共查询到20条相似文献,搜索用时 15 毫秒
1.
Different missions have observed mesospheric clouds on Mars in the last years. The presence of these clouds implies, among other conditions, mesospheric temperatures below CO2 condensation temperature. We use a General Circulation Model to study the mesospheric temperatures and compare the observed distribution of the mesospheric clouds and the predicted climatology of mesospheric temperatures. Although the model does not usually predict temperatures below condensation for daytime conditions, in some regions the predicted temperatures are close enough to condensation that perturbations caused by small scale processes could produce local excursions below condensation. The location and time of the lowest temperatures predicted by the GCM correspond to a first order with the two observed populations of mesospheric clouds: equatorial clouds observed before and after the Northern summer solstice, and mid-latitude clouds observed around the Northern winter solstice. For the equatorial clouds season, the model predicts temperatures close to condensation at the longitude, latitude, altitude and local time where they have been observed. We find that the diurnal migrating thermal tide and non-migrating tides are at the root of the spatial confinement of the equatorial clouds. For the mid-latitude clouds season, the temperatures predicted by the model at the location of the observed clouds is too high. Stereo observations by two different instruments allow for the determination of the zonal speed of these clouds producing a rare dataset of mesospheric winds. We compare the mesospheric zonal winds predicted by the model with these observations, finding a good agreement, although in some cases the observed variability exceeds that predicted by the model. 相似文献
2.
We used Mars Express HRSC and OMEGA data to investigate mesospheric cloud features observed in the equatorial belt of Mars from December 2007 until early March 2008. This period corresponds to early northern spring of Martian year 29. The reflection peak at 4.26 μm in OMEGA data identifies the clouds as CO2 ice clouds. HRSC observed the clouds together with OMEGA in five orbits. Cloud features are most prominent in the shortwave HRSC colour channels with wavelength centers at 440 and 530 nm, but rarely visible in all other channels. In the period of Ls 0-36°, OMEGA and HRSC together detected mesospheric CO2 ice clouds in 40 orbits. They occur in a latitude belt of ±20° around the equator and at longitudes between 240°E (Tharsis) in the West and 30°E (Sinus Meridiani) in the East. The clouds were observed between 3 and 5 p.m. local time with mainly ripple-like to filamentary cloud forms. The viewing angles of the HRSC blue and green colour channels differ by 6.6° and the resulting parallax can be used to directly measure cloud heights by means of ray intersection. 17 HRSC data takes were found to exhibit clouds with heights from 66 to 83 km with an accuracy of 1-2 km. The pushbroom imaging technique also yields a time delay for the two observations in the order of 5-15 s close to periapsis, and therefore time-related cloud movements can be detected. A method was developed to determine the across-track cloud displacements, which can directly be translated to wind velocities. Zonal cloud movements could be measured in 13 cases and were oriented from East to West. Related wind speeds range between 60 and 93 m/s with an accuracy of 10-13 m/s. 相似文献
3.
Mars Global Surveyor (MGS) visible (solarband bolometer) and thermal infrared (IR) spectral limb observations from the Thermal Emission Spectrometer (TES) support quantitative profile retrievals for dust opacity and particle sizes during the 2001 global dust event on Mars. The current analysis considers the behavior of dust lifted to altitudes above 30 km during the course of this storm; in terms of dust vertical mixing, particle sizes, and global distribution. TES global maps of visible (solarband) limb brightness at 60 km altitude indicate a global-scale, seasonally evolving (over 190-240° solar longitudes, LS) longitudinal corridor of vertically extended dust loading (which may be associated with a retrograde propagating, wavenumber 1 Rossby wave). Spherical radiative transfer analysis of selected limb profiles for TES visible and thermal IR radiances provide quantitative vertical profiles of dust opacity, indicating regional conditions of altitude-increasing dust mixing ratios. Observed infrared spectral dependences and visible-to-infrared opacity ratios of dust scattering over 30-60 km altitudes indicate particle sizes characteristic of lower altitudes (cross-section weighted effective radius, ), during conditions of significant dust transport to these altitudes. Conditions of reduced dust loading at 30-60 km altitudes present smaller dust particle sizes . These observations suggest rapid meridional transport at 30-80 km altitudes, with substantial longitudinal variation, of dust lifted to these altitudes over southern hemisphere atmospheric regions characterized by extraordinary (m/s) vertical advection velocities. By LS=230° dust loading above 50 km altitudes decreased markedly at southern latitudes, with a high altitude (60-80 km) haze of fine (likely) water ice particles appearing over 10°S-40°N latitudes. 相似文献
4.
A. Määttänen T. Fouchet O. Forni H. Savijärvi R. Melchiorri Y. Langevin M. Giuranna 《Icarus》2009,201(2):504-516
We present observations of a local dust storm performed by the OMEGA and PFS instruments aboard Mars Express. OMEGA observations are used to retrieve the dust single-scattering albedo in the spectral range 0.4-4.0 μm. The single-scattering albedo shows fairly constant values between 0.6 and 2.6 μm, and a sharp decrease at wavelengths shorter than 0.6 μm, in agreement with previous studies. It presents a small absorption feature due to ferric oxide at 0.9 μm, and a strong absorption feature due to hydrated minerals between 2.7 and 3.6 μm. We use a statistical method, the Independent Component Analysis, to determine that the dust spectral signature is decoupled from the surface albedo, proving that the retrieval of the single-scattering albedo is reliable, and we map the dust optical thickness with a conventional radiative transfer model. The effect of the dust storm on the atmospheric thermal structure is measured using PFS observations. We also simulate the thermal impact of the dust storm using a one-dimensional atmospheric model. A comparison of the retrieved and modeled temperature structures suggests that the dust in the storm should be confined to the 1-2 lowest scale heights of the atmosphere. However, the observed OMEGA reflectance in the CO2 absorption bands does not support this suggestion. 相似文献
5.
It has been suggested that inclusions of CO2 or CO2 clathrate hydrates may comprise a portion of the polar deposits on Mars. Here we present results from an experimental study in which CO2 molecules were trapped in water ice deposited from CO2/H2O atmospheres at temperatures relevant for the polar regions of Mars. Fourier-Transform Infrared spectroscopy was used to monitor the phase of the condensed ice, and temperature programmed desorption was used to quantify the ratio of species in the generated ice films. Our results show that when H2O ice is deposited at 140-165 K, CO2 is trapped in large quantities, greater than expected based on lower temperature studies in amorphous ice. The trapping occurs at pressures well below the condensation point for pure CO2 ice, and therefore this mechanism may allow for CO2 deposition at the poles during warmer periods. The amount of trapped CO2 varied from 3% to 16% by mass at 160 K, depending on the substrate studied. Substrates studied were a tetrahydrofuran (C4H8O) base clathrate and Fe-montmorillonite clay, an analog for Mars soil. Experimental evidence indicates that the ice structures are likely CO2 clathrate hydrates. These results have implications for the CO2 content, overall composition, and density of the polar deposits on Mars. 相似文献
6.
Paul D. Feldman Andrew J. Steffl Michael F. A’Hearn S. Alan Stern David C. Slater Henry B. Throop Lori M. Feaga 《Icarus》2011,214(2):394-399
The European Space Agency’s Rosetta spacecraft, en route to a 2014 encounter with comet 67P/Churyumov-Gerasimenko, made a gravity assist swing-by of Mars on 25 February 2007, closest approach being at 01:54 UT. The Alice instrument on board Rosetta, a lightweight far-ultraviolet imaging spectrograph optimized for in situ cometary spectroscopy in the 750-2000 Å spectral band, was used to study the daytime Mars upper atmosphere including emissions from exospheric hydrogen and oxygen. Offset pointing, obtained five hours before closest approach, enabled us to detect and map the H i Lyman-α and Lyman-β emissions from exospheric hydrogen out beyond 30,000 km from the planet’s center. These data are fit with a Chamberlain exospheric model from which we derive the hydrogen density at the 200 km exobase and the H escape flux. The results are comparable to those found from the Ultraviolet Spectrometer experiment on the Mariner 6 and 7 fly-bys of Mars in 1969. Atomic oxygen emission at 1304 Å is detected at altitudes of 400-1000 km above the limb during limb scans shortly after closest approach. However, the derived oxygen scale height is not consistent with recent models of oxygen escape based on the production of suprathermal oxygen atoms by the dissociative recombination of . 相似文献
7.
T.H. McConnochie J.F. Bell III D. Savransky M.J. Wolff A.D. Toigo H. Wang M.I. Richardson P.R. Christensen 《Icarus》2010,210(2):545-565
We present measurements of the altitude and eastward velocity component of mesospheric clouds in 35 imaging sequences acquired by the Mars Odyssey (ODY) spacecraft’s Thermal Emission Imaging System visible imaging subsystem (THEMIS-VIS). We measure altitude by using the parallax drift of high-altitude features, and the velocity by exploiting the time delay in the THEMIS-VIS imaging sequence.We observe two distinct classes of mesospheric clouds: equatorial mesospheric clouds observed between 0° and 180° Ls; and northern mid-latitude clouds observed only in twilight in the 200–300° Ls period. The equatorial mesospheric clouds are quite rare in the THEMIS-VIS data set. We have detected them in only five imaging sequences, out of a total of 2048 multi-band equatorial imaging sequences. All five fall between 20° south and 0° latitude, and between 260° and 295° east longitude. The mid-latitude mesospheric clouds are apparently much more common; for these we find 30 examples out of 210 northern winter mid-latitude twilight imaging sequences. The observed mid-latitude clouds are found, with only one exception, in the Acidalia region, but this is quite likely an artifact of the pattern of THEMIS-VIS image targeting. Comparing our THEMIS-VIS images with daily global maps generated from Mars Orbiter Camera Wide Angle (MOC-WA) images, we find some evidence that some mid-latitude mesospheric cloud features correspond to cloud features commonly observed by MOC-WA. Comparing the velocity of our mesospheric clouds with a GCM, we find good agreement for the northern mid-latitude class, but also find that the GCM fails to match the strong easterly winds measured for the equatorial clouds.Applying a simple radiative transfer model to some of the equatorial mesospheric clouds, we find good model fits in two different imaging sequences. By using the observed radiance contrast between cloud and cloud-free regions at multiple visible-band wavelengths, these fits simultaneously constrain the optical depths and particles sizes of the clouds. The particle sizes are constrained primarily by the relative contrasts at the available wavelengths, and are found to be quite different in the two imaging sequences: reff = 0.1 μm and reff = 1.5 μm. The optical depths (constrained by the absolute contrasts) are substantial: 0.22 and 0.5, respectively. These optical depths imply a mass density that greatly exceeds the saturated mass density of water vapor at mesospheric temperatures, and so the aerosol particles are probably composed mainly of CO2 ice. Our simple radiative transfer model is not applicable to twilight, when the mid-latitude mesospheric clouds were observed, and so we leave the properties of these clouds as a question for further work. 相似文献
8.
Mars General Circulation Model (GCM) simulations are presented to illustrate the importance of the ice emissivity of the seasonal CO2 polar caps in regulating the effects of airborne dust on the martian CO2 cycle. Simulated results show that atmospheric dust suppresses CO2 condensation when the CO2 ice emissivity is high but enhances it when the CO2 ice emissivity is low. This raises the possibility that the reason for the repeatable nature of the CO2 cycle in the presence of a highly variable dust cycle is that the CO2 ice emissivity is “neutral” - the value that leads to no change in CO2 condensation with changing atmospheric dust. For this GCM, the “neutral” emissivity is approximately 0.55, which is low compared to observed cap emissivities. This inconsistency poses a problem for this hypothesis. However, it is clear that the CO2 ice emissivity is a critical physical parameter in determining how atmospheric dust affects the CO2 cycle on Mars. 相似文献
9.
We study the thermal fields over Olympus Mons separating seasons (northern spring and summer against southern spring and summer) and local time observations (day side versus night side). Temperature vertical profiles retrieved from Planetary Fourier Spectrometer on board Mars Express (PFS-MEX) data have been used. In many orbits (running north to south along a meridian) passing over the top of the volcano there is evidence of a hot air on top of the volcano, of two enhancement of the air temperature both north and south of it and in between a collar of air that is colder than nearby at low altitudes, and warmer than nearby at high altitudes. Mapping together many orbits passing over or near the volcano we find that the hot air has the tendency to form an hot ring around it. This hot structure occurs mostly between LT = 10.00 and 15.00 and during the northern summer. Distance of the hot structure from the top of the volcano is about 600 km (10° of latitude). The hot atmospheric region is 300-420 km (5-7°) wide. Hot ring temperature contrasts of about 40 K occur at 2 km above the surface and decrease to 20 K at 5 km and to 10 K at 10 km. The atmospheric circulation over an area of 40° × 40° (latitudes and longitudes) is affected by the topography and the presence of Olympus Mons (−133°W, 18°N). We discuss also the thermal stability of the atmosphere over the selected area using the potential temperatures. The temperature field over the top of the volcano shows unstable atmosphere within 10 km from the surface. Finally, we interpret the hot temperatures around volcano as an adiabatic compression of down-welling branch coming from over the top of volcano.Different air temperature profiles are observed in the same seasons during the night, or in different seasons. In northern spring-summer during the night the isothermal contours do not show the presence of the volcano until we reach close to the surface very much, where a thermal inversion is observed. The surface temperature shows higher values (by 10 K) in correspondence of the scarp (an abrupt altimetry variation of roughly 5 km) on south (6°N) and north (30°N) sides of volcano. During the southern spring-summer, on the contrary the isothermal curves run parallel to the surface even on top the volcano, just like the GCM have predicted. 相似文献
10.
Th. Encrenaz B. Bézard S. Lebonnois T. Greathouse J. Lacy S. Atreya F. Forget 《Icarus》2005,179(1):43-54
High-resolution infrared imaging spectroscopy of Mars has been achieved at the NASA Infrared Telescope Facility (IRTF) on June 19-21, 2003, using the Texas Echelon Cross Echelle Spectrograph (TEXES). The areocentric longitude was 206°. Following the detection and mapping of hydrogen peroxide H2O2 [Encrenaz et al., 2004. Icarus 170, 424-429], we have derived, using the same data set, a map of the water vapor abundance. The results appear in good overall agreement with the TES results and with the predictions of the Global Circulation Model (GCM) developed at the Laboratory of Dynamical Meteorology (LMD), with a maximum abundance of water vapor of 3±1.5×10−4(17±9 pr-μm). We have searched for CH4 over the martian disk, but were unable to detect it. Our upper limits are consistent with earlier reports on the methane abundance on Mars. Finally, we have obtained new measurements of CO2 isotopic ratios in Mars. As compared to the terrestrial values, these values are: (18O/17O)[M/E] = 1.03 ± 0.09; (13C/12C)[M/E] = 1.00 ± 0.11. In conclusion, in contrast with the analysis of Krasnopolsky et al. [1996. Icarus 124, 553-568], we conclude that the derived martian isotopic ratios do not show evidence for a departure from their terrestrial values. 相似文献
11.
Curvilinear features in the southern hemisphere observed by Mars Global Surveyor Mars Orbiter Camera
We have used the complete set of Mars Global Surveyor (MGS) Mars Daily Global Maps (MDGMs) to study martian weather in the southern hemisphere, focusing on curvilinear features, including frontal events and streaks. “Frontal events” refer to visible events that are morphologically analogous to terrestrial baroclinic storms. MDGMs show that visible frontal events were mainly concentrated in the 210-300°E (60-150°W) sector and the 0-60°E sector around the southern polar cap during Ls = 140-250° and Ls = 340-60°. The non-uniform spatial and temporal distributions of activity were also shown by MGS Thermal Emission Spectrometer transient temperature variations near the surface. “Streaks” refer to long curvilinear features in the polar hood or over the polar cap. They are an indicator of the shape of the polar vortex. Streaks in late winter usually show wavy segments between the 180° meridian and Argyre. Model results suggest that the zonal wave number m = 3 eastward traveling waves are important for their formation. 相似文献
12.
Luca Maltagliati Dmitry V. Titov Thérèse Encrenaz Francois Forget Horst U. Keller Jean-Pierre Bibring 《Icarus》2008,194(1):53-64
The OMEGA imaging spectrometer onboard the Mars Express spacecraft is particularly well suited to study in detail specific regions of Mars, thanks to its high spatial resolution and its high signal-to-noise ratio. We investigate the behavior of atmospheric water vapor over the four big volcanoes located on the Tharsis plateau (Olympus, Ascraeus, Pavonis and Arsia Mons) using the 2.6 μm band, which is the strongest and most sensitive H2O band in the OMEGA spectral range. Our data sample covers the end of MY26 and the whole MY27, with gaps only in the late northern spring and in northern autumn. The most striking result of our retrievals is the increase of water vapor mixing ratio from the valley to the summit of volcanoes. Corresponding column density is often almost constant, despite a factor of ∼5 decrease in air mass from the bottom to the top. This peculiar water enrichment on the volcanoes is present in 75% of the orbits in our sample. The seasonal distribution of such enrichment hints at a seasonal dependence, with a minimum during the northern summer and a maximum around the northern spring equinox. The enrichment possibly also has a diurnal trend, being the orbits with a high degree of enrichment concentrated in the early morning. However, the season and the solar time of the observations, due to the motion of the spacecraft, are correlated, then the two dependences cannot be clearly disentangled. Several orbits exhibit also spatially localized enrichment structures, usually ring- or crescent-shaped. We retrieve also the height of the saturation level over the volcanoes. The results show a strong minimum around the aphelion season, due to the low temperatures, while it raises quickly before and after this period. The enrichment is possibly generated by the local circulation characteristic of the volcano region, which can transport upslope significant quantities of water vapor. The low altitude of the saturation level during the early summer can then hinder the transport of water during this season. The influence of the coupling between atmosphere and surface, due mainly to the action of the regoliths, can also contribute partially to the observed phenomenon. 相似文献
13.
Vladimir A. Krasnopolsky 《Icarus》2007,190(1):93-102
Long-term spectroscopic observations of the O2 dayglow at 1.27 μm result in a map of the latitudinal and seasonal behavior of the dayglow intensity for the full martian year. The O2 dayglow is a sensitive tracer of Mars' photochemistry, and this map reflects variations of Mars' photochemistry at low and middle latitudes. It may be used to test photochemical models. Long-term observations of the CO mixing ratio have been also combined into the seasonal-latitudinal map. Seasonal and latitudinal variations of the mixing ratios of CO and the other incondensable gases (N2, Ar, O2, and H2) discovered in our previous work are caused by condensation and sublimation of CO2 to and from the polar regions. They reflect dynamics of the atmosphere and polar processes. The observed map may be used to test global circulation models of the martian atmosphere. The observed global abundances of CO are in reasonable agreement with the predicted variations with the 11-year solar cycle. Despite the perfect observing conditions, methane has not been detected using the IRTF/CSHELL with a 3σ upper limit of 14 ppb. This upper limit does not rule out the value of 10 ppb observed using the Canada-France-Hawaii Telescope and the Mars Express Planetary Fourier Spectrometer. 相似文献
14.
Franck Montmessin Jean-Loup Bertaux Oleg Korablev François Forget Didier Fussen Aurélie Rébérac 《Icarus》2006,183(2):403-410
The formation of CO2 ice clouds in the upper atmosphere of Mars has been suggested in the past on the basis of a few temperature profiles exhibiting portions colder than CO2 frost point. However, the corresponding clouds were never observed. In this paper, we discuss the detection of the highest clouds ever observed on Mars by the SPICAM ultraviolet spectrometer on board Mars Express spacecraft. Analyzing stellar occultations, we detected several mesospheric detached layers at about 100 km in the southern winter subtropical latitudes, and found that clouds formed where simultaneous temperature measurements indicated that CO2 was highly supersaturated and probably condensing. Further analysis of the spectra reveals a cloud opacity in the subvisible range and ice crystals smaller than 100 nm in radius. These layers are therefore similar in nature as the noctilucent clouds which appear on Earth in the polar mesosphere. We interpret these phenomena as CO2 ice clouds forming inside supersaturated pockets of air created by upward propagating thermal waves. This detection of clouds in such an ultrararefied and supercold atmosphere raises important questions about the martian middle-atmosphere dynamics and microphysics. In particular, the presence of condensates at such high altitudes begs the question of the origin of the condensation nuclei. 相似文献
15.
This work presents model calculations of the diurnal airglow emissions from the OH Meinel bands and the O2 IR atmospheric band in the neutral atmosphere of Mars. A time-dependent photochemical model of the lower atmosphere below 80 km has been developed for this purpose. Special emphasis is placed on the nightglow emissions because of their potential to characterize the atomic oxygen profile in the 50-80 km region. Unlike on Earth, the OH Meinel emission rates are very sensitive to the details of the vibrational relaxation pathway. In the sudden death and collisional cascade limits, the maximum OH Meinel column intensities for emissions originating from a fixed upper vibrational level are calculated to be about 300 R, for transitions v′=9→v′?8, and 15,000 R, for transitions v′=1→v′=0, respectively. During the daytime the 1.27 μm emission from O2(), primarily formed from ozone photodissociation, is of the order of MegaRayleighs (MR). Due to the long radiative lifetime of O2(), a luminescent remnant of the dayglow extends to the dark side for about two hours. At night, excited molecular oxygen is expected to be produced through the three body reaction O + O + CO2. The column emission of this nighttime component of the airglow is estimated to amount to 25 kR. Both nightglow emissions, from the OH Meinel bands and the O2 IR atmospheric band, overlap in the 50-80 km region. Photodissociation of CO2 in the upper atmosphere and the subsequent transport of the atomic oxygen produced to the emitting layer are revealed as key factors in the nightglow emissions from these systems. The Mars 5 upper constraint for the product [H][O3] is revised on the basis of more recent values for the emission probabilities and collisional deactivation coefficients. 相似文献
16.
Luca Maltagliati Dmitrij V. Titov Thérèse Encrenaz Francois Forget Jean-Pierre Bibring 《Icarus》2011,213(2):480-1871
We present here the annual behavior of atmospheric water vapor on Mars, as observed by the OMEGA spectrometer on board Mars Express during its first martian year. We consider all the different features of the cycle of water vapor: temporal evolution, both at a seasonal and at a diurnal scale; longitudinal distribution; and the vertical profile, through the variations in the saturation height. We put our results into the context of the current knowledge on the water cycle through a systematic comparison with the already published datasets. The seasonal behavior is in very good agreement with past and simultaneous retrievals both qualitatively and quantitatively, within the uncertainties. The average water vapor abundance during the year is ∼10 pr. μm, with an imbalance between northern and southern hemisphere, in favor of the first. The maximum of activity, up to 60 pr. μm, occurs at high northern latitudes during local summer and shows the dominance of the northern polar cap within the driving processes of the water cycle. A corresponding maximum at southern polar latitudes during the local summer is present, but less structured and intense. It reaches ∼25 pr. μm at its peak. Global circulation has some influence in shaping the water cycle, but it is less prominent than the results from previous instruments suggest. No significant correlation between water vapor column density and local hour is detected. We can constrain the amount of water vapor exchanged between the surface and the atmosphere to few pr. μm. This is consistent with recent results by OMEGA and PFS-LW. The action of the regolith layer on the global water cycle seems to be minor, but it cannot be precisely constrained. The distribution of water vapor on the planet, after removing the topography, shows the already known two-maxima system, over Tharsis and Arabia Terra. However, the Arabia Terra increase is quite fragmented compared with previous observations. A deep zone of minimum separates the two regions. The saturation height of water vapor is mainly governed by the variations of insolation during the year. It is confined within 5-15 km from the surface at aphelion, while in the perihelion season it stretches up to 55 km of altitude. 相似文献
17.
Recent detection of methane (CH4) on Mars has generated interest in possible biological or geological sources, but the factors responsible for the reported variability are not understood. Here we explore one potential sink that might affect the seasonal cycling of CH4 on Mars - trapping in ices deposited on the surface. Our apparatus consisted of a high-vacuum chamber in which three different Mars ice analogs (water, carbon dioxide, and carbon dioxide clathrate hydrates) were deposited in the presence of CH4 gas. The ices were monitored for spectroscopic evidence of CH4 trapping using transmission Fourier-Transform Infrared (FT-IR) spectroscopy, and during subsequent sublimation of the ice films the vapor composition was measured using mass spectrometry (MS). Trapping of CH4 in water ice was confirmed at deposition temperatures <100 K which is consistent with previous work, thus validating the experimental methods. However, no trapping of CH4 was observed in the ice analogs studied at warmer temperatures (140 K for H2O and CO2 clathrate, 90 K for CO2 snow) with approximately 10 mTorr CH4 in the chamber. From experimental detection limits these results provide an upper limit of 0.02 for the atmosphere/ice trapping ratio of CH4. If it is assumed that the trapping mechanism is linear with CH4 partial pressure and can be extrapolated to Mars, this upper limit would indicate that less than 1% is expected to be trapped from the largest reported CH4 plume, and therefore does not represent a significant sink for CH4. 相似文献
18.
The interval from Ls = 330° in Mars Year (MY) 26 until Ls = 84° in MY 27 has been used to compare and validate measurements from the Mars Global Surveyor Thermal Emission Spectrometer (TES) and the Mars Express Planetary Fourier Spectrometer (PFS). We studied differences between atmospheric temperatures observed by the two instruments. The best agreement between atmospheric temperatures was found at 50 Pa between 40°S and 40°N latitude, where differences were within ±5 K. For other atmospheric levels, differences as large as ∼25 K were observed between the two instruments at some locations. The largest temperature differences occurred mainly over the Hellas Planitia, Argyre Planitia, Tharsis and Valles Marineris regions.On this basis we report on the variability of the martian atmosphere during the 5.5 martian years of Mars climatology obtained by combining the two data sets from TES and PFS. Atmospheric temperatures at 50 Pa responded to the global-scale dust storms of MY 25 and in MY 28 raising temperatures from ∼220 K to ∼250 K during the daytime. An atmospheric temperature of ∼140 K at 50 Pa was observed poleward of 70°N during northern winter and poleward of 60°S during southern winter each year in both the PFS and TES results. Water vapor observed by the two spectrometers showed consistent seasonal and latitudinal variations. 相似文献
19.
Active dust devils were observed in Syria Planum in Mars Observer Camera - Wide Angle (MOC-WA) and High Resolution Stereo Camera (HRSC) imagery acquired on the same day with a time delay of ∼26 min. The unique operating technique of the HRSC allowed the measurement of the traverse velocities and directions of motion. Large dust devils observed in the HRSC image could be retraced to their counterparts in the earlier acquired MOC-WA image. Minimum lifetimes of three large (avg. ∼700 m in diameter) dust devils are ∼26 min, as inferred from retracing. For one of these large dust devil (∼820 m in diameter) it was possible to calculate a minimum lifetime of ∼74 min based on the measured horizontal speed and the length of its associated dust devil track. The comparison of our minimum lifetimes with previous published results of minimum and average lifetimes of small (∼19 m in diameter, avg. min. lifetime of ∼2.83 min) and medium (∼185 m in diameter, avg. min. lifetime of ∼13 min) dust devils imply that larger dust devils on Mars are active for much longer periods of time than smaller ones, as it is the case for terrestrial dust devils. Knowledge of martian dust devil lifetimes is an important parameter for the calculation of dust lifting rates. Estimates of the contribution of large dust devils (>300-1000 m in diameter) indicate that they may contribute, at least regionally, to ∼50% of dust entrainment by dust devils into the atmosphere compared to the dust devils <300 m in diameter given that the size-frequency distribution follows a power-law. Although large dust devils occur relatively rarely and the sediment fluxes are probably lower compared to smaller dust devils, their contribution to the background dust opacity by dust devils on Mars could be at least regionally large due to their longer lifetimes and ability of dust lifting into high atmospheric layers. 相似文献
20.
The condensing CO2 south polar cap of Mars and the mechanisms of the CO2 ice accumulation have been studied through the analysis of spectra acquired by the Planetary Fourier Spectrometer (PFS) during the first two years of ESA's Mars Express (MEX) mission. This dataset spans more than half a martian year, from Ls∼330° to Ls∼194°, and includes the southern fall season which is found to be extremely important for the study of the residual south polar cap asymmetry. The cap expands symmetrically and with constant speed during the fall season. The maximum extension occurs sometime in the 80°-90° Ls range, when the cap edges are as low as −40° latitude. Inside Hellas and Argyre basins, frost can be stable at lower latitudes due to the higher pressure values, causing the seasonal cap to be asymmetric. Within the seasonal range considered in this paper, the cap edge recession rate is approximately half the rate at which the cap edge expanded. The longitudinal asymmetries reduce during the cap retreat, and disappear around Ls∼145°. Two different mechanisms are responsible for CO2 ice accumulation during the fall season, especially in the 50°-70° Ls range. Here, CO2 condensation in the atmosphere, and thus precipitation, is allowed exclusively in the western hemisphere, and particularly in the longitudinal corridor of the perennial cap. In the eastern hemisphere, the cap consists mainly of CO2 frost deposits, as a consequence of direct vapor deposition. The differences in the nature of the surface ice deposits are the main cause for the residual south polar cap asymmetry. Results from selected PFS orbits have also been compared with the results provided by the martian general circulation model (GCM) of the Laboratoire de Météorologie dynamique (LMD) in Paris, with the aim of putting the observations in the context of the global circulation. This first attempt of cross-validation between PFS measurements and the LMD GCM on the one hand confirms the interpretation of the observations, and on the other hand shows that the climate modeling during the southern polar night on Mars is extremely sensitive to the dynamical forcing. 相似文献