jet reverses direction, while strong prograde jets form in the polar regions. Although the results suggest that conditions involving strong atmospheric mixing are responsible for generating the zonal flows on the ice giants, our present models require roughly 100 and 10 times the internal heat fluxes observed on Uranus and Neptune, respectively.  相似文献   

12.
We present results from 44 simulations of late stage planetary accretion, focusing on the delivery of volatiles (primarily water) to the terrestrial planets. Our simulations include both planetary “embryos” (defined as Moon to Mars sized protoplanets) and planetesimals, assuming that the embryos formed via oligarchic growth. We investigate volatile delivery as a function of Jupiter's mass, position and eccentricity, the position of the snow line, and the density (in solids) of the solar nebula. In all simulations, we form 1-4 terrestrial planets inside 2 AU, which vary in mass and volatile content. In 44 simulations we have formed 43 planets between 0.8 and 1.5 AU, including 11 “habitable” planets between 0.9 and 1.1 AU. These planets range from dry worlds to “water worlds” with 100+oceans of water (1 ocean=1.5×1024 g), and vary in mass between 0.23M and 3.85M. There is a good deal of stochastic noise in these simulations, but the most important parameter is the planetesimal mass we choose, which reflects the surface density in solids past the snow line. A high density in this region results in the formation of a smaller number of terrestrial planets with larger masses and higher water content, as compared with planets which form in systems with lower densities. We find that an eccentric Jupiter produces drier terrestrial planets with higher eccentricities than a circular one. In cases with Jupiter at 7 AU, we form what we call “super embryos,” 1-2M protoplanets which can serve as the accretion seeds for 2+M planets with large water contents.  相似文献   

13.
When protoplanets growing by accretion of planetesimals have atmospheres, small planetesimals approaching the protoplanets lose their energy by gas drag from the atmospheres, which leads them to be captured within the Hill sphere of the protoplanets. As a result, growth rates of the protoplanets are enhanced. In order to study the effect of an atmosphere on planetary growth rates, we performed numerical integration of orbits of planetesimals for a wide range of orbital elements and obtained the effective accretion rates of planetesimals onto planets that have atmospheres. Numerical results are obtained as a function of planetesimals’ eccentricity, inclination, planet’s radius, and non-dimensional gas-drag parameters which can be expressed by several physical quantities such as the radius of planetesimals and the mass of the protoplanet. Assuming that the radial distribution of the gas density near the surface can be approximated by a power-law, we performed analytic calculation for the loss of planetesimals’ kinetic energy due to gas drag, and confirmed agreement with numerical results. We confirmed that the above approximation of the power-law density distribution is reasonable for accretion rate of protoplanets with 1-10 Earth masses, unless the size of planetesimals is too small. We also calculated the accretion rates of planetesimals averaged over a Rayleigh distribution of eccentricities and inclinations, and derived a semi-analytical formula of accretion rates, which reproduces the numerical results very well. Using the obtained expression of the accretion rate, we examined the growth of protoplanets in nebular gas. We found that the effect of atmospheric gas drag can enhance the growth rate significantly, depending on the size of planetesimals.  相似文献   

14.
M Podolak 《Icarus》2003,165(2):428-437
I compute the opacity of grains in a protoplanetary atmosphere. The grain size distribution at different levels in the atmosphere is calculated using a simple microphysical model of grain growth via collisions and destruction via vaporization at high temperatures. The Rosseland mean opacity of the resulting distribution is then computed. For most cases examined, the grain opacity is significantly lower than earlier estimates.  相似文献   

15.
Massimiliano Guzzo 《Icarus》2006,181(2):475-485
The motion of the giant planets from Jupiter to Neptune is chaotic with Lyapunov time of approximately 10 Myr. A recent theory explains the presence of this chaos with three-planet mean-motion resonances, i.e. resonances among the orbital periods of at least three planets. We find that the distribution of these resonances with respect to the semi-major axes of all the planets is compatible with orbital instability. In particular, they overlap in a region of 10−3 AU with respect to the variation of the semi-major axes of Uranus and Neptune. Fictitious planetary systems with initial conditions in this region can undergo systematic variations of semi-major axes. The true Solar System is marginally in this region, and Uranus and Neptune undergo very slow systematic variations of semi-major axes with speed of order 10−4 AU/Gyr.  相似文献   

16.
As the 7 December 2007 equinox of Uranus approached, collaboration between ring and atmosphere observers in the summer and fall of 2007 produced a substantial collection of ground-based observations using the 10-m Keck telescope with adaptive optics and space-based observations with the Hubble Space Telescope. Both near-infrared and visible-wavelength imaging and spatially resolved near-infrared spectroscopic observations were obtained. We used observations spanning the period from 7 June 2007 through 9 September 2007 to identify and track cloud features, determine atmospheric motions, characterize cloud morphology and dynamics, and define changes in atmospheric band structure. Atmospheric motions were obtained over a wider range of latitudes than previously was possible, extending to 73°N, and for 28 cloud features we obtained extremely high wind-speed accuracy through extended tracking times. We confirmed the existence of the suspected northern hemisphere prograde jet, locating its peak near 58°N. The new results confirm a small N-S asymmetry in the zonal wind profile, and the lack of any change in the southern hemisphere between 1986 (near solstice) and 2007 (near equinox) suggests that the asymmetry may be permanent rather than seasonally reversing. In the 2007 images, we found two prominent groups of discrete cloud features with very long lifetimes. The one near 30°S has departed from its previous oscillatory motion and started a significant northward drift, accompanied by substantial morphological changes. The complex of features near 30°N remained at a nearly fixed latitude, while exhibiting some characteristics of a dark spot accompanied by bright companion features. Smaller and less stable features were used to track cloud motions at other latitudes, some of which lasted over many planet rotations, though many could not be tracked beyond a single transit. A bright band has developed near 45°N, while the bright band near 45°S has begun to decline, both events in agreement with the idea that the asymmetric band structure of Uranus is a delayed response to solar forcing, but with a surprisingly short delay of only a few years.  相似文献   

17.
C.W. Ormel  C.P. Dullemond 《Icarus》2010,210(1):507-538
When preplanetary bodies reach proportions of ∼1 km or larger in size, their accretion rate is enhanced due to gravitational focusing (GF). We have developed a new numerical model to calculate the collisional evolution of the gravitationally-enhanced growth stage. The numerical model is novel as it attempts to preserve the individual particle nature of the bodies (like N-body codes); yet it is statistical in nature since it must incorporate the very large number of planetesimals. We validate our approach against existing N-body and statistical codes. Using the numerical model, we explore the characteristics of the runaway growth and the oligarchic growth accretion phases starting from an initial population of single planetesimal radius R0. In models where the initial random velocity dispersion (as derived from their eccentricity) starts out below the escape speed of the planetesimal bodies, the system experiences runaway growth. We associate the initial runaway growth phase with increasing GF-factors for the largest body. We find that during the runaway growth phase the size distribution remains continuous but evolves into a power-law at the high-mass end, consistent with previous studies. Furthermore, we find that the largest body accretes from all mass bins; a simple two-component approximation is inapplicable during this stage. However, with growth the runaway body stirs up the random motions of the planetesimal population from which it is accreting. Ultimately, this feedback stops the fast growth and the system passes into oligarchy, where competitor bodies from neighboring zones catch up in terms of mass. We identify the peak of GF with the transition between the runaway growth and oligarchy accretion stages. Compared to previous estimates, we find that the system leaves the runaway growth phase at a somewhat larger radius, especially at the outer disk. Furthermore, we assess the relevance of small, single-size fragments on the growth process. In classical models, where the initial velocity dispersion of bodies is small, these do not play a critical role during the runaway growth; however, in models that are characterized by large initial relative velocities due to external stirring of their random motions, a situation can emerge where fragments dominate the accretion, which could lead to a very fast growth.  相似文献   

18.
R. Helled  P. Bodenheimer 《Icarus》2010,207(2):503-508
The final composition of giant planets formed as a result of gravitational instability in the disk gas depends on their ability to capture solid material (planetesimals) during their ‘pre-collapse’ stage, when they are extended and cold, and contracting quasi-statically. The duration of the pre-collapse stage is inversely proportional roughly to the square of the planetary mass, so massive protoplanets have shorter pre-collapse timescales and therefore limited opportunity for planetesimal capture. The available accretion time for protoplanets with masses of 3, 5, 7, and 10 Jupiter masses is found to be and 5.67×103 years, respectively. The total mass that can be captured by the protoplanets depends on the planetary mass, planetesimal size, the radial distance of the protoplanet from the parent star, and the local solid surface density. We consider three radial distances, 24, 38, and 68 AU, similar to the radial distances of the planets in the system HR 8799, and estimate the mass of heavy elements that can be accreted. We find that for the planetary masses usually adopted for the HR 8799 system, the amount of heavy elements accreted by the planets is small, leaving them with nearly stellar compositions.  相似文献   

19.
S.G. Gibbard  I. de Pater 《Icarus》2005,174(1):253-262
We present the first Earth-based images of several of the individual faint rings of Uranus, as observed with the adaptive optics system on the W.M. Keck II telescope on four consecutive days in October 2003. We derive reflectivities based on multiple measurements of 8 minor moons of Uranus as well as Ariel and Miranda in filters centered at wavelengths of 1.25(J), 1.63(H), and 2.1(Kp) μm. These observations have a phase angle of 1.84°-1.96°. We find that the small satellites are somewhat less bright than in observations made by the HST at smaller phase angles, confirming an opposition surge effect. We calculate albedoes for the ring groups and for each ring separately. We find that the ε ring particles, as well as the particles in the three other ring groups, have albedoes near 0.043 at these phase angles. The equivalent depths of some of the individual rings are different than predicted based upon ring widths from occultation measurements (assuming a constant particle ring brightness); in particular the γ ring is fainter and the η ring brighter than expected. Our results indicate that q, the ratio of ε ring intensity at apoapse vs. periapse, is close to 3.2±0.16. This agrees well with a model that has a filling factor for the ε ring of 0.06 (Karkoschka, 2001, Icarus 151, 78-83). We also determine values of the north to south brightness ratio for the individual rings and find that in most cases they are close to unity.  相似文献   

20.
We explore the origin and orbital evolution of the Kuiper belt in the framework of a recent model of the dynamical evolution of the giant planets, sometimes known as the Nice model. This model is characterized by a short, but violent, instability phase, during which the planets were on large eccentricity orbits. It successfully explains, for the first time, the current orbital architecture of the giant planets [Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005. Nature 435, 459-461], the existence of the Trojans populations of Jupiter and Neptune [Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R., 2005. Nature 435, 462-465], and the origin of the late heavy bombardment of the terrestrial planets [Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A., 2005. Nature 435, 466-469]. One characteristic of this model is that the proto-planetary disk must have been truncated at roughly 30 to 35 AU so that Neptune would stop migrating at its currently observed location. As a result, the Kuiper belt would have initially been empty. In this paper we present a new dynamical mechanism which can deliver objects from the region interior to ∼35 AU to the Kuiper belt without excessive inclination excitation. In particular, we show that during the phase when Neptune's eccentricity is large, the region interior to its 1:2 mean motion resonance becomes unstable and disk particles can diffuse into this area. In addition, we perform numerical simulations where the planets are forced to evolve using fictitious analytic forces, in a way consistent with the direct N-body simulations of the Nice model. Assuming that the last encounter with Uranus delivered Neptune onto a low-inclination orbit with a semi-major axis of ∼27 AU and an eccentricity of ∼0.3, and that subsequently Neptune's eccentricity damped in ∼1 My, our simulations reproduce the main observed properties of the Kuiper belt at an unprecedented level. In particular, our results explain, at least qualitatively: (1) the co-existence of resonant and non-resonant populations, (2) the eccentricity-inclination distribution of the Plutinos, (3) the peculiar semi-major axis—eccentricity distribution in the classical belt, (4) the outer edge at the 1:2 mean motion resonance with Neptune, (5) the bi-modal inclination distribution of the classical population, (6) the correlations between inclination and physical properties in the classical Kuiper belt, and (7) the existence of the so-called extended scattered disk. Nevertheless, we observe in the simulations a deficit of nearly-circular objects in the classical Kuiper belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号