首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heikki Salo  Jürgen Schmidt 《Icarus》2010,206(2):390-409
We study viscous instability of planetary rings in terms of N-body simulations. We show that for rings composed of fairly elastic particles (e.g. as in Hatzes et al. [Hatzes, A., Bridges, F.G., Lin, D.N.C., 1988. Collisional properties of ice spheres at low impact velocities. Mon. Not. R. Astron. Soc. 231, 1091-1115]) the instability may lead to the spontaneous formation of dense ringlets in a background of lower density. In most parts of Saturn’s rings the particle collisions are probably much more dissipative, as suggested by the presence of self-gravity wakes, and classic viscous instability should be suppressed. However, our results demonstrate that the mechanism of viscous instability itself is valid. The dynamical effects of size-dependent elasticity in a system with a size distribution have never been studied before. We show that this may in principle lead to a size-selective viscous instability, small particles concentrating on ringlets against the more uniform background of large particles.  相似文献   

2.
This paper addresses the fine-scale axisymmetric structure exhibited in Saturn's A and B-rings. We aim to explain both the periodic microstructure on 150-220 m, revealed by the Cassini UVIS and RSS instruments, and the irregular variations in brightness on 1-10 km, reported by the Cassini ISS. We propose that the former structures correspond to the peaks and troughs of the nonlinear wavetrains that form naturally in a viscously overstable disk. The latter variations on longer scales may correspond to modulations and defects in the wavetrains' amplitudes and wavelength. We explore these ideas using a simple hydrodynamical model which captures the correct qualitative behaviour of a disk of inelastically colliding particles, while also permitting us to make progress with analytic and semi-analytic techniques. Specifically, we calculate a family of travelling nonlinear density waves and determine their stability properties. Detailed numerical simulations that confirm our basic results will appear in a following paper.  相似文献   

3.
M. Seiß  F. Spahn  Jürgen Schmidt 《Icarus》2010,210(1):298-317
Saturn’s rings host two known moons, Pan and Daphnis, which are massive enough to clear circumferential gaps in the ring around their orbits. Both moons create wake patterns at the gap edges by gravitational deflection of the ring material (Cuzzi, J.N., Scargle, J.D. [1985]. Astrophys. J. 292, 276-290; Showalter, M.R., Cuzzi, J.N., Marouf, E.A., Esposito, L.W. [1986]. Icarus 66, 297-323). New Cassini observations revealed that these wavy edges deviate from the sinusoidal waveform, which one would expect from a theory that assumes a circular orbit of the perturbing moon and neglects particle interactions. Resonant perturbations of the edges by moons outside the ring system, as well as an eccentric orbit of the embedded moon, may partly explain this behavior (Porco, C.C., and 34 colleagues [2005]. Science 307, 1226-1236; Tiscareno, M.S., Burns, J.A., Hedman, M.M., Spitale, J.N., Porco, C.C., Murray, C.D., and the Cassini Imaging team [2005]. Bull. Am. Astron. Soc. 37, 767; Weiss, J.W., Porco, C.C., Tiscareno, M.S., Burns, J.A., Dones, L. [2005]. Bull. Am. Astron. Soc. 37, 767; Weiss, J.W., Porco, C.C., Tiscareno, M.S. [2009]. Astron. J. 138, 272-286). Here we present an extended non-collisional streamline model which accounts for both effects. We describe the resulting variations of the density structure and the modification of the nonlinearity parameter q. Furthermore, an estimate is given for the applicability of the model. We use the streamwire model introduced by Stewart (Stewart, G.R. [1991]. Icarus 94, 436-450) to plot the perturbed ring density at the gap edges.We apply our model to the Keeler gap edges undulated by Daphnis and to a faint ringlet in the Encke gap close to the orbit of Pan. The modulations of the latter ringlet, induced by the perturbations of Pan (Burns, J.A., Hedman, M.M., Tiscareno, M.S., Nicholson, P.D., Streetman, B.J., Colwell, J.E., Showalter, M.R., Murray, C.D., Cuzzi, J.N., Porco, C.C., and the Cassini ISS team [2005]. Bull. Am. Astron. Soc. 37, 766), can be well described by our analytical model. Our analysis yields a Hill radius of Pan of 17.5 km, which is 9% smaller than the value presented by Porco (Porco, C.C., and 34 colleagues [2005]. Science 307, 1226-1236), but fits well to the radial semi-axis of Pan of 17.4 km. This supports the idea that Pan has filled its Hill sphere with accreted material (Porco, C.C., Thomas, P.C., Weiss, J.W., Richardson, D.C. [2007]. Science 318, 1602-1607). A numerical solution of a streamline is used to estimate the parameters of the Daphnis-Keeler gap system, since the close proximity of the gap edge to the moon induces strong perturbations, not allowing an application of the analytic streamline model. We obtain a Hill radius of 5.1 km for Daphnis, an inner edge variation of 8 km, and an eccentricity for Daphnis of 1.5 × 10−5. The latter two quantities deviate by a factor of two from values gained by direct observations (Jacobson, R.A., Spitale, J., Porco, C.C., Beurle, K., Cooper, N.J., Evans, M.W., Murray, C.D. [2008]. Astron. J. 135, 261-263; Tiscareno, M.S., Burns, J.A., Hedman, M.M., Spitale, J.N., Porco, C.C., Murray, C.D., and the Cassini Imaging team [2005]. Bull. Am. Astron. Soc. 37, 767), which might be attributed to the neglect of particle interactions and vertical motion in our model.  相似文献   

4.
We perform axisymmetric hydrodynamical simulations that describe the nonlinear outcome of the viscous overstability in dense planetary rings. These simulations are particularly relevant for Cassini observations of fine-scale structure in Saturn’s A and B-ring, which take the form of periodic microstructure on the 0.1 km scale, and irregular larger-scale variations on 1-10 km. Nonlinear wavetrains dominate all the simulations, and we associate them with the observed periodic microstructure. The waves can undergo small chaotic fluctuations in their phase and amplitude, and may be punctuated by more formidable ‘wave defects’ distributed on longer scales. It is unclear, however, whether the defects are connected to the irregular larger-scale variations observed by Cassini. The long-term behaviour of the simulations is dominated by the imposed boundary conditions, and more generally by the limitations of the local model we use: the shearing box. When periodic boundary conditions are imposed, the system eventually settles on a uniform travelling wave of a predictable wavelength, while reflecting boundaries, and boundaries with buffer zones, maintain a disordered saturated state. The simulations omit self-gravity, though we examine its influence in future work.  相似文献   

5.
Mark Lewis  Glen Stewart 《Icarus》2011,213(1):201-217
This paper analyzes a process that has been observed in simulations of numerous systems where ring material is strongly perturbed by a nearby moon. If the ring particles can be imparted with a forced eccentricity on the order of 10−5 in a single pass by the moon, particle orbits are observed to move towards regions of higher density as a result of the organized collisions that occur in the dense peaks of the satellite wake. The width of the ring can decrease by as much as 90% if the forced eccentricity is greater than 3 × 10−5 and the unperturbed geometric optical depth is greater than 0.03. The fractional change in ring width is relatively insensitive to the particle size so long as the particle radius is much less than the product of the semimajor axis and the forced eccentricity. Including a power law particle size distribution with slope of −2.8 spanning a decade in particle radius reduces the fractional width change by about 10% compared to the uniform particle-size case. Adding gravitational interactions between ring particles only has a significant effect on ring confinement if the unperturbed geometric optical depth exceeds .03, but a 40% reduction in ring width is still achieved in a self-gravitating ring of geometric optical depth 0.3 if the forced eccentricity exceeds 3 × 10−5. This process does not require the material to be in resonance with the moon, nor does it have any minimum mass constraints because particle self-gravity is not required. The collisional damping of satellite wakes therefore provides a simple mechanism by which a single moon can reduce the radial extent of any ringlet that is close to it and has sufficient optical depth for collisions to be significant.  相似文献   

6.
Stellar occultations by Saturn’s rings observed with the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft reveal that dusty features such as the F ring and the ringlets in the Encke and the Laplace Gaps have distinctive infrared transmission spectra. These spectra show a narrow optical depth minimum at wavelengths around 2.87 μm. This minimum is likely due to the Christiansen Effect, a reduction in the extinction of small particles when their (complex) refractive index is close to that of the surrounding medium. Simple Mie-scattering models demonstrate that the strength of this opacity dip is sensitive to the size distribution of particles between 1 and 100 μm across. Furthermore, the spatial resolution of the occultation data is sufficient to reveal variations in the transmission spectra within and among these rings. In both the Encke Gap ringlets and F ring, the opacity dip weakens with increasing local optical depth, which is consistent with the larger particles being concentrated near the cores of these rings. The Encke Gap ringlets also show systematically weaker opacity dips than the F ring and Laplace Gap ringlet, implying that the former has a smaller fraction of grains less than ∼30 μm across. However, the strength of the opacity dip varies most dramatically within the F ring; certain compact regions of enhanced optical depth lack an opacity dip and therefore appear to have a greatly reduced fraction of grains in the few-micron size range. Such spectrally-identifiable structures probably represent a subset of the compact optically-thick clumps observed by other Cassini instruments. These variations in the ring’s particle size distribution can provide new insights into the processes of grain aggregation, disruption and transport within dusty rings. For example, the unusual spectral properties of the F-ring clumps could perhaps be ascribed to small grains adhering onto the surface of larger particles in regions of anomalously low velocity dispersion.  相似文献   

7.
This paper examines the onset of the viscous overstability in dense particulate rings. First, we formulate a dense gas kinetic theory that is applicable to the saturnian system. Our model is essentially that of Araki and Tremaine [Araki, S., Tremaine, S., 1986. Icarus 65, 83-109], which we show can be both simplified and generalised. Second, we put this model to work computing the equilibrium properties of dense planetary rings, which we subsequently compare with the results of N-body simulations, namely those of Salo [Salo, H., 1991. Icarus 90, 254-270]. Finally, we present the linear stability analyses of these equilibrium states, and derive criteria for the onset of viscous overstability in the self-gravitating and non-self-gravitating cases. These are framed in terms of particle size, orbital frequency, optical depth, and the parameters of the collision law. Our results compare favourably with the simulations of Salo et al. [Salo, H., Schmidt, J., Spahn, F., 2001. Icarus 153, 295-315]. The accuracy and practicality of the continuum model we develop encourages its general use in future investigations of nonlinear phenomena.  相似文献   

8.
Early ground-based and spacecraft observations suggested that the temperature of Saturn's main rings (A, B and C) varied with the solar elevation angle, B. Data from the composite infrared spectrometer (CIRS) on board Cassini, which has been in orbit around Saturn for more than five years, confirm this variation and have been used to derive the temperature of the main rings from a wide variety of geometries while B varied from near −24° to 0° (Saturn's equinox).Still, an unresolved issue in fully explaining this variation relates to how the ring particles are organized and whether even a simple mono-layer or multi-layer approximation describes this best. We present a set of temperature data of the main rings of Saturn that cover the ∼23°—range of B angles obtained with CIRS at low (α∼30°) and high (α≥120°) phase angles. We focus on particular regions of each ring with a radial extent on their lit and unlit sides. In this broad range of B, the data show that the A, B and C rings’ temperatures vary as much as 29-38, 22-34 and 18-23 K, respectively. Interestingly the unlit sides of the rings show important temperature variations with the decrease of B as well. We introduce a simple analytical model based on the well known Froidevaux monolayer approximation and use the ring particles’ albedo as the only free parameter in order to fit and analyze this data and estimate the ring particle's albedo. The model considers that every particle of the ring behaves as a black body and warms up due to the direct energy coming from the Sun as well as the solar energy reflected from the atmosphere of Saturn and on its neighboring particles. Two types of shadowing functions are used. One analytical that is used in the latter model in the case of the three rings and another, numerical, that is applied in the case of the C ring alone. The model lit side albedo values at low phase are 0.59, 0.50 and 0.35-0.38 for the A, B and C rings, respectively.  相似文献   

9.
Carlos E. Chavez 《Icarus》2009,203(1):233-237
In this article we explore the aspect of the F ring with respect to the anti-alignment configuration between the ring and Prometheus. We focus our attention on the shape of the F ring’s azimuthal channels which were first reported by Porco et al. (Porco, C.C., Baker, E., Barbara, J., Beurle, K., Brahic, A., Burns, J.A., Charnoz, S., Cooper, N., Dawson, D.D., Del Genio, A.D., Denk, T., Dones, L., Dyudina, U., Evans, M.W., Giese, B., Grazier, K., Helfenstein, P., Ingersoll, A.P., Jacobson, R.A., Johnson, T.V., McEwen, A., Murray, C.D., Neukum, G., Owen, W.M., Perry, J., Roatsch, T., Spitale, J., Squyres, S., Thomas, P., Tiscareno, M., Turtle, E., Vasavada, A.R., Veverka, J., Wagner, R., West, R. [2005] Science, 307, 1226-1236) and numerically explored by Murray et al. (Murray, C.D., Chavez, C., Beurle, K., Cooper, N., Evans, M.W., Burns, J.A., Porco, C.C. [2005] Nature 437, 1326-1329) who found excellent agreement between Cassini’s ISS reprojected images and their numerical model via a direct comparison. We find that for anti-alignment the channels are wider and go deeper inside the ring material. From our numerical model we find a new feature, an island in the middle of the channel. This island is made up of the particles that have been perturbed the most by Prometheus and only appears when this satellite is close to apoapsis. In addition, plots of the anti-alignment configuration for different orbital stages of Prometheus are obtained and discussed here.  相似文献   

10.
We present a forward modeling approach for determining, in part, the ring particle spatial distribution in the vicinity of sharp ring or ringlet edges. Synthetic edge occultation profiles are computed based on a two-parameter particle spatial distribution model. One parameter, h, characterizes the vertical extent of the ring and the other, δ, characterizes the radial scale over which the ring optical depth transitions from the background ring value to zero. We compare our synthetic occultation profiles to high resolution stellar occultation light curves observed by the Cassini Ultraviolet Imaging Spectrograph (UVIS) High Speed Photometer (HSP) for occultations by the Titan ringlet and Huygens ringlet edges.More than 100 stellar occultations of the Huygens ringlet and Titan ringlet edges were studied, comprising 343 independent occultation cuts of the edges of these two ringlets. In 237 of these profiles the measured light-curve was fit well with our two-parameter edge model. Of the remaining edge occultations, 69 contained structure that could only be fit with extremely large values of the ring-plane vertical thickness (h > 1 km) or by adopting a different model for the radial profile of the ring optical depth. An additional 37 could not be fit by our two-parameter model.Certain occultations at low ring-plane incidence angles as well as occultations nearly tangent to the ring edge allow the direct measurement of the radial scale over which the particle packing varies at the edge of the ringlet. In 24 occultations with these particular viewing geometries, we find a wide variation in the radial scale of the edge. We are able to constrain the vertical extent of the rings at the edge to less than ∼300 m in the 70% of the occultations with appropriate viewing geometry, however tighter constraints could not be placed on h due to the weaker sensitivity of the occultation profile to vertical thickness compared to its sensitivity to δ.Many occultations of a single edge could not be fit to a single value of δ, indicating large temporal or azimuthal variability, although the azimuthal variation in δ with respect to the longitudes of various moons in the system did not show any discernible pattern.  相似文献   

11.
Gravitational accretion in the rings of Saturn is studied with local N-body simulations, taking into account the dissipative impacts and gravitational forces between particles. Common estimates of accretion assume that gravitational sticking takes place beyond a certain distance (Roche distance) where the self-gravity between a pair of ring particles exceeds the disrupting tidal force of the central object, the exact value of this distance depending on the ring particles' internal density. However, the actual physical situation in the rings is more complicated, the growth and stability of the particle groups being affected also by the elasticity and friction in particle impacts, both directly via sticking probabilities and indirectly via velocity dispersion, as well as by the shape, rotational state and the internal packing density of the forming particle groups. These factors are most conveniently taken into account via N-body simulations. In our standard simulation case of identical 1 m particles with internal density of solid ice, ρ=900 kg m−3, following the Bridges et al., 1984 elasticity law, we find accretion beyond a=137,000-146,000 km, the smaller value referring to a distance where transient aggregates are first obtained, and the larger value to the distance where stable aggregates eventually form in every experiment lasting 50 orbital periods. Practically the same result is obtained for a constant coefficient of restitution εn=0.5. In terms of rp parameter, the sum of particle radii normalized by their mutual Hill radius, the above limit for perfect accretion corresponds to rp<0.84. Increased dissipation (εn=0.1), or inclusion of friction (tangential force 10% of normal force) shifts the accretion region inward by about 5000 km. Accretion is also more efficient in the case of size distribution: with a q=3 power law extending over a mass range of 1000, accretion shifts inward by almost 10,000 km. The aggregates forming in simulations via gradual accumulation of particles are synchronously rotating.  相似文献   

12.
Images of the dusty rings obtained by the Cassini spacecraft in late 2006 and early 2007 reveal unusual structures composed of alternating canted bright and dark streaks in the outer G ring (∼170,000 km from Saturn center), the inner Roche Division (∼138,000 km) and the middle D ring (70,000-73,000 km). The morphology, locations and pattern speeds of these features indicate that they are generated by Lindblad resonances. The structure in the G ring appears to be generated by the 8:7 Inner Lindblad Resonance with Mimas. Based in part on the morphology of the G ring structure, we develop a phenomenological model of Lindblad-resonance-induced structures in faint rings, where the observed variations in the rings' optical depth and brightness are due to alignments and trends in the particles' orbital parameters with semi-major axis. To reproduce the canted character of these structures, this model requires a term in the equations of motion that damps eccentricities. Using this model to interpret the structures in the D ring and Roche Division, we find that the D-ring patterns mimic those predicted at 2:1 Inner Lindblad Resonances and the Roche Division patterns look like those expected at 3:4 Outer Lindblad Resonances. As in the G ring, the effective eccentricity-damping timescale is of order 10-100 days, suggesting that free eccentricities are strongly damped by some mechanism that operates throughout all these regions. However, unlike in the G ring, perturbation forces with multiple periods are required to explain the observed patterns in the D ring and Roche Division. The strongest perturbation periods occur at 10.53, 10.56 and 10.74 hours (only detectable in the D ring) and 10.82 hours (detectable in both the D ring and Roche division). These periods are comparable to the rotation periods of Saturn's atmosphere and magnetosphere. The inferred strength of the perturbation forces required to produce these patterns (and the absence of evidence for other resonances driven by these periods in the main rings) suggests that non-gravitational forces are responsible for generating these features in the D ring and Roche Division. If this interpretation is correct, then some of these structures may have some connection with periodic signals observed in Saturn's magnetic field and radio-wave emissions, and accordingly could help clarify the nature and origin(s) of these magnetospheric asymmetries.  相似文献   

13.
P.D. Nicholson  M.M. Hedman 《Icarus》2010,206(2):410-423
An increasing body of evidence shows that, at the sub-km level, Saturn’s main A and B rings are dominated by an ever-changing pattern of elongated, canted structures known as self-gravity wakes. Best known for causing azimuthal variations in the rings’ reflectivity, these structures also have a profound influence on how the transmission of the rings varies with both longitude and opening angle, B (Colwell et al. [2006] Geophys. Res. Lett. 33, 7201; Colwell et al. [2007] Icarus 190, 127-144; Hedman et al. [2007] Astron. J. 133, 2624-2629). We use data from three stellar occultations observed by Cassini’s Visual and Infrared Mapping Spectrometer (VIMS) to measure the transmission of the rings as a function of B, when viewed parallel to the wakes. These data are used to constrain properties of the self-gravity wakes as a function of radius across the A and B rings: specifically the fractional width of the gaps between the wakes, G/λ, and the average normal optical depth in the gaps, τG. We find that the overall normal optical depth of the rings, τn is primarily controlled by G/λ, which varies between <0.05 and ∼0.70 in the A and B rings. The gaps, however, are not completely empty, being filled by material — possibly cm-sized ring particles — with an average normal optical depth which varies from 0.12 to ∼0.4. In addition to regional variations, local variations in τG are seen in the regular structure which dominates the inner B ring, and in the environs of strong density waves in the A ring. The same model applied to the lower optical depth Cassini Division reveals very little evidence of self-gravity wakes, except where τn exceeds ∼0.25.  相似文献   

14.
C. Ferrari  S. Brooks  C. Leyrat  L. Spilker 《Icarus》2009,199(1):145-153
The CIRS infrared spectrometer onboard the Cassini spacecraft has scanned Saturn's A ring azimuthally from several viewing angles since its orbit insertion in 2004. A quadrupolar asymmetry has been detected in this ring at spacecraft elevations ranging between 16° to 37°. Its fractional amplitude decreases from 22% to 8% from 20° to 37° elevations. The patterns observed in two almost complete azimuthal scans at elevations 20° and 36° strongly favor the self-gravity wakes as the origin of the asymmetry. The elliptical, infinite cylinder model of Hedman et al. [Hedman, M.M., Nicholson, P.D., Salo, H., Wallis, B.D., Buratti, B.J., Baines, K.H., Brown, R.H., Clark, R.N., 2007. Astron. J. 133, 2624-2629] can reproduce the CIRS observations well. Such wakes are found to have an average height-to-spacing ratio H/λ=0.1607±0.0002, a width-over-spacing W/λ=0.3833±0.0008. Gaps between wakes, which are filled with particles, have an optical depth τG=0.1231±0.0005. The wakes mean pitch angle ΦW is 70.70°±0.07°, relative to the radial direction. The comparison of ground-based visible data with CIRS observations constrains the A ring to be a monolayer. For a surface mass density of 40 g cm−2 [Tiscarino, M.S., Burns, J.A., Nicholson, P.D., Hedman, M.M., Porco, C.C., 2007. Icarus 189, 14-34], the expected spacing of wakes is λ≈60 m. Their height and width would then be H≈10 m and W≈24 m, values that match the maximum size of particles in this ring as determined from ground-based stellar occultations [French, R.G., Nicholson, P.D., 2000. Icarus 145, 502-523].  相似文献   

15.
We present results of near-infrared (2.26 μm) observations of Saturn's main rings taken with the W.M. Keck telescope during August 8-11, 1995, surrounding the time that Earth crossed Saturn's ring plane. These observations provide a unique opportunity to study the evolution of the ring brightness in detail, and by combining our data with Hubble Space Telescope (HST) results (Nicholson et al., 1996, Science 272, 453-616), we extend the 12-hour HST time span to several days around the time of ring plane crossing (RPX). In this paper, we focus on the temporal evolution of the brightness in Saturn's main rings. We examine both edge-on ring profiles and radial profiles obtained by “onion-peeling” the edge-on data. Before RPX, when the dark (unlit) face of the rings was observed, the inner C ring (including the Colombo gap), the Maxwell gap, Cassini Division and F ring region were very bright in transmitted light. After RPX, the main rings brighten rapidly, as expected. The profiles show east-west asymmetries both before and after RPX. Prior to RPX, the evolution in ring brightness of the Keck and HST data match one another quite well. The west side of the rings showed a nonlinear variation in brightness during the last hours before ring plane crossing, suggestive of clumping and longitudinal asymmetries in the F ring. Immediately after RPX, the east side of the rings brightened more rapidly than the west. A quantitative comparison of the Keck and HST data reveals that the rings were redder before RPX than after; we ascribe this difference to the enhanced multiple scattering of photons passing through to the unlit side of the rings.  相似文献   

16.
From 378 Hubble Space Telescope WFPC2 images obtained between 1996-2004, we have measured the detailed nature of azimuthal brightness variations in Saturn's rings. The extensive geometric coverage, high spatial resolution (), and photometric precision of the UBVRI images have enabled us to determine the dependence of the asymmetry amplitude and longitude of minimum brightness on orbital radius, ring elevation, wavelength, solar phase angle, and solar longitude. We explore a suite of dynamical models of self-gravity wakes for two particle size distributions: a single size and a power law distribution spanning a decade in particle radius. From these N-body simulations, we calculate the resultant wake-driven brightness asymmetry for any given illumination and viewing geometry. The models reproduce many of the observed properties of the asymmetry, including the shape and location of the brightness minimum and the trends with ring elevation and solar longitude. They also account for the “tilt effect” in the A and B rings: the change in mean ring brightness with effective ring opening angle, |Beff|. The predicted asymmetry depends sensitively on dynamical ring particle properties such as the coefficient of restitution and internal mass density, and relatively weakly on photometric parameters such as albedo and scattering phase function. The asymmetry is strongest in the A ring, reaching a maximum amplitude A∼25% near a=128,000 km. Here, the observations are well-matched by an internal particle density near 450 kg m−3 and a narrow particle size distribution. The B ring shows significant asymmetry (∼5%) in regions of relatively low optical depth (τ∼0.7). In the middle and outer B ring, where τ?1, the asymmetry is much weaker (∼1%), and in the C ring, A<0.5%. The asymmetry diminishes near opposition and at shorter wavelengths, where the albedo of the ring particles is lower and multiple-scattering effects are diminished. The asymmetry amplitude varies strongly with ring elevation angle, reaching a peak near |Beff|=10° in the A ring and at |Beff|=15-20° in the B ring. These trends provide an estimate of the thickness of the self-gravity wakes responsible for the asymmetry. Local radial variations in the amplitude of the asymmetry within both the A and B rings are probably caused by regional differences in the particle size distribution.  相似文献   

17.
The two major factors contributing to the opposition brightening of Saturn’s rings are (i) the intrinsic brightening of particles due to coherent backscattering and/or shadow hiding on their surfaces, and (ii) the reduced interparticle shadowing when the solar phase angle α → 0°. We utilize the extensive set of Hubble Space Telescope observations (Cuzzi, J.N., French, R.G., Dones, L. [2002]. Icarus 158, 199–223) for different elevation angles B and wavelengths λ to disentangle these contributions. We assume that the intrinsic contribution is independent of B, so that any B dependence of the phase curves is due to interparticle shadowing, which must also act similarly for all λ’s. Our study complements that of Poulet et al. (Poulet, F., Cuzzi, J.N., French, R.G., Dones, L. [2002]. Icarus 158, 224), who used a subset of data for a single B ∼ 10°, and the French et al. (French, R.G., Verbiscer, A., Salo, H., McGhee, C.A., Dones, L. [2007b] PASP 119, 623–642) study for the B ∼ 23° data set that included exact opposition. We construct a grid of dynamical/photometric simulation models, with the method of Salo and Karjalainen (Salo and Karjalainen [2003]. Icarus 164, 428–460), and use these simulations to fit the elevation-dependent part of opposition brightening. Eliminating the modeled interparticle component yields the intrinsic contribution to the opposition effect: for the B and A rings it is almost entirely due to coherent backscattering; for the C ring, an intraparticle shadow hiding contribution may also be present.Based on our simulations, the width of the interparticle shadowing effect is roughly proportional to B. This follows from the observation that as B decreases, the scattering is primarily from the rarefied low filling factor upper ring layers, whereas at larger B’s the dense inner parts are visible. Vertical segregation of particle sizes further enhances this effect. The elevation angle dependence of interparticle shadowing also explains most of the B ring tilt effect (the increase of brightness with elevation). From comparison of the magnitude of the tilt effect at different filters, we show that multiple scattering can account for at most a 10% brightness increase as B → 26°, whereas the remaining 20% brightening is due to a variable degree of interparticle shadowing. The negative tilt effect of the middle A ring is well explained by the the same self-gravity wake models that account for the observed A ring azimuthal brightness asymmetry (Salo, H., Karjalainen, R., French, R.G. [2004]. Icarus 170, 70–90; French, R.G., Salo, H., McGhee, C.A., Dones, L. [2007]. Icarus 189, 493–522).  相似文献   

18.
Soon after the Cassini-Huygens spacecraft entered orbit about Saturn on 1 July 2004, its Visual and Infrared Mapping Spectrometer obtained two continuous spectral scans across the rings, covering the wavelength range 0.35-5.1 μm, at a spatial resolution of 15-25 km. The first scan covers the outer C and inner B rings, while the second covers the Cassini Division and the entire A ring. Comparisons of the VIMS radial reflectance profile at 1.08 μm with similar profiles at a wavelength of 0.45 μm assembled from Voyager images show very little change in ring structure over the intervening 24 years, with the exception of a few features already known to be noncircular. A model for single-scattering by a classical, many-particle-thick slab of material with normal optical depths derived from the Voyager photopolarimeter stellar occultation is found to provide an excellent fit to the observed VIMS reflectance profiles for the C ring and Cassini Division, and an acceptable fit for the inner B ring. The A ring deviates significantly from such a model, consistent with previous suggestions that this region may be closer to a monolayer. An additional complication here is the azimuthally-variable average optical depth associated with “self-gravity wakes” in this region and the fact that much of the A ring may be a mixture of almost opaque wakes and relatively transparent interwake zones. Consistently with previous studies, we find that the near-infrared spectra of all main ring regions are dominated by water ice, with a typical regolith grain radius of 5-20 μm, while the steep decrease in visual reflectance shortward of 0.6 μm is suggestive of an organic contaminant, perhaps tholin-like. Although no materials other than H2O ice have been identified with any certainty in the VIMS spectra of the rings, significant radial variations are seen in the strength of the water-ice absorption bands. Across the boundary between the C and B rings, over a radial range of ∼7000 km, the near-IR band depths strengthen considerably. A very similar pattern is seen across the outer half of the Cassini Division and into the inner A ring, accompanied by a steepening of the red slope in the visible spectrum shortward of 0.55 μm. We attribute these trends—as well as smaller-scale variations associated with strong density waves in the A ring—to differing grain sizes in the tholin-contaminated icy regolith that covers the surfaces of the decimeter-to-meter sized ring particles. On the largest scale, the spectral variations seen by VIMS suggest that the rings may be divided into two larger ‘ring complexes,’ with similar internal variations in structure, optical depth, particle size, regolith texture and composition. The inner complex comprises the C and B rings, while the outer comprises the Cassini Division and A ring.  相似文献   

19.
An analytical model that describes the evolution of ring particles that are co-orbital with two larger bodies on near-circular and near-planar orbits has been formulated. This can be used to estimate the lifetime of the particles within the ring. All the examples investigated, such as the Janus-Epimetheus (JE) system, indicate that the particles should be removed from the co-orbital region within half a synodic period (∼4 years for JE). Numerical modelling confirms the predictions of the model. When the masses are on eccentric orbits the particles remain within the co-orbital system for longer. Our results suggest that the ring associated with Janus and Epimetheus must be continually fed with material, probably by meteoroid impacts on the two satellites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号