首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three aspects of mass transfer instability models of dwarf novae are examined. The hydrodynamic development of instabilities in the secondary are examined within Roche geometry and shown to extend at least a few degrees away from the line of centres. The form of the outburst light curves observed in SS Cygni are shown to be a natural consequence of mass transfer bursts with a duration either less than, or greater than, the disk viscous timescale. Finally the two-dimensional structure of the disc in the plane of the orbit is studied. As with -disks the viscous evolution time following a burst of mass transfer determines the size of viscosity within the disk. Significant deviations from axial symmetry are found to be present.Paper presented at the IAU Colloquium No. 93 on Cataclysmic Variables. Recent Multi-Frequency Observations and Theoretical Developments, held at Dr. Remeis-Sternwarte Bamberg, F.R.G., 16–19 June, 1986.  相似文献   

2.
In this paper, we try to insert into a single evolutionary scheme — in dealing with chemical evolution of galaxies — two different viewpoints that (at least in not too much complicated models) have been treated separately: namely, theS models, allowing mass conservation; andI models, allowing initial zero masses and no mass conservation due to gas inflow. The true evolution of a real proto-galaxy (after reaching the state of maximum expansion) is simulated as follows: A spheroidal gas mass continued to collapse and form stars until a flat configuration is reached after a timeT c has elapsed, while a given amount of gas flows in on a time-scale . According to this scheme, the basic equations of chemical evolution are derived and models which simulate the history of solar neighborhood, other regions and Galactic spheroid component are built up, in the whole range between theS-limit (mass conservation) and theI-limit (zero initial mass and subsequent accretion due to inflowing gas). Concerning the solar neighbourhood, we find that neither the occurrence of gas inflow nor inflow on time-scales 2–3 109 yr are necessary in order to reproduce the temporal behaviour and the empirical distribution of metal content, as pointed out by some authors. On the contrary, the constraint on the lower mass limit for stars formed,m mf0.01, allows only models with T c (i.e. inflow time-scale of the order of the contraction time), while the constraint on the disk mass fraction,R D(T a)0.75, rules out the cases near theI-limit forT c0.55 but permits all cases forT c2.75. Concerning other regions, models are built up which roughly simulate elliptical, spiral and irregular galaxies, and all less extended regions resembling such systems.If the stellar birthrate function is assumed to be an universal law, the chemical evolution of the Galactic disk may be understood in terms of different zones (that might be thought as concentric and coaxial rings) the total density of which decreases monotonically, owing to a corresponding decrease in total mass and/or increase in volume, when passing from the center to the border of the disk. The constraintsm mf0.01 andR D(T a)0.75 for different regions of the Galactic disk would also rule out all models well beyond theS-limit, but further results are required in order to confirm this conclusion. Finally, concerning the Galactic spheroid component, it is found that onlyS models with massive halos (R D(T a)0.01) are able to reproduce in an acceptable way the empirical metal abundance distribution. In order to obtain a complete fit, a spheroid component has to be assumed, with a steeper mass spectrum exponent in the stellar birthrate function, and a lower yield of metallicity, in respect to the disk component. According to this last model, a mean value of disk metal content (with respect to spatial distribution) of the order of the solar value also results.  相似文献   

3.
The viscosity (the angular momentum flux) in the disk of mutually gravitating particles of Saturn's rings is investigated. The hydrodynamic theory of the gravitational Jeans-type instability of small gravity perturbations (e.g., those produced by spontaneous disturbances) of the disk is developed. It is suggested that in such a system the hydrodynamic turbulence may arise as a result of the instability. The turbulence is related to stochastic motions of “fluid” elements. The objective of this paper is to show that in the Jeans-unstable Saturnian ring disk the turbulent viscosity may exceed the ordinary microscopic viscosity substantially. The main result of local N-body simulations of planetary rings by Daisaka et al. (2001. Viscosity in a dense planetary ring with self-gravitating particles. Icarus 154, 296-312) is explained: in the presence of the gravitationally unstable density waves, the effective turbulent viscosity νeff is given as νeff=CG2Σ2/Ω3, where G, Σ, and Ω are the gravitational constant, the surface mass density of a ring, and the angular velocity, respectively, and the nondimensional correction factor C≈10. We argue that both Saturn's main rings and their irregular of the order of 100 m or even less fine-scale structure (being recurrently created and destroyed on the time scale of an order of Keplerian period ) are not likely much younger than the solar system.  相似文献   

4.
A study of the merger time-scales of various types of interacting galaxies is conducted on the basis of the collisional theory. The results indicate that in the absence of halos, violently interacting galaxies merge in a time-scale of ~ 108 years; but the mildly interacting ones have merger time-scales from ~ 109 to 1010 years. However, in the presence of halos, all types of interacting galaxies are likely to merge in a time-scale of 108 years (as indicated by preliminary calculations). Galaxy evolution by mutual interactions is likely to have its reflection on the fundamental plane, as during the process the dynamical structures of the progenitors change and dissipation occurs.  相似文献   

5.
In a previous paper (hereafter referred to as Paper I) we have tried to show that superdense cores in the nuclei of disk galaxies can be formed by accretion of gas ejected by the evolved stars which populate the central bulge of these galaxies. Solving the equations for radial flow of a magnetized gas, we found that the accretion of an explodable mass at the core can be achieved over a time-scale ranging from a few times 107 and a few times 108 yr. It was shown, however, that the accretion process is seriously inhibited if the gas possesses sufficient rotational velocity but lacks any dissipative, mechanism within the system. Since rotational velocity is an observed parameter of the stars which shed the gas to be accreted, one must consider the existence of some dissipative force in it in order that the accretion process may be efficient. In the present paper, therefore, we have solved the problem of the flow of a rotating, viscous (variable), magnetized gas. With plausible assumptions regarding some of the parameters involved, the time-scale for the accretion of an explodable mass (109 M ) at the core again turns out to be ranging between a few times 107 and a few times 108yr. Such time-scale has been proposed by several authors as that for repeated explosions in nuclei of these galaxies. It has also been proposed by many authors that the spiral arms are generated and destroyed in disk galaxies over the same time-scale. Our solution also yields a nearly linear rotational velocity law which is usually observed in the central regions of these galaxies.  相似文献   

6.
William R. Ward 《Icarus》1981,46(1):97-107
This paper explores the possibility that the orbit of Iapetus, with its relatively large inclination but small eccentricity, was generated by a rapid dispersal of a gaseous circumplanetary disk, assumed to be the progenitor of the satellite system. The orientation of the local Laplacian plane is shown to be a sensitive function of the disk's structure. Modification of the disk on a time scale comparable to the precesion of the orbit's nodal line, [i.e., O(102?103 years)], can produce a large inclination from one that is initially zero, while leaving the eccentricity unchanged. This time is of the same order of magnitude as the viscous evolution time scale for a fully turbulent disk. Hence Iapetus need not be a captured satellite to account for its curious orbital signature.  相似文献   

7.
In a previous paper, we have studied dynamical friction during a parabolic passage of a companion galaxy past a disk galaxy. This paper continues with the study of satellites in circular orbits around the disk galaxy. Simulations of orbit decay in a self gravitating disk are compared with estimates based on two-body scattering theories; the theories are found to give a satisfactory explanation of the orbital changes. The disk friction is strongly dependent on the sense of rotation of the companion relative to the rotation of the disk galaxy as well as on the amount of mass in a spherical halo. The greatest amount of dynamical friction occurs in direct motion if no spherical halo is present. Then the infall time from the edge of the disk is about one half of the orbital period of the disk edge. A halo twice as massive as the disk increases the infall time four fold. The results of Quinn and Goodman, obtained with a non-self-gravitating method, agree well with our experiments with massive halos (Q 0 1.5), but are not usable in a more general case. We give analytic expressions for calculating the disk friction in galaxies of different disk/halo mass ratios.  相似文献   

8.
《New Astronomy Reviews》2000,44(1-2):171-175
Four problems are discussed. (1) Model light curves show significant increase of the disk luminosity during quiescence, an effect which is not present in the observed light curves. It is suggested that the slope of the lower branch of the ΣTe relation should be significantly decreased. (2) The widthPorb relation for narrow outbursts is well reproduced with model data for αhot=0.2. The bimodal distribution of outburst durations and, in particular, the origin of wide outbursts and the nature of their widthPorb relation, require explanation. (3) It is suggested that problems with the thermal-tidal instability (TTI) model for superoutbursts might be solved by a hybrid model, combining the TTI model with the irradiation-enhanced mass-transfer model. A strong argument in favour of irradiation is provided by the ratio of the irradiating flux to the intrinsic flux of the secondary component, which turns out to be very large in the case of dwarf novae showing superoutbursts, with U Gem being a borderline case. (4) Characteristic time-scales observed during dwarf nova outbursts depend on the viscous time-scale, allowing an empirical determination of α. Three independent determinations, based on the rates of decline following outburst maximum, the UV delay observed during rising light, and the widths of outbursts, give consistently αhot≈0.2. It should be added, however, that those time-scales depend also strongly on the radius of the disk. In this context it is disturbing to note that the observed disk radii appear to be smaller than those resulting from model calculations.  相似文献   

9.
We have completed a series of local N-body simulations of Saturn’s B and A rings in order to identify systematic differences in the degree of particle clumping into self-gravity wakes as a function of orbital distance from Saturn and dynamical optical depth (a function of surface density). These simulations revealed that the normal optical depth of the final configuration can be substantially lower than one would infer from a uniform distribution of particles. Adding more particles to the simulation simply piles more particles onto the self-gravity wakes while leaving relatively clear gaps between the wakes. Estimating the mass from the observed optical depth is therefore a non-linear problem. These simulations may explain why the Cassini UVIS instrument has detected starlight at low incidence angles through regions of the B ring that have average normal optical depths substantially greater than unity at some observation geometries [Colwell, J.E., Esposito, L.W., Srem?evi?, M., Stewart, G.R., McClintock, W.E., 2007. Icarus 190, 127-144]. We provide a plausible internal density of the particles in the A and B rings based upon fitting the results of our simulations with Cassini UVIS stellar occultation data. We simulated Cassini-like occultations through our simulation cells, calculated optical depths, and attempted to extrapolate to the values that Cassini observes. We needed to extrapolate because even initial optical depths of >4 (σ > 240 g cm−2) only yielded final optical depths no greater than 2.8, smaller than the largest measured B ring optical depths. This extrapolation introduces a significant amount of uncertainty, and we chose to be conservative in our overall mass estimates. From our simulations, we infer the surface density of the A ring to be , which corresponds to a mass of . We infer a minimum surface density of for Saturn’s B ring, which corresponds to a minimum mass estimate of . The A ring mass estimate agrees well with previous analyses, while the B ring is at least 40% larger. In sum, our lower limit estimate is that the total mass of Saturn’s ring system is 120-200% the mass of the moon Mimas, but significantly larger values would be plausible given the limitations of our simulations. A significantly larger mass for Saturn’s rings favors a primordial origin for the rings because the disruption of a former satellite of the required mass would be unlikely after the decay of the late heavy bombardment of planetary surfaces.  相似文献   

10.
We consider the shape of an accretion disc whose outer regions are misaligned with the spin axis of a central black hole and calculate the steady state form of the warped disc in the case where the viscosity and surface densities are power laws in the distance from the central black hole. We discuss the shape of the resulting disc in both the frame of the black hole and that of the outer disc. We note that some parts of the disc and also any companion star maybe shadowed from the central regions by the warp. We compute the torque on the black hole caused by the Lense–Thirring precession, and hence compute the alignment and precession time-scales. We generalize the case with viscosity and hence surface density independent of radius to more realistic density distributions for which the surface density is a decreasing function of radius. We find that the alignment time-scale does not change greatly but the precession time-scale is more sensitive. We also determine the effect on this time-scale if we truncate the disc. For a given truncation radius, the time-scales are less affected for more sharply falling density distributions.  相似文献   

11.
The role of circumstellar disks in star and planetary formation is briefly reviewed. The observed disk around MWC 349 is used as an example and a table of evolutionary time scales and parameters is presented. The disk about MWC 349 is characteristic of that expected about a massive star. Disk structure about solar mass stars is more completely reviewed by Cameron (1978). The parameters for the disk indicate that there is a deduced region where conditions are appropriate for dust condensation and possible aggregation of material to planetary masses. For the purposes of the discussion we are assuming that the infrared as well as optical radiation arises from the disk which extends the known extent of the disk to 1014cm. It is not yet certain that this is the case.Paper presented at the Conference on Protostars and Planets, held at the Planetary Science Institute, University of Arizona, Tucson, Arizona, between January 3 and 7, 1978.  相似文献   

12.
We consider the dissipation of the gaseous component from the gas–dust accretion disk of Jupiter in which the Galilean satellites were formed. The thermal dissipation of hydrogen and helium is shown to be ineffective. It could ensure the loss of gas only for a low-mass disk and only if the rarefied outer layers of the disk are heated to 104 K. Such a high disk temperature is not reached through Jupiter's radiation in existing models of its formation, but it could be provided by UV radiation of the early Sun after the dissipation of the protoplanetary disk. The viscous dissipation (with a viscosity parameter 10–3 in the -disk model) related to disk accretion onto Jupiter could disperse a low-mass disk in 107 years. A magnetocentrifugal mechanism, which produced a disk wind during accretion capable of carrying away 0.1 of the accreted gas mass, was probably also involved in the dispersal of the Jovian disk. Differential dispersion, with the loss of only hydrogen and helium and the retention of water vapor and heavier gases in the disk, is possible only in a low-mass disk model. We conclude that the water contained in the Galilean satellites was brought in mainly by solid planetesimals captured into the disk during mutual inelastic collisions in Jupiter's sphere of influence.  相似文献   

13.
The conditions under which a head-on collision between a disk galaxy and a spherical galaxy can lead to ring formation are investigated, using the impulsive approximation. The spherical galaxy is modeled as a polytrope of indexn=4 and radiusR S and the disk galaxy as an exponential disk whose surface density is given by \(\sigma (r) = \sigma _c e^{ - 4r/R_D } \) , where σ c is the central density andR D is the radius of the disk. The formation and properties of the rings are closely related to the fractional change in binding energy of the disk galaxy, given by ΔU/?U?=γ D β D , where (GM S 2 R D )/(V 2 M D R S 2 ),M S andM D being the masses of the spherical and disk galaxies, respectively, and β D ≡β D (n, σ, ?,i) is a function of the models of the two galaxies, the ratio of the radii of the two galaxies ?=R S /R D , and the angle of inclinationi, of the disk to the direction of relative motion of the two galaxies. Calculations are made for the caseR S =R D . Since practically the entire mass of the spherical galaxy, for the chosen model, lies within 1/3 of its radius, the radius of the spherical galaxy is effectively \(\tfrac{1}{3}\) that of the disk galaxy. It is found that as a result of the collision, the innermost and the outer parts of the disk galaxy are not much affected, but the intermediate region expands and gets evacuated, leading to the crowding of stars in a preferential region forming a ring structure. The rings are best formed for a normal, on-axis collision. For this case, rings form when ΔU/|U| lies between \(\tfrac{1}{2}\) and 2, while they are very sharp and bright when ΔU/|U| lies between \(\tfrac{1}{2}\) and 1. Within this range, as ΔU/|U| increases, the rings become sharper and their positions shift outwards with respect to the centre of the disk galaxy. The relationship $$\gamma _D = 0.0016 + 0.045s_{{\text{max}}}^2 ,$$ wheres max is the radial distance of the density maximum of the ring from the centre of the disk galaxy (measured in terms of the radius of the disk galaxy as unit) enables us to finds max from γ D and vice versa, and interpret some prominent ring galaxies. The effect of introducing a bulge to the disk is to distribute the tidal disruptive effects more evenly and, hence, reduce the sharpness of the ring.  相似文献   

14.
We investigate the dynamical evolution of trans-neptunian objects (TNOs) in typical scattered disk orbits (scattered TNOs) by performing simulations using several thousand particles lying initially on Neptune-encountering orbits. We explore the role of resonance sticking in the scattered disk, a phenomenon characterized by multiple temporary resonance captures (‘resonances’ refers to external mean motion resonances with Neptune, which can be described in the form r:s, where the arguments r and s are integers). First, all scattered TNOs evolve through intermittent temporary resonance capture events and gravitational scattering by Neptune. Each scattered TNO experiences tens to hundreds of resonance captures over a period of 4 Gyr, which represents about 38% of the object's lifetime (mean value). Second, resonance sticking plays an important role at semimajor axes , where the great majority of such captures occurred. It is noteworthy that the stickiest (i.e., dominant) resonances in the scattered disk are located within this distance range and are those possessing the lowest argument s. This was evinced by r:1, r:2 and r:3 resonances, which played the greatest role during resonance sticking evolution, often leading to captures in several of their neighboring resonances. Finally, the timescales and likelihood of temporary resonance captures are roughly proportional to resonance strength. The dominance of low s resonances is also related to the latter. In sum, resonance sticking has an important impact on the evolution of scattered TNOs, contributing significantly to the longevity of these objects.  相似文献   

15.
The theory of viscous accretion disks developed by Lynden-Bell and Pringle has been applied to the evolution of the primitive solar nebula. The additional physical input needed to determine the structure of the disk is described. A series of calculations was carried out using a steady flow approximation to explore the effects on the disk properties of variations in such parameters as the angular momentum and accretion rate of the infalling material from a collapsing interstellar cloud fragment. The more detailed evolutionary calculations involved five cases with various combinations of parameters. It was concluded that the late stages of evolution of the disks would be dominated by the effects of mass loss from the expansion of a hot disk corona into space, and the effects of this were included in the evolutionary calculations. A new theory of comet formation is formulated upon these results. The most important result is the conclusion, which appears to be inescapable, that the primitive solar accretion disk was repeatedly unstable against axisymmetric perturbations, in which rings would form and collapse upon themselves, with the subsequent formation of giant gaseous protoplanets.  相似文献   

16.
The gas giant planets’ formation processes in a viscously evolved protoplanetary disk are studied in the context of the core accretion model. In this paper, we follow the entire formation process of the core accretion model (the three stages). We find that the gas giant planets’ final masses and formation regions have strong dependence on the molecular cloud core’s properties (angular velocity \(\omega \) and mass \(M _{c d}\)) and the \(\alpha _{ \mathit{min} }\) parameter. We find and build the relationship between gas giant planets’ properties and molecular cloud core’s properties. In contrast to the previous works, we find that the formation process can be finished within the protoplanetary disk’s lifetime (4×106 yr) in our disk model. This is because the mass influx produced by the molecular cloud core can provide enough material to the protoplanetary disk. We also find that the gas giant planets’ final masses increase generally with the viscosity coefficient \(\alpha \). This is because most of the gas giant planet’s mass is captured during the rapid gas accretion phase (the third stage of the core accretion model), and furthermore the accretion of gas in this phase is dominated by the “gap limiting case”. And our numerical results can also be compared with the observed data of exoplanet systems.  相似文献   

17.
We analyze the superfine structure of the supermaser H2O emission region in Orion KL over the period 1979–1999. The angular resolution reached 0.1 mas, which corresponds to 0.045 AU at a distance to Orion KL of 450 pc. We determined the velocity of the local standard of rest, VLSR = 7.65 km s?1. The formation of a protostar is accompanied by a structure that consists of an accretion disk, a bipolar outflow, and a surrounding envelope. The disk is at the stage of separation into protoplanetary rings. The disk plane is warped like the brim of a hat. The disk is 27 AU in diameter and ~0.3 AU in thickness. The rings contain ice granules. Radiation and stellar wind sublimate and blow away the water molecules to form halos around the rings, maser rings. The radiation from the rings is concentrated in the azimuthal plane, and its directivity reaches 10?3. The relative velocities of the rings located in the central part of the disk 15 AU in diameter correspond to rigid-body rotation, Vrot = ΩR. The rotation period is T ≈ 170 yr. The injector is surrounded by a toroidal structure 1.2 AU in diameter. The diameter of the injected flow does not exceed 0.05 AU. A highly collimated bipolar outflow with a diameter of ~0.1 AU is observed at a distance as large as 3 AU. Precession of the injector axis with a period of ~10 yr forms a spiral flow structure. The flow velocity is ~10 km s?1. The kinetic energy of the accreting matter and the disk is assumed to be transferred to the bipolar outflow, causing the rotation velocity distribution of the rings to deviate from the Keplerian velocity. The surrounding envelope amplifies the emission from the structure at a velocity of 7.65 km s?1 in a band of ~0.5 km s?1 by more than two orders of magnitude, which determines the supermaser emission.  相似文献   

18.
We investigate the global evolution of a turbulent protoplanetary disk incorporating the effects of Maxwell stress due to a large-scale magnetic field permeating the disk. A magnetic field is produced continuously by an dynamo and the resultant Maxwell stress assists the viscous stress in p roviding the means for disk evolution. The most striking feature of magnetized disk evolution is the presence of the surface density bulge located in the magnetic gap, the region of the disk where the degree of ionization is too low to allow for coupli ng between the magnetic field and the gas. The bulge persists for a time of the order of 105–106 yr. The presence and persistence of the surface density bulge may have important implications for the process of planet formation and the overall characteristics of resultant planetary systems.Operated by USRA under contract No. NASW-4574 with NASA.  相似文献   

19.
We consider the relationship between the total HI mass in late-type galaxies and the kinematic properties of their disks. The mass MHI for galaxies with a wide variety of properties, from dwarf dIrr galaxies with active star formation to giant low-brightness galaxies, is shown to correlate with the product VcR0 (Vc is the rotational velocity, and R0 is the radial photometric disks cale length), which characterizes the specific angular momentum of the disk. This correlation, along with the decrease in the relative mass of the gas in a galaxy with increasing Vc, can be explained in terms of the previous assumption that the gas density in the disks of most galaxies is maintained at a level close to the threshold (marginal) stability of a gaseous layer to local gravitational perturbations. In this case, the regulation mechanism of the star formation rate associated with the growth of local gravitational instability in the gaseous layer must play a crucial role in the evolution of the gas content in the galactic disk.  相似文献   

20.
We present a multi-wavelength timing study of the eclipsing low mass X-ray binary EXO 0748-676 (UY Vol) using XMM-Newton when the source was in a hard spectral state. The orbital optical and X-ray light curves show a fairly large amount of intensity modulation in the 7 observations taken during September-November, 2003, covering 36 complete binary orbits of EXO 0748-676. While assessing the non-burst variability, simultaneously in the optical and X-ray light curves, we find that they are not correlated at reprocessing or orbital time-scales, but are weakly correlated at a few 1000s of seconds time-scales. Although a large fraction of the optical emission is likely to be due to reprocessing, the lack of significant correlation and presence of large variability in the orbital X-ray and optical light curves is probably due to structures and structural changes in the accretion disk that produce, and sometimes mask the reprocessed signal in varying amounts. These disk structures could be induced, at least partly, by irradiation. From the observed modulations seen in the optical light curves, there is strong evidence of accretion disk evolution at time scales of a few hours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号