首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present the results of a visible spectroscopic and photometric survey of Jupiter Trojans belonging to different dynamical families. The survey was carried out at the 3.5 m New Technology Telescope (NTT) of the European Southern Observatory (La Silla, Chile) in April 2003, May 2004 and January 2005. We obtained data on 47 objects, 23 belonging to the L5 swarm and 24 to the L4 one. These data together with those already published by Fornasier et al. [Fornasier, S., Dotto, E., Marzari, F., Barucci, M.A., Boehnhardt, H., Hainaut, O., de Bergh, C., 2004a. Icarus 172, 221-232] and Dotto et al. [Dotto, E., Fornasier, S., Barucci, M.A., Licandro, J., Boehnhardt, H., Hainaut, O., Marzari, F., de Bergh, C., De Luise, F., 2006. Icarus 183, 420-434], acquired since November 2002, constitute a total sample of visible spectra for 80 objects. The survey allows us to investigate six families (Aneas, Anchises, Misenus, Phereclos, Sarpedon, Panthoos) in the L5 cloud and four L4 families (Eurybates, Menelaus, 1986 WD and 1986 TS6). The sample that we measured is dominated by D-type asteroids, with the exception of the Eurybates family in the L4 swarm, where there is a dominance of C- and P-type asteroids. All the spectra that we obtained are featureless with the exception of some Eurybates members, where a drop-off of the reflectance is detected shortward of 5200 Å. Similar features are seen in main belt C-type asteroids and commonly attributed to the intervalence charge transfer transition in oxidized iron. Our sample comprises fainter and smaller Trojans as compared to the literature's data and allows us to investigate the properties of objects with estimated diameter smaller than 40-50 km. The analysis of the spectral slopes and colors versus the estimated diameters shows that the blue and red objects have indistinguishable size distribution, so any relationship between size and spectral slopes has been found. To fully investigate the Trojans population, we include in our analysis 62 spectra of Trojans available in literature, resulting in a total sample of 142 objects. Although the mean spectral behavior of L4 and L5 Trojans is indistinguishable within the uncertainties, we find that the L4 population is more heterogeneous and that it has a higher abundance of bluish objects as compared to the L5 swarm. Finally, we perform a statistical investigation of the Trojans's spectra property distributions as a function of their orbital and physical parameters, and in comparison with other classes of minor bodies in the outer Solar System. Trojans at lower inclination appear significantly bluer than those at higher inclination, but this effect is strongly driven by the Eurybates family. The mean colors of the Trojans are similar to those of short period comets and neutral Centaurs, but their color distributions are different.  相似文献   

2.
We present the results of a visible spectroscopic survey of igneous asteroids belonging to the small and intriguing E-class, including 2867 Steins, a target of the Rosetta mission. The survey was carried out at the 3.5 m Telescopio Nazionale Galileo (TNG), and at the 3.5 m New Technology Telescope (NTT) of the European Southern Observatory. We obtained new visible spectra for eighteen E-type asteroids, and near infrared spectra for eight of them. We confirm the presence of three different mineralogies in the small E-type populations. We classify each object in the E[I], E[II] or E[III] subgroups [Gaffey, M.J., Kelley, M.S., 2004. Lunar Planet. Sci. XXXV. Abstract 1812] on the basis of the spectral behavior and of the eventual presence of absorption features attributed to sulfides (such the 0.49 μm band, on E[II]), or to iron bearing silicates (0.9 μm band, on E[III]). We suggest that some asteroids (i.e. 64 Angelina, 317 Roxane, and 434 Hungaria), which show different spectral behavior comparing our data with those available in literature, have an inhomogeneous surface composition. 2867 Steins, a target of the Rosetta mission, shows a spectral behavior typical of the E[II] subgroup, as already suggested by Barucci et al. [Barucci, M.A., Fulchignoni, M., Fornasier, S., Dotto, E., Vernazza, P., Birlan, M., Binzel, R.P., Carvano, J., Merlin, F., Barbieri, C., Belskaya, I., 2005. Astron. Astrophys. 430, 313-317] and Fornasier et al. [Fornasier, S., Marzari, F., Dotto, E., Barucci, M.A., Migliorini, A., 2007. Astron. Astrophys. 474, 29-32]. Litva and 1990 TN1, initially classified as E-types, show a visible and near infrared behavior consistent with the olivine rich A-class asteroids, while 5806 Archieroy, also supposed to belong to the E-class, has a spectral behavior consistent with the S(V) classification following the Gaffey et al. [Gaffey, M.J., Burbine, T.H., Piatek, J.L., Reed, K.L., Chaky, D.A., Bell, J.F., Brown, R.H., 1993. Icarus 106, 573-602] classification scheme. To fully investigate the E-type population, we enlarged our sample including 6 E-type asteroids spectra available in literature, resulting in a total sample of 21 objects. The analysis of the spectral slope for the 3 different E-type subgroups versus the orbital elements show that E[III] members have the lowest mean spectral slope value inside the whole sample, and that they are located between 2.2-2.7 AU in low inclination orbits. E[II] members has the highest spectral slope inside the sample, half of them are located in the Hungaria region, 2 are NEA and 2 (64 Angelina and 2867 Steins), are in the main belt. A similar distribution is found for the 5 featureless E[I] members, located mainly in the Hungaria region (3 members), one in the middle main belt while one is a NEA (2004 VD17). Finally, for the five E-type asteroids observed both in the visible and near infrared range, plus 2867 Steins, we attempt to model their surface composition using linear geographical mixtures of no more than 3 components, selected from aubrite meteorites and correlated minerals. In particular we suggest that the aubrite Peña Blanca might have the E[III] Asteroid 317 Roxane as parent body, and that the aubrite ALH78113 might be related to the E[II] subgroup asteroids.  相似文献   

3.
Mark Willman  Robert Jedicke 《Icarus》2008,195(2):663-673
We have obtained moderate S/N (∼85) spectra at a realized resolution of R∼100 for 11 members of the Iannini family, until recently the youngest known family at under 5 million years of age [Nesvorný, D., Bottke, W.F., Levison, H.F., Dones, L., 2003. Astrophys. J. 591, 486-497, 720-771]. The spectra were acquired using the Echellette Spectrograph and Imager in its low-resolution prism mode on the Keck II telescope. The family members belong to the S-complex of asteroids with perhaps some K class members. The Iannini family members' average spectral slope, defined as the slope of the best-fit line constrained to pivot about 1 at 550 nm, is (0.30±0.04)/μm, matching the (0.26±0.03)/μm reported by Jedicke et al. [Jedicke, R., Nesvorný, D., Whiteley, R.J., Ivezi?, ?., Juri?, M., 2004. Nature 429, 275-277] using SDSS [Ivezi?, ?., Juri?, M., Lupton, R.H., Tabachnik, S., Quinn, T., 2002. In: Tyson, J.A., Wolff, S. (Eds.), Survey and Other Telescope Technologies and Discoveries. In: Proc. SPIE, vol. 4836. SPIE, Bellingham, pp. 98-103] color photometry. Using our spectra for this family as well as new observations of Karin family members [Vernazza, P., Birlan, M., Rossi, A., Dotto, E., Nesvorný, D., Brunetto, R., Fornasier, S., Fulchignoni, M., Renner, S., 2006. Astron. Astrophys. 460, 945-951] and new classifications of some older families we have revised the space weathering rate of S-complex asteroids originally determined by Jedicke et al. [Jedicke, R., Nesvorný, D., Whiteley, R.J., Ivezi?, ?., Juri?, M., 2004. Nature 429, 275-277]. Following Jedicke et al. [Jedicke, R., Nesvorný, D., Whiteley, R.J., Ivezi?, ?., Juri?, M., 2004. Nature 429, 275-277] we parameterize the space weathering rate of the principal component color of the spectrum (PC1), which is correlated with the spectral slope, as PC1(t)=PC1(0)+ΔPC1[1−exp−α(t/τ)]. Our revised rate suggests that the characteristic time scale for space weathering is τ=570±220 Myr and that new S-complex clusters will have an initial color of PC1(0)=0.31±0.04. The revised time scale is in better agreement with lab measurements and our measurements support the use of space weathering as a dating method. Under the assumption that all the spectra should be identical, since the members all derive from the same parent body and are presumably covered with similar regolith, we combined them to obtain a high-S/N composite spectrum for the family. The combined spectrum is within the S-complex.  相似文献   

4.
S. Fornasier  B.E. Clark 《Icarus》2011,214(1):131-146
We present reflected light spectral observations from 0.4 to 2.5 μm of 24 asteroids chosen from the population of asteroids initially classified as Tholen X-type objects (Tholen, 1984). The X complex in the Tholen taxonomy comprises the E, M and P classes which have very different inferred mineralogies but which are spectrally similar to each other, with featureless spectra in visible wavelengths.The data were obtained during several observing runs in the 2004-2007 years at the NTT, TNG and IRTF telescopes. Sixteen asteroids were observed in the visible and near-infrared wavelength range, seven objects in the visible wavelength range only, and one object in the near-infrared wavelength range only. We find a large variety of near-infrared spectral behaviors within the X class, and we identify weak absorption bands in spectra of 11 asteroids. Our spectra, together with albedos published by Tedesco et al. (2002), can be used to suggest new Tholen classifications for these objects. We describe 1 A-type (1122), 1 D-type (1328), 1 E-type (possibly, 3447 Burckhalter), 10 M-types (77, 92, 184, 337, 417, 741, 758, 1124, 1146 and 1355), 5 P-types (275, 463, 522, 909, 1902), and 6 C-types (50, 220, 223, 283, 517, and 536). In order to constrain the possible composition of these asteroids, we perform a least-squares search through the RELAB spectral database. Many of the best fits are consistent with meteorite analogue materials suggested in the published literature. In fact, we find that seven of the new M-types can be fit with metallic iron (or pallasite) materials, and that the low albedo C/P-type asteroids are best fitted with CM meteorites, some of which have been subjected to heating episodes or laser irradiation. Our method of searching for meteorite analogues emphasizes the spectral characteristics of brightness and shape, and de-emphasizes minor absorption bands. Indeed, faint absorption features like the 0.9 μm band seen on four newly classified M-type asteroids are not reproduced by the iron meteorites. In these cases, we have searched for geographical mixture models that can fit the asteroid spectrum, minor bands, and albedo. We find that a few percent (less than 3%) of orthopyroxene added to iron or pallasite meteorite, results in good spectral matches, reproducing the weak spectral feature around 0.9 μm seen on 92 Undina, 417 Suevia, and 1124 Stroobantia. For 337 Devosa, a mixture model that better reproduces its spectral behavior and the 0.9 μm feature is made with Esquel pallasite enriched with goethite (2%).Finally, we consider the sample of the X-type asteroids we have when we combine the present observations with previously published observations for a total of 72 bodies. This sample includes M and E-type asteroid data presented in [Fornasier et al., 2008] and [Fornasier et al., 2010]. We find that the mean visible spectral slopes for the different E, M and P Tholen classes are very similar, as expected. An analysis of the X-type asteroid distribution in the main belt is also reported, following both the Tholen and the Bus-DeMeo taxonomies (DeMeo et al., 2009).  相似文献   

5.
A survey of small (<5-10 km diameter) members of the Koronis family shows some objects with visible-wavelength broadband colors consistent with membership in the Q-class (Tholen, D.J. [1984]. Asteroid taxonomy from cluster analysis of photometry. Ph.D. Dissertation, University of Arizona, Tucson, AZ; Bus, S.J., Binzel, R.P. [2002]. Icarus 158, 146-177). This agrees with an ordinary chondritic composition for this family and suggests the timescale for changing Q-class to S-class spectra in the main belt is roughly comparable to the regolith refresh time in the 2-5 km size range.  相似文献   

6.
We have conducted a radar-driven observational campaign of 22 main-belt asteroids (MBAs) focused on Bus–DeMeo Xc- and Xk-type objects (Tholen X and M class asteroids) using the Arecibo radar and NASA Infrared Telescope Facilities (IRTF). Sixteen of our targets were near-simultaneously observed with radar and those observations are described in a companion paper (Shepard, M.K., and 19 colleagues [2010]. Icarus, in press). We find that most of the highest metal-content asteroids, as suggested by radar, tend to exhibit silicate absorption features at both 0.9 and 1.9 μm, and the lowest metal-content asteroids tend to exhibit either no bands or only the 0.9 μm band. Eleven of the asteroids were observed at several rotational longitudes in the near-infrared and significant variations in continuum slope were found for nine in the spectral regions 1.1–1.45 μm and 1.6–2.3 μm. We utilized visible wavelength data (Bus, S.J., Binzel, R.P. [2002b]. Icarus 158, 146–177; Fornasier, S., Clark, B.E., Dotto, E., Migliorini, A., Ockert-Bell, M., Barucci, M.A. [2010]. Icarus 210, 655–673.) for a more complete compositional analysis of our targets. Compositional evidence is derived from our target asteroid spectra using two different methods: (1) a χ2 search for spectral matches in the RELAB database, and (2) parametric comparisons with meteorites. This paper synthesizes the results of the RELAB search and the parametric comparisons with compositional suggestions based on radar observations. We find that for six of the seven asteroids with the highest iron abundances, our spectral results are consistent with the radar evidence (16 Psyche, 216 Kleopatra, 347 Pariana, 758 Mancunia, 779 Nina, and 785 Zwetana). Three of the seven asteroids with the lowest metal abundances, our spectral results are consistent with the radar evidence (21 Lutetia, 135 Hertha, 497 Iva). The remaining seven asteroids (22 Kalliope, 97 Klotho, 110 Lydia, 129 Antigone, 224 Oceana, 678 Fredegundis, and 771 Libera) have ambiguous compositional interpretations when comparing the spectral analogs to the radar analogs. The number of objects with ambiguous results from this multi-wavelength survey using visible, near-infrared, and radar wavelengths indicates that perhaps a third diagnostic wavelength region (such as the mid-infrared around 2–4 μm, the mid-infrared around 10–15 μm, and/or the ultraviolet around 0.2–0.4 μm) should be explored to resolve the discrepancies.  相似文献   

7.
We have conducted a radar-driven observational campaign of main-belt asteroids (MBAs) focused on X/M class asteroids using the Arecibo radar and NASA Infrared Telescope Facilities (IRTF). M-type asteroids have been identified as metallic, enstatite chondrites and/or heavily altered carbonaceous chondrites [Bell, J.F., Davis, D., Hartmann, W.K., Gaffey, M.J., 1989. In: Binzel, R.P., Gehrels, T., Matthews, M.S. (Eds.), Asteroids II. Univ. of Arizona Press, Tucson, pp. 921-948; Gaffey, M.J., McCord, T.B., 1979. In: Gehrels, T., Matthews, M.S. (Eds.), Asteroids. Univ. of Arizona Press, Tucson, pp. 688-723; Vilas, F., 1994. Icarus 111, 456-467]. Radar wavelength observations can determine whether an asteroid is metallic and provide information about the porosity and regolith depth. Near-infrared observations can help determine the grain size, porosity and composition of an object. Concurrent observations with these tools can give us a wealth of information about an object. Our objectives for this observation program were to (a) determine if there are any consistent relationships between spectra in the near-infrared wavelengths and radar signatures and (b) look for rotationally resolved relationships between asteroid radar properties and near-infrared spectral properties. This paper describes preliminary results of an ongoing survey of near-infrared observations of M-type asteroids and is a companion paper to radar observations reported by Shepard [Shepard, M.K., and 19 colleagues, 2008a. Icarus 195, 184-205]. In the analysis of 16 asteroid near-infrared spectra and nine radar measurements, we find a trend indicating a correlation between continuum slope from 1.7 to 2.45 μm and radar albedo—an asteroid with a steep continuum slope also has a bright radar albedo, which suggests a significant metal content. This may provide a means to use near-IR observations to predict the most likely metallic candidates for radar studies.  相似文献   

8.
The aim of this work is to analyze the mineralogy of the Eos family, which exhibits considerable taxonomic diversity. Its biggest fragment, (221) Eos has previously been associated, through direct spectral comparisons, with such diverse mineralogies as CV/CO and achondrite meteorites [Burbine, T.H., Binzel, R.P., Bus, S.J., Clark, B.E., 2001. Meteorit. Planet. Sci. 36, 245-253; Mothé-Diniz, T., Carvano, J.M., 2005. Astron. Astrophys. 174, 54-80]. In order to perform such analysis we obtained spectra of 30 family members in the 0.8-2.5 μm range, and used three different methods of mineralogical inference: direct spectral comparison with meteorites, intimate mixing using Hapke's theory, and fitting absorption features with the MGM. Although the direct comparison failed to yield good matches—the best candidates being R-chondrites—both mixing model and MGM analysis suggest that the bulk of the family is dominated by forsteritic (Fa∼20) olivine, with a minor component of orthopyroxene. This composition can be compatible with what would be expected from the partial differentiation of a parent-body with an original composition similar to ordinary chondrites, which probably formed and differentiated closer to the Sun than the present location of the family. A CK-like composition is also possible, from the inferred mineralogy, as well as from the similarities of the spectra in the NIR.  相似文献   

9.
832 Karin is the largest member of the young Karin cluster that formed 5.75±0.05 Myr ago in the outer main belt. Surprisingly, recent near-IR spectroscopy measurements [Sasaki, T., Sasaki, S., Watanabe, J., Sekiguchi, T., Yoshida, F., Kawakita, H., Fuse, T., Takato, N., Dermawan, B., Ito, T., 2004. Astrophys. J. 615 (2), L161-L164] revealed that Karin's surface shows different colors as a function of rotational phase. It was interpreted that 832 Karin shows us the reddish space-weathered exterior surface of the parent body as well as an interior face, which has not had time to become space-weathered. This result is at odds with recent results including seismic and geomorphic modeling, modeling of the Karin cluster formation and measurements of the space weathering rate. Consequently, we aimed to confirm/infirm this surprising result by sampling Karin's spectrum well throughout its rotation. Here, we present new visible (0.45-0.95 μm) and near-infrared (0.7-2.5 μm) spectroscopic observations of 832 Karin obtained in January and April 2006, covering most of Karin's longitudes. In the visible range, we find that Karin shows no rotational spectral variations. Similarly, we find that Karin exhibits very little (to none) spectral variations with rotation in the near-IR range. Our results imply that 832 Karin has a homogeneous surface, in terms of composition and surface age. Our results also imply that the impact that generated the family refreshed entirely Karin's surface, and probably the surfaces of all members.  相似文献   

10.
J.P Emery  R.H Brown 《Icarus》2003,164(1):104-121
We present new near-infrared spectra of 20 Trojan asteroids. The spectra were recorded at the NASA Infrared Telescope Facility (IRTF) using the recently commissioned medium-resolution spectrograph SpeX and at the Multiple Mirror Telescope (MMT) using the instrument FSPEC. Spectra of all of these objects were measured in K-band (1.95-2.5 μm), 8 of these in L-band (2.8-4.0 μm), and 14 in the range 0.8-2.5 μm. These observations nearly double the number of published 0.8-2.5 μm spectra of Trojan asteroids and provide the first systematic study of the L-band region for these distant asteroids. The data show that the red spectral slope measured in the near-IR extends through the L-band, though it is not as steep here as at shorter wavelengths. A significant diversity is apparent in the near-IR spectral slopes of this sampling of objects. Most of the spectra do not contain any definitive absorption features characteristic of surface composition (e.g., H2O, organics, silicates) as seen on main-belt asteroids and several Centaur and Kuiper Belt objects. A few objects may display spectral activity, and the reliability of these possible features is discussed. While these spectra are generally compatible with silicate surfaces to explain the spectral slope mixed with some fraction of low albedo material, there is no absolute indication of silicates. The spectral slope could also be explained by the presence of hydrocarbons, but the lack of absorption features, especially in L-band where very strong fundamental absorptions from these molecules appear, constrains the character and abundance of these materials at the surface.  相似文献   

11.
We compare 13 near-infrared (0.8-2.4 μm) spectra of two low albedo C complex outer-belt asteroid families: Themis and Veritas. The disruption ages of these two families lie at opposite extremes: 2.5 ± 1.0 Gyr and 8.7 ± 1.7 Myr, respectively. We found striking differences between the two families, which show a range of spectral shapes and slopes. The seven Themis family members (older surfaces) have “red” (positive) slopes in the 1.6-2.4 μm region; in contrast, the six Veritas members (younger surfaces) have significantly “flatter” slopes at these same wavelengths. Moreover, the two families are characterized by different concavity at shorter (1.0-1.5 μm) wavelengths with the Themis group being consistently flat or concave up (smile) and the Veritas group being consistently concave down (frown). Each family contains a broad range of diameters, suggesting our results are not due to comparisons of asteroids of different sizes. The statistically significant clustering of the two spectral groups could be explained by one of the following three possibilities or a combination of them: (1) space weathering effects, (2) differences in original composition, or (3) differences in thermal history perhaps as a result of the difference in parent body sizes. As a result of our analyses, we propose a new method to quantify broad and shallow structures in the spectra of primitive asteroids. We found reasonable matches between the observed asteroids and individual carbonaceous chondrite meteorites. Because these meteoritic fits represent fresh surfaces, space weathering is neither necessary nor ruled out as an explanation of spectral differences between families. The six Veritas family near-infrared (NIR) spectra represent the first NIR analysis of this family, thus significantly increasing our understanding of this family over these wavelengths.  相似文献   

12.
In this paper we present results obtained in the framework of a visible spectroscopic and photometric survey of Trojan asteroids. We concentrated on bodies orbiting at the L5 Lagrangian point of Jupiter that are also members of dynamical families. Spectroscopy is a crucial tool that allows us to characterize the mineralogical composition of families and their parent bodies, gives evidence of ongoing space weathering, and confirms family membership. We have observed 18 objects belonging to the Aneas, Astyanax, Sarpedon, and Phereclos families as defined by Beaugé and Roig (2001, Icarus 53, 391). In addition, we have determined the spectroscopic properties of 8 background Jupiter Trojans. The observed spectra are reddish with a dominance of D-type asteroids. As expected, the spectra of the non-family members are more heterogeneous compared to the spectra of family members, with the exception of the members of the Aneas family. We also confirm the lack of absorption features in the visible region, as already reported by other authors.  相似文献   

13.
Using the S-band radar at Arecibo Observatory, we observed six new M-class main-belt asteroids (MBAs), and re-observed one, bringing the total number of Tholen M-class asteroids observed with radar to 19. The mean radar albedo for all our targets is , significantly higher than the mean radar albedo of every other class (Magri, C., Nolan, M.C., Ostro, S.J., Giorgini, J.D. [2007]. Icarus 186, 126-151). Seven of these objects (Asteroids 16 Psyche, 129 Antigone, 216 Kleopatra, 347 Pariana, 758 Mancunia, 779 Nina, 785 Zwetana) have radar albedos indicative of a very high metal content , and consistent with a remnant iron/nickel core interpretation (irons) or exotic high metal meteorite types such as CB. We propose designating these high radar albedo objects as Mm. Two asteroids, 110 Lydia and 678 Fredegundis, have more moderate radar albedos , but exhibit high values at some rotation phases suggesting a significant metal content. The remaining 10 objects have moderate radar albedos at all rotation phases. Most of our targets have visible/near-infrared spectra (Hardersen, P.S., Gaffey, M.J., Abell, P.A. [2005]. Icarus 175, 141-158; Fornasier, S., Clark, B.E., Dotto, E., Migliorini, A., Ockert-Bell, M., Barucci, M.A. [2009]. Icarus, submitted for publication) that indicate the presence of at least some silicate phases. All of the non-Mm asteroids show a positive correlation between visual and radar albedo but the reasons for this are not clear. All of the higher radar albedo targets (the 7 Mm asteroids, Lydia, and Fredegundis) show moderate to large variations in radar albedo with rotation phase. We suggest that their high radar reflectivity exaggerates irregularities in the asteroid shape to cause this behavior. One-third of our targets show evidence for asteroid-scale concavities or bifurcation. Based on all the evidence available, we suggest that most Tholen M-class asteroids are not remnant iron cores or enstatite chondrites, but rather collisional composites of silicates and irons with compositions more analogous to stony-iron meteorites and high-iron carbonaceous chondrites.  相似文献   

14.
We have made near-IR spectral observations of the very young (5.75 Myr) S-type asteroid 832 Karin, well sampled in rotational phase over its 18.35-h period. We find no significant variations in its reflectance spectrum. Karin, the brightest member of the Karin cluster (a sub-family of the larger, older Koronis dynamical family), was shown to be exceptionally young by Nesvorný et al. [Nesvorný, D., Bottke, W.F., Dones, L., Levison, H., 2002. Nature 417, 720-722], using backward numerical integration of orbital elements of cluster members. Their precise dating of the collisional breakup gives us an opportunity, for the first time and without age-dating of physical samples, to monitor time-evolution of processes, like space weathering, that operate on timescales of ∼1-10 Myr. Sasaki et al. [Sasaki, T., Sasaki, S., Watanabe, J., Sekiguchi, T., Yoshida, F., Kawakita, H., Fuse, T., Takato, N., Dermawan, B., Ito, T., 2004. Astrophys. J. 615, L161-L164; Sasaki, T., Sasaki, S., Watanabe, J., Sekiguchi, T., Yoshida, F., Ito., T., Kawakita, H., Fuse, T., Takato, N., Dermawan, B., 2005. Lunar Planet. Sci. XXXVI. Abstract #1590] had made similar measurements of Karin, although more sparsely sampled than ours, and claimed dramatically different colors as a function of rotational phase. Sasaki et al. interpreted their data to be showing the reddish, space-weathered exterior surface of the precursor asteroid, as well as an interior face, which had not had time to become space-weathered. On five nights over 2006 January 7-14 UT, we observed Karin with the SpeX (0.8-2.5 μm) spectrometer of the IRTF. We analyze data in 30° intervals of rotational longitude, some of which we sampled on two different nights. The spectra are consistent with little or no spectral variation as the asteroid rotates; certainly there are no changes as large as previously reported. The previous observations were probably spurious. Our average spectrum resembles the “blue” spectrum of Sasaki et al., which they interpreted to be the “fresh” surface. Karin is not quite as red as typical S-types, yet has rather shallow absorption bands. We surmise that the space-weathering process affecting Karin has had time to reduce spectral contrast, but has not operated long enough to redden its spectrum—an intermediate case of space weathering, which has gone to completion for most main-belt asteroids. This work sets an important constraint on the timescale for the ubiquitous space-weathering process affecting S-types, namely that its effects are evident, but not yet complete, at ∼6 Myr.  相似文献   

15.
K. Tsiganis  Z. Kne?evi? 《Icarus》2007,186(2):484-497
The family of (490) Veritas is a young, dynamically heterogeneous asteroid family, located in the outer main belt. As such, it represents a valuable example for studying the effects of chaotic diffusion on the shape of asteroid families. The Veritas family can be decomposed into several groups, in terms of the principal mechanisms that govern the local dynamics, which are analyzed here. A relatively large spread in proper eccentricity is observed, for the members of two chaotic groups. We show that different types of chaos govern the motion of bodies within each group, depending on the extent of overlap among the components of the corresponding resonant multiplets. In particular, one group appears to be strongly diffusive, while the other is not. Studying the evolution of the diffusive group and applying statistical methods, we estimate the age of the family to be τ=(8.7±1.7) Myr. This value is statistically compatible with that of 8.3 Myr previously derived by Nesvorný et al. [Nesvorný, D., Bottke, W.F., Levison, H.F., Dones, L., 2003. Astrophys. J. 591, 486-497], who analyzed the secular evolution of family members on regular orbits. Our methodology, applied here in the case of the Veritas family, can be used to reconstruct the orbital history of other, dynamically complex, asteroid families and derive approximate age estimates for young asteroid families, located in diffusive regions of the main belt. Possible refinements of the method are also discussed.  相似文献   

16.
Bottke et al. [Bottke, W.F., Vokrouhlicky, D., Nesvorný, D., 2007. Nature 449, 48–53] linked the catastrophic formation of Baptistina Asteroid Family (BAF) to the K/T impact event. This linkage was based on dynamical and compositional evidence, which suggested the impactor had a composition similar to CM2 carbonaceous chondrites. However, our recent study [Reddy, V., Emery, J.P., Gaffey, M.J., Bottke, W.F., Cramer, A., Kelley, M.S., 2009. Meteorit. Planet. Sci. 44, 1917–1927] suggests that the composition of (298) Baptistina is similar to LL-type ordinary chondrites rather than CM2 carbonaceous chondrites. This rules out any possibility of it being related to the source of the K/T impactor, if the impactor was of CM-type composition. Mineralogical study of asteroids in the vicinity of BAF has revealed a plethora of compositional types suggesting a complex formation and evolution environment. A detailed compositional analysis of 16 asteroids suggests several distinct surface assemblages including ordinary chondrites (Gaffey SIV subtype), primitive achondrites (Gaffey SIII subtype), basaltic achondrites (Gaffey SVII subtype and V-type), and a carbonaceous chondrite. Based on our mineralogical analysis we conclude that (298) Baptistina is similar to ordinary chondrites (LL-type) based on olivine and pyroxene mineralogy and moderate albedo. S-type and V-type in and around the vicinity of BAF we characterized show mineralogical affinity to (8) Flora and (4) Vesta and could be part of their families. Smaller BAF asteroids with lower SNR spectra showing only a ‘single’ band are compositionally similar to (298) Baptistina and L/LL chondrites. It is unclear at this point why the silicate absorption bands in spectra of asteroids with formal family definition seem suppressed relative to background population, despite having similar mineralogy.  相似文献   

17.
We present observations of Asteroid 21 Lutetia collected 2003–2008 using the SpeX instrument on the NASA Infrared Telescope Facility (IRTF) covering 2–4 μm. We also reevaluate NSFCam observations obtained in 1996 (Rivkin, A.S., Lebofsky, L.A., Clark, B.E., Howell, E.S., Britt, D.T. [2000]. Icarus 145, 351–368). Taken together, these show deeper 3-μm band depths (of order 3–5%) in the southern hemisphere of Lutetia, and shallower band depths (of order 2% or less) in the north. Such variation is consistent with observations at shorter wavelength by previous workers (Nedelcu, D.A. et al. [2007]. Astron. Astrophys. 470, 1157–1164; Lazzarin, M. et al. [2010]. Mon. Not. R. Astron. Soc. 408, 1433–1437), who observed hemispheric-level variations from C-like spectra to X-like spectra.While the shallowness of absorption bands on Lutetia hinders identification of its surface composition, goethite appears plausible as a constituent in its southern hemisphere (Beck, P., Quirico, E., Sevestre, D., Montes-Hernandez, G., Pommerol, A., Schmitt, B. [2011]. Astron. Astrophys. 526, A85–A89). Mathematical models of space weathered goethite are most consistent with Lutetia’s southern hemisphere spectrum, but more work and further observations are necessary to confirm this suggestion.  相似文献   

18.
S. Marchi  M. Lazzarin  S. Magrin 《Icarus》2005,175(1):170-174
We present new visible and near-infrared spectroscopic observations of 4 small, previously unclassified, near-Earth objects (NEOs). They appear to have basaltic surfaces, and hence they can be classified as V-types. Their visible spectra exhibit a closer spectral match with the Main-Belt (MB) Asteroid (4) Vesta than the other, presently known, V-type NEOs and MB asteroids. The near-infrared spectrum of Asteroid 2003 FT3 shows—for the first time among NEOs—a peculiar shape of the 1 μm band, maybe suggesting an overabundance of olivine compared to the other V-types and to (4) Vesta. The presence of V-type objects among NEOs may be a consequence of the delivery processes connecting the inner MB to the near-Earth region. On the basis of the orbital parameters of the NEOs presented here, both the resonances (3:1 and ν6), usually considered as the most relevant gateways for the production of near-Earth asteroids, should have been active to transfer the bodies from the MB region.  相似文献   

19.
Ronald A. Fevig  Uwe Fink 《Icarus》2007,188(1):175-188
Results of our visible to near-infrared spectrophotometric observations of 41 near-Earth asteroids (NEAs) are reported. These moderate-resolution spectra, along with 14 previously published spectra from our earlier survey [Hicks, M.D., Fink, U., Grundy, W.M., 1998. Icarus 133, 69-78] show a preponderance of spectra consistent with ordinary chondrites (23 NEAs with this type of spectrum, along with 19 S-types and 13 in other taxonomic groups). There exists statistically significant evidence for orbit-dependent trends in our data. While S-type NEAs from our survey reside primarily in (1) Amor orbits or (2) Aten or Apollo orbits which do not cross the asteroid main-belt, the majority of objects with spectra consistent with ordinary chondrites in our survey are in highly eccentric Apollo orbits which enter the asteroid main-belt. This trend toward fresh, relatively unweathered NEAs with ordinary chondrite type spectra in highly eccentric Apollo orbits is attributed to one or a combination of three possible causes: (1) the chaotic nature of NEA orbits can easily result in high eccentricity orbits/large aphelion distances so that they can enter the collisionally enhanced environment in the main-belt, exposing fresh surfaces, (2) they have recently been injected into such orbits after a collision in the main-belt, or (3) such objects cross the orbits of several terrestrial planets, causing tidal disruption events that expose fresh surfaces.  相似文献   

20.
We present a number of spectra of Near-Earth Objects taken in the period 1998-2003 with two different instruments (CGS4 and UIST) on the UKIRT telescope. Since observations with CGS4 require multiple spectral fragments to be observed sequentially and then spliced together we assess the reliability of this technique using comparisons between multiple observations of the same object, between observations of the same object with both instruments and with independent spectra of common objects. We conclude that while problems in the spectral splicing can occur, they are usually intuitively obvious and that overall our dataset is sound. The objects for which we present new spectral data are: 1627 Ivar, 4179 Toutatis, 5381 Sekhmet, (5587) 1990 SB, 6489 Golevka, (11405) 1999 CV3, (14402) 1991 DB, 25143 Itokawa, (25330) 1999 KV4, (52760) 1998 ML14, (66391) 1999 KW4, and (101955) 1999 RQ36. Our results, together with albedo data from the literature, suggest carbonaceous compositions for 25330 and 101955. The available data for 14402 suggest it may belong to the relatively rare M class. Our analysis suggests an S or Sq classification for 52760 and a V classification for 5381 Sekhmet. For all remaining objects the UKIRT data are consistent with published spectral classifications. We find that only 3 of the 12 objects are not S/Q/V-class, which is roughly consistent with the results of Binzel et al. [Binzel, R.P., Rivkin, A.S., Stuart, J.S., Harris, A.W., Bus, S.J., Burbine, T.H., 2004. Icarus 170, 259-294]. Four spectra of Toutatis taken over a range of solar phase angles between 0.7°-81° and at intervals of several weeks are indistinguishable within the uncertainties and therefore do not reveal any evidence for phase reddening or surface variegation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号