首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent modeling of the meteorological conditions during and following times of high obliquity suggests that an icy mantle could have been emplaced in western Utopia Planitia by atmospheric deposition during the late Amazonian period [Costard, F.M., Forget, F., Madeleine, J.B., Soare, R.J., Kargel, J.S., 2008. Lunar Planet. Sci. 39. Abstract 1274; Madeleine, B., Forget, F., Head, J.W., Levrard, B., Montmessin, F., 2007. Lunar Planet. Sci. 38. Abstract 1778]. Astapus Colles (ABa) is a late Amazonian geological unit — located in this hypothesized area of accumulation — that comprises an icy mantle tens of meters thick [Tanaka, K.L., Skinner, J.A., Hare, T.M., 2005. US Geol. Surv. Sci. Invest., Map 2888]. For the most part, this unit drapes the early Amazonian Vastitas Borealis interior unit (ABvi); to a lesser degree it overlies the early Amazonian Vastitas Borealis marginal unit (ABvm) and the early to late Hesperian UP plains unit HBu2 [Tanaka, K.L., Skinner, J.A., Hare, T.M., 2005. US Geol. Surv. Sci. Invest., Map 2888]. Landscapes possibly modified by late-Amazonian periglacial processes [Costard, F.M., Kargel, J.S., 1995. Icarus 114, 93-112; McBride, S.A., Allen, C.C., Bell, M.S., 2005. Lunar Planet. Sci. 36. Abstract 1090; Morgenstern, A., Hauber, E., Reiss, D., van Gasselt, S., Grosse, G., Schirrmeister, L., 2007. J. Geophys. Res. 112, doi:10.1029/2006JE002869. E06010; Seibert, N.M., Kargel, J.S., 2001. Geophys. Res. Lett. 28, 899-902; Soare, R.J., Kargel, J.S., Osinski, G.R., Costard, F., 2007. Icarus 191, 95-112; Soare, R.J., Osinski, G.R., Roehm, C.L., 2008. Earth Planet. Sci. Lett. 272, 382-393] and glacial processes [Milliken, R.E., Mustard, J.F., Goldsby, D.L., 2003. J. Geophys. Res. 108 (E6), doi:10.1029/2002JE002005. 5057; Mustard, J.F., Cooper, C.D., Rifkin, M.K., 2001. Nature 412, 411-414; Tanaka, K.L., Skinner, J.A., Hare, T.M., 2005. US Geol. Surv. Sci. Invest., Map 2888] have been reported within the region. Researchers have assumed that the periglacial and glacial landscapes occur within the same geological unit, the ABa [i.e., Morgenstern, A., Hauber, E., Reiss, D., van Gasselt, S., Grosse, G., Schirrmeister, L., 2007. J. Geophys. Res. 112; doi:10.1029/2006JE002869. E06010; Tanaka, K.L., Skinner, J.A., Hare, T.M., 2005. US Geol. Surv. Sci. Invest., Map 2888]. In this study we use HiRISE (High Resolution Image Science Experiment, Mars Reconnaissance Orbiter) imagery to identify the stratigraphical separation of the two landscapes and show that periglacial landscape modification has occurred in the geological units that underlie the ABa, not in the ABa itself. Moreover, we suggest that the periglacial landscape extends well beyond the perimeter of the ABa and could be the product of “wet” cold-climate processes. These processes involve freeze-thaw cycles and intermittently stable liquid-water at or near the surface. By contrast, we propose that the ABa is a very recent late-Amazonian geological unit formed principally by “dry” cold-climate processes. These processes comprise accumulation (by atmospheric deposition) and ablation (by sublimation).  相似文献   

2.
‘Rootless’ debris cones (or pseudocraters) occur in platy, patterned ground throughout the Cerberus plains of Mars and are thought to represent the products of explosive magma-ice interaction [Lanagan et al., 2001. Geophys. Res. Lett. 28, 2365-2368; Fagents et al., 2002. In: Smellie, J.L., Chapman, M.G. (Eds.), Volcano-Ice Interaction on Earth and Mars. In: Geol. Soc. Spec. Publ., vol. 202, pp. 295-317]. Requiring lava and water interspersed, they are central to theories of multiple magmatic and aqueous flood events [Burr et al., 2002. Icarus 159, 53-73; Berman, D.C., Hartmann, W.K., 2002. Icarus 159, 1-17] and widespread sheet volcanism [Keszthelyi et al., 2000. J. Geophys. Res. 105, 15027-15049] in the region during the late Amazonian (a region reported to have been occupied by water bodies ranging from lakes to oceans [Scott et al., 1995. Map of Mars showing channels and possible paleolake basins. USGS Miscellaneous Investigations Series, Map I-2461 (1:30,000,000)]). The nature of the platy substrate is the subject of debate, with evidence given for lava [Keszthelyi et al., 2000. J. Geophys. Res. 105, 15027-15049; Plescia, J.B., 2003. Icarus 164, 79-95] and ice [Brakenridge, G.R., 1993. Lunar Planet. Sci. XXIV (Part 1), 175-176; Rice et al., 2002. Lunar Planet. Sci. XXXIII. Abstract #2026; Murray et al., 2005. Nature 434, 352-355]. The superposition relationships of cones and platy deposits in the channels of the Athabasca Valles precludes a magmatic origin, indicating later formation as permafrost mounds (or ‘pingos’), with implications for geologically recent flood volcanism, age constraints on young surfaces and recent climate change on Mars.  相似文献   

3.
Some recent MER Rover Opportunity results on ancient sedimentary rocks from Mars describe sandstones originated from the chemical weathering of olivine basalts by acidic waters [Squyres, S.W., Knoll, A.H., 2005. Earth Planet. Sci. Lett. 240, 1-10]. The absence of protective components in early Mars atmosphere forced any possible primordial life forms to deal with high doses of UV radiation. A similar situation occurred on the primitive Earth during the development of early life in the Archean [Berkner, L.V., Marshall, L.C., 1965. J. Atmos. Sci. 22 (3), 225-261; Kasting, J.F., 1993. Science 259, 920-926]. It is known that some cellular and/or external components can shield organisms from damaging UV radiation or quench its toxic effects [Olson, J.M., Pierson, B.K., 1986. Photosynth. Res. 9, 251-259; García-Pichel, F., 1998. Origins Life Evol. B 28, 321-347; Cockell, C., Rettberg, P., Horneck, G., Scherer, K., Stokes, M.D., 2003. Polar Biol. 26, 62-69]. The effectiveness of iron minerals for UV protection has also been reported [Phoenix, V.R., Konhauser, K.O., Adams, D.G., Bottrell, S.H., 2001. Geology 29 (9), 823-826], but nothing is known about the effect of iron in solution. Here we demonstrate the protective effect of soluble ferric iron against UV radiation on acidophilic photosynthetic microorganisms. These results offer an interesting alternative means of protection for life on the surface of early Mars and Earth, especially in light of the geochemical conditions in which the sedimentary minerals, jarosite and goethite, recently reported by the MER missions, were formed [Squyres, S.W., Arvidson, R.E., Bell III, J.F., Brückner, J., Cabrol, N.A., Calvin, W., Carr, M.H., Christensen, P.R., Clark, B.C., Crumpler, L., Des Marais, D.J., d'Uston, C., Economou, T., Farmer, J., Farrand, W., Folkner, W., Golombek, M., Gorevan, S., Grant, J.A., Greeley, R., Grotzinger, J., Haskin, L., Herkenhoff, K.E., Hviid, S., Johnson, J., Klingelhöfer, G., Knoll, A.H., Landis, G., Lemmon, M., Li, R., Madsen, M.B., Malin, M.C., McLennan, S.M., McSween, H.Y., Ming, D.W., Moersch, J., Morris, R.V., Parker, T., Rice Jr., J.W., Richter, L., Rieder, R., Sims, M., Smith, M., Smith, P., Soderblom, L.A., Sullivan, R., Wänke, H., Wdowiak, T., Wolff, M., Yen, A., 2004. Science 306, 1698-1703; Klingelhöfer, G., Morris, R.V., Bernhardt, B., Schröder, C., Rodionov, D.S., de Souza Jr., P.A., Yen, A., Gellert, R., Evlanov, E.N., Zubkov, B., Foh, J., Bonnes, U., Kankeleit, E., Gütlich, P., Ming, D.W., Renz, F., Wdowiak, T., Squyres, S.W., Arvidson, R.E., 2004. Science 306, 1740-1745].  相似文献   

4.
V. Mangano  F. Leblanc  C. Barbieri 《Icarus》2009,201(2):424-431
A long term plan of observations of the sodium exosphere of Mercury began in 2002 by using the high resolution echelle spectrograph SARG and a devoted sodium filter at the 3.5 m Galileo National Telescope (TNG) located in La Palma, Canary Islands. This program is meant to investigate the variations of the sodium exosphere appearance under different conditions of observations, namely Mercury's position along its orbit, phase angle and different solar conditions, as reported by previous observations in August 2002 and August 2003 [Barbieri, C., Verani, S., Cremonese, G., Sprague, A., Mendillo, M., Cosentino, R., Hunten, D., 2004. Planet. Space Sci. 52, 1169-1175; Leblanc, F., Barbieri, C., Cremonese, G., Verani, S., Cosentino, R., Mendillo, M., Sprague, A., Hunten, D., 2006. Icarus 185 (2), 395-402].Here we present the analysis of data taken in June 29th and 30th and in July 1st 2005, when Mercury's true anomaly angle (TAA) was in the range 124-130°. The spectra show particularly intense sodium lines with a distinctive peak in emission localized in the southern hemisphere at mid-latitudes. This seems to be a persistent feature related to consecutive favorable IMF conditions inducing localized enhancements of surface sodium density. The comparison with previous data taken by Potter et al. [Potter, A.E., Killen, R.M., Morgan, T.H., 2002. Meteorit. Planet. Sci. 37 (9), 1165-1172] evidences a surprising consistency of the anti-sunward component, which appears to remain constant regardless of the changing illumination and space weather conditions at Mercury.  相似文献   

5.
N. Yan  F. Leblanc 《Icarus》2006,181(2):348-362
We have developed a 1D thermal model of Mercury's regolith, in order to simulate the heat diffusion in the upper subsurface (first 10 m). We assume in our model that the thermophysical properties of the Hermean regolith are similar to those of the lunar regolith. We apply our thermal model to the Caloris basin which slopes induce distortions of the surface temperature compared to results obtained for a perfect spherical planet. This thermal model is then coupled with a 3D Monte Carlo model of Mercury's sodium exosphere [Leblanc, F., Johnson, R.E., 2003. Icarus 164, 261-281; Leblanc, F., Delcourt, D., Johnson, R.E., 2003b. J. Geophys. Res. 108 (E12), doi:10.1029/2003JE002151/.5136], in order to describe the signatures of Caloris basin on Mercury's sodium exosphere in term of temporal and spatial variabilities. In particular, we find a motion of the maxima of sodium density in the exosphere towards the Northern hemisphere similar to the one observed by Potter et al. [Potter, A.E., Morgan, T.H., Killen, R.M., 1999. Planet. Space Sci., 47, 1441-1449] but did not reproduce the observed change of the emission brightness. The main conclusion of this study is that the Caloris basin-exosphere relations might be observable from the Earth which we hope will motivate new observations of Mercury's exosphere.  相似文献   

6.
The NEAR mission to 433 Eros provided detailed data on the geology, mineralogy, and chemistry of this S-class asteroid [McCoy, T.J., Robinson, M.S., Nittler, L.R., Burbine, T.H., 2002. Chem. Erde 62, 89-121; Cheng, A.F., 1997. Space Sci. Rev. 82, 3-29] with a key science goal of understanding the relationship between asteroids and meteorites [Cheng, A.F., 1997. Space Sci. Rev. 82, 3-29; Gaffey, M.J., Burbine, T.H., Piatek, J.L., Reed, K.L., Chaky, D.A., Bell, J.F., Brown, R.H., 1993a. Icarus 106, 573-602]. Previously reported major element data revealed a bulk surface similar to that of ordinary chondrites, with the notable exception of sulfur, which was highly depleted [Trombka, J.I., and 23 colleagues, 2000. Science 289, 2101-2105; Nittler, L.R., and 14 colleagues, 2001. Meteorit. Planet. Sci. 36, 1673-1695]. The origin of this sulfur deficiency, and hence the fundamental nature of the asteroid's surface, has remained controversial. We report a new analysis of NEAR X-ray spectrometer data, indicating that Eros has Cr/Fe, Mn/Fe, and Ni/Fe ratios similar to ordinary chondrite meteorites of type LL or L. Chondritic levels of Cr, Mn, and Ni argue strongly against a partial melting explanation for the sulfur depletion. Instead, our results provide definitive evidence that Eros is a primitive body with composition and mineralogy similar to ordinary chondrites, but with a surface heavily modified by interactions with the solar wind and micrometeorites, processes collectively termed space weathering.  相似文献   

7.
We revisit the appropriate energies to be used for computing heat production from 26Al decay. Due to the complexity of the decay scheme of this radioisotope, previous geophysical studies have used values ranging from 1.2 to 4 MeV per decay. The upper bound corresponds to the difference in mass energy between the 26Al and 26Mg ground states. This includes energy carried away by neutrinos, which does not contribute to heating planetary material. The lower bound does not account for the heating caused by the absorption of the γ rays from the excited 26Mg, or for the annihilation energy deposited in the material if the decay occurs inside even small planetesimals. Based on the calculations described by Schramm et al. [Schramm, D., Tera, F., Wasserburg, G.J., 1970. The isotopic abundance of 26Mg and limits on 26Al in the early Solar System. Earth Planet. Sci. Lett. 10, 44-59] updated with the most recent nuclear constants, we recommend using a heat production value of 3.12 MeV per decay, which is the total energy of disintegration minus the energy carried off by the neutrinos. This heat production value is higher than the value used in the modeling of Iapetus by Castillo-Rogez et al. [Castillo-Rogez, J., Matson, D.L., Sotin, C., Johnson, T.V., Lunine, J.I., Thomas, P.C., 2007. Iapetus’ geophysics: Rotation rate, shape, and equatorial ridge. Icarus 190, 179-202] by about a factor 2.5. The resulting estimate of the time of formation of Iapetus is shifted by about 1 Myr, to between ∼3.4 and 5.4 Myr after the production of the calcium-aluminum inclusions (CAIs).  相似文献   

8.
Pawe? Wajer 《Icarus》2009,200(1):147-153
We study the dynamical evolution of Asteroid 2002 AA29. This object moves in the co-orbital region of the Earth and is the first known asteroid which experiences recurrent horseshoe-quasi-satellite transitions. The transitions between the HS and QS states are unique among other known Earth co-orbital asteroids and in the QS state 2002 AA29 remains very close to Earth (within 0.2 AU for several decades [Connors, M., Chodas, P., Mikkola, S., Wiegert, P., Veillet, C., Innanen, K., 2002. Meteorit. Planet. Sci. 37, 1435-1441]). Based on results obtained analytically by Brasser et al. [Brasser, R., Heggie, D.C., Mikkola, S., 2004b. Celest. Mech. Dynam. Astron. 88, 123-152] we developed a simple analytical method to describe and analyze the motion of 2002 AA29. We distinguish a few moments in time crucial for understanding its dynamics. Near 2400 and 2500 this object will be close to going through the maxima of the averaged disturbing function and it will either change its co-orbital regime by transition from the HS into QS state, or leave the librating mode. These approaches generate instability in the motion of 2002 AA29. By means of 66 observations, covering a two-year interval, we extend the analysis of the long term evolution of this object presented by Connors et al. [Connors, M., Chodas, P., Mikkola, S., Wiegert, P., Veillet, C., Innanen, K., 2002. Meteorit. Planet. Sci. 37, 1435-1441] and Brasser et al. [Brasser, R., Innanen, K.A., Connors, M., Veillet, C., Wiegert, P., Mikkola, S., Chodas, P.W., 2004a. Icarus 171, 102-109]. Our analysis is based on a sample of 100 cloned orbits. We show that the motion of 2002 AA29 is predictable in the time interval [−2600,7100] and outside of this interval the past and future orbital history can be studied using statistical methods.  相似文献   

9.
Icy grains and satellites orbiting in Saturn's magnetosphere are immersed in a plasma that sputters their surfaces. This limits the lifetime of the E-ring grains and ejects neutrals that orbit Saturn until they are ionized and populate its magnetosphere. Here we re-evaluate the sputtering rate of ice in Saturn's inner magnetosphere using the recent Cassini data on the plasma ion density, temperature and composition [Sittler Jr., E.C., et al., 2007a. Ion and neutral sources and sinks within Saturn's inner magnetosphere: Cassini results. Planet. Space Sci. 56, 3-18.] and a recent summary of the relevant sputtering data for ice [Famá, M., Shi, J., Baragiola, R.A., 2008. Sputtering of ice by low-energy ions. Surf. Sci. 602, 156-161.]. Although the energetic (>10 keV) ion component at Saturn is much smaller than was assumed to be the case after Voyager [Jurac, S., Johnson, R.E., Richardson, J.D., Paranicas, C., 2001a. Satellite sputtering in Saturn's magnetosphere. Planet. Space Sci. 49, 319-326; Jurac, S., Johnson, R.E., Richardson, J.D., 2001b. Saturn's E ring and production of the neutral torus. Icarus 149, 384-396.], we show that the sputtering rates are sensitive to the temperature of the thermal plasma and are still robust, so that sputtering likely determines the lifetime of the grains in Saturn's tenuous E-ring.  相似文献   

10.
P.G.J. Irwin  N.A. Teanby 《Icarus》2009,203(1):287-302
Long-slit spectroscopy observations of Uranus by the United Kingdom Infrared Telescope UIST instrument in 2006, 2007 and 2008 have been used to monitor the change in Uranus’ vertical and latitudinal cloud structure through the planet’s northern spring equinox in December 2007.The observed reflectance spectra in the Long J (1.17-1.31 μm) and H (1.45-1.65 μm) bands, obtained with the slit aligned along Uranus’ central meridian, have been fitted with an optimal estimation retrieval model to determine the vertical cloud profile from 0.1 to 6-8 bar over a wide range of latitudes. Context images in a number of spectral bands were used to discriminate general zonal cloud structural changes from passing discrete clouds. From 2006 to 2007 reflection from deep clouds at pressures between 2 and 6-8 bar increased at all latitudes, although there is some systematic uncertainty in the absolute pressure levels resulting from extrapolating the methane coefficients of Irwin et al. (Irwin, P.G.J., Sromovsky, L.A., Strong, E.K., Sihra, K., Teanby, N.A., Bowles, N., Calcutt, S.B., Remedios, J.J. [2006] Icarus, 181, 309-319) at pressures greater than 1 bar, as noted by Tomasko et al. and Karkoschka and Tomasko (Tomasko, M.G., Bezard, B., Doose, L., Engel, S., Karkoschka, E. [2008] Planet. Space Sci., 56, 624-647; Karkoschka, E., Tomasko, M. [2009] Icarus). However, from 2007 to 2008 reflection from these clouds throughout the southern hemisphere and from both northern and southern mid-latitudes (30° N,S) diminished. As a result, the southern polar collar at 45°S has diminished in brightness relative to mid-latitudes, a similar collar at 45°N has become more prominent (e.g. Rages, K.A., Hammel, H.B., Sromovsky, L. [2007] Bull. Am. Astron. Soc., 39, 425; Sromovsky, L.A., Fry, P.M., Ahue, W.M., Hammel, H.B., de Pater, I., Rages, K.A., Showalter, M.R., van Dam, M.A. [2008] vol. 40 of AAS/Division for Planetary Sciences Meeting Abstracts, pp. 488-489; Sromovsky, L.A., Ahue, W.K.M., Fry, P.M., Hammel, H.B., de Pater, I., Rages, K.A., Showalter, M.R. [2009] Icarus), and the lowering reflectivity from mid-latitudes has left a noticeable brighter cloud zone at the equator (e.g. Sromovsky, L.A., Fry, P.M. [2007] Icarus, 192, 527-557;Karkoschka, E., Tomasko, M. [2009] Icarus). For such substantial cloud changes to have occurred in just two years suggests that the circulation of Uranus’ atmosphere is much more vigorous and/or efficient than is commonly thought. The composition of the main observed cloud decks between 2 and 6-8 bar is unclear, but the absence of the expected methane cloud at 1.2-1.3 bar (Lindal, G.F., Lyons, J.R., Sweetnam, D.N., Eshleman, V.R., Hinson, D.P. [1987] J. Geophys. Res., 92, 14987-15001) is striking (as previously noted by, among others, Sromovsky, L.A., Irwin, P.G.J., Fry, P.M. [2006] Icarus, 182, 577-593; Sromovsky, L.A., Fry, P.M. [2007] Icarus, 192, 527-557; Sromovsky, L.A., Fry, P.M. [2008] Icarus, 193, 252-266; Karkoschka, E., Tomasko, M. [2009] Icarus) and suggests that cloud particles may be considerably different from pure condensates and may be linked with stratospheric haze particles drizzling down from above, or that tropospheric hazes are generated near the methane condensation level and then drizzle down to deep pressures as suggested by Karkoschka and Tomasko (Karkoschka, E., Tomasko, M. [2009] Icarus).The retrieved cloud structures were also tested for different assumptions of the deep methane mole fraction, which Karkoschka and Tomasko (Karkoschka, E., Tomasko, M. [2009] Icarus) find may vary from ∼1-2% in polar regions to perhaps as much as 4% equatorwards of 45°N,S. We found that such variations did not significantly affect our conclusions.  相似文献   

11.
The near-infrared spectrum of Titan, Saturn's largest moon and one of the Cassini/Huygens' space mission primary targets, covers the 0.8 to 5 micron region in which it shows several weak CH4 absorption regions, and in particular one centered near 2.75 micron. Due to the interference of telluric absorption, only part of this window region (2.9-3.1 μm) has previously been observed from the ground [Noll, K.S., Geballe, T.R., Knacke, R., Pendleton, F., Yvonne, J., 1996. Icarus 124, 625-631; Griffith, C.A., Owen, T., Miller, G.A., Geballe, T., 1998. Nature 395, 575-578; Griffith, C.A., Owen, T., Geballe, T.R., Rayner, J., Rannou, P., 2003. Science 300, 628-630; Geballe, T.R., Kim, S.J., Noll, K.S., Griffith, C.A., 2003. Astrophys. J. 583, L39-L42]. We report here on the first spectroscopic observations of Titan covering the whole 2.4-4.9 μm region by two instruments on board the Infrared Space Observatory (ISO) in 1997. These observations show the 2.75-μm window in its complete extent for the first time. In this study we have also used a high-resolution Titan spectrum in the 2.9-3.6 μm region taken with the Keck [Geballe, T.R., Kim, S.J., Noll, K.S., Griffith, C.A., 2003. Astrophys. J. 583, L39-L42; Kim, S.J., Geballe, T.R., Noll, K.S., Courtin, R., 2005. Icarus 173, 522-532] to infer information on the atmospheric parameters (haze extinction, single scattering albedo, methane abundance, etc.) by fitting the methane bands with a detailed microphysical model of Titan's atmosphere (updated from Rannou, P., McKay, C.P., Lorenz, R.D., 2003. Planet. Space Sci. 51, 963-976). We have included in this study an updated version of a database for the CH4 absorption coefficients [STDS, Wenger, Ch., Champion, J.-P., 1998. J. Quant. Spectrosc. Radiat. Transfer 59, 471-480. See also http://www.u-bourgogne.fr/LPUB/TSM/sTDS.html for latest updates; Boudon, V., Champion, J.-P., Gabard, T., Loëte, M., Michelot, F., Pierre, G., Rotger, M., Wenger, Ch., Rey, M., 2004. J. Mol. Spectrosc. 228, 620-634]. For the atmosphere we find that (a) the haze extinction profile that best matches the data is one with higher (by 40%) extinction in the atmosphere with respect to Rannou et al. (2003) down to about 30 km where a complete cut-off occurs; (b) the methane mixing ratio at Titan's surface cannot exceed 3% on a disk-average basis, yielding a maximum CH4 column abundance of 2.27 km-am in Titan's atmosphere. From the derived surface albedo spectrum in the 2.7-3.08 micron region, we bring some constraints on Titan's surface composition. The albedo in the center of the methane window varies from 0.01 to 0.08. These values, compared to others reported in the other methane windows, show a strong compatibility with the water ice spectrum in the near-infrared. Without confirming its existence from this work alone, our data then appear to be compatible with water ice. A variety of other ices, such as CO2, NH3, tholin material or hydrocarbon liquid cannot be excluded from our data, but an additional unidentified component with a signature around 2.74 micron is required to satisfy the data.  相似文献   

12.
The dayside near-surface lunar plasma environment is electrostatically complex, due to the interaction between solar UV-induced photoemission, the collection of ambient ions and electrons, and the presence of micron and sub-micron sized dust grains. Further complicating this environment, although less well understood in effect, is the presence of surface relief, typically in the form of craters and/or boulders. It has been suggested that such non-trivial surface topography can lead to complex electrostatic potentials and fields, including “mini-wakes” behind small obstacles to the solar wind flow and “supercharging” near sunlit-shadowed boundaries (Criswell, D.R., De, B.R. [1977]. J. Geophys. Res. 82 (7); De, B.R., Criswell, D.R. [1977]. J. Geophys. Res. 82 (7); Farrell, W.M., Stubbs, T.J., Vondrak, R.R., Delory, G.T., Halekas, J.S. [2007]. Geophys. Res. Lett. 34; Wang, X., Horányi, M., Sternovsky, Z., Robertson, S., Morfill, G.E. [2007]. Geophys. Res. Lett. 34, L16104). In this paper, we present results from a three-dimensional, self-consistent, electrostatic particle-in-cell code used to model the dayside near-surface lunar plasma environment over a variety of local times with the presence of a crater. Additionally, we use the particle-in-cell model output to study the effect of surface topography on the dynamics of electrostatic dust transport, with the goal of understanding previous observations of dust dynamics on the Moon and dust ponding on various asteroids.  相似文献   

13.
David P. Page 《Icarus》2007,189(1):83-117
Outside polar latitudes, features corresponding to surface thaw have yet to be identified on Mars. The youthful gully landforms observed at mid-high latitude [Malin, M., Edgett, K., 2000. Science 288, 2330-2335] are the nearest candidate, but the source (and nature) of the gully carving agent remains controversial [e.g., Musselwhite, D.S., Swindle, T.D., Lunine, J.I., 2001. Geophys. Res. Lett. 28, 1283-1285; Mellon, M.T., Phillips, R.J., 2001. J. Geophys. Res. 106, 1-15; Knauth, L.P., Burt, D.M., 2002. Icarus 158, 267-271; Costard, F., Forget, F., Mangold, N., Peulvast, J.P., 2002. Science 295, 110-113; Christensen, P.R., 2003. Nature 422, 45-48; Treiman, A.H., 2003. J. Geophys. Res. 108]. At higher obliquity than the present epoch, near-surface ground ice should be present globally [Mellon, M.T., Jakosky, B.M., 1995. J. Geophys. Res. 100 (E6), 11781-11799], populated by condensation of atmospheric water vapour in the top few metres of the regolith, or emplaced as dusty ice sheets reaching down towards the equator. The latitudinal restriction of these gullies to regions poleward of ±30° appears to argue against a thaw component to their formation—since ground ice is present and stable at all latitudes at high obliquity, the current (low) obliquity regime should result in ground ice thaw at low latitudes, where insolation and daytime temperatures are currently greatest, and this is not observed. A previously undescribed meltwater sequence in the Cerberus plains, at 20° N/187° E, shows that comparable, but much more continuous, and mappable melting and surface runoff have occurred in the geologically recent past at near-equatorial latitudes on Mars. Polygonal ground in the Cerberus plains is seen by the Mars Global Surveyor Mars Orbiter Camera (MOC) to suffer sequential, regional-scale volatile-loss consistent with thaw of near-surface ground ice under periglacial conditions. This degradation is continuously sampled by a single MOC strip, showing an icy landscape undergoing thaw modification and collapse, and may form the first evidence of equatorial wet-based glaciation during late Amazonian time, with indications of melting within the last million years. The dissolution and re-formation of polygonal ground links this landform to freeze-thaw processes, providing the conclusion to a question that has been the subject of debate for three decades—whether Mars' polygonal grounds require ice to form—and a consistent explanation for the fate of the water that carved the great outflow channels, much of which may still reside as ground ice in the regolith. This thaw occurs in the Cerberus Formation; deposits that are considered to be magmatic in origin, and the type formation for late-stage, “plains-style” volcanism on Mars [Keszthelyi, L., McEwen, A.S., Thordarson T., 2000. J. Geophys. Res. 105, 15027-15049]. By superposing large numbers of small impact craters, polygonal ground in the Cerberus plains sustains previous suggestions of a non-magmatic origin for this and other landforms in the region [Page, D.P., Murray, J.B., 2006. Icarus 183, 46-54]. Together, these periglacial landforms document evidence of climate change much younger than is currently recognised by crater counts, with important implications for age constraints on young surfaces and absolute age determinations by this method. It is tentatively suggested that this melting may be occurring today, with a striking correspondence between permafrost thaw in the Cerberus plains, the high atmospheric methane flux currently observed over this region [Mumma, M.J., Novak, R.E., DiSanti, M.A., Bonev, B.P., Dello Russo, N., 2004. Bull. Am. Astron. Soc. 36, 1127; Krasnopolsky, V.A., Maillard, J.P., Owen, T.C., 2004. Icarus 172, 537-547; Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N., Giuranna, M., 2004. Science 306, 1758-1761], and the only latitude zone on Mars—equatorward of 30° N—where melting of ground ice is thought possible in the current climate [Haberle, R.M., McKay, C.P., Schaeffer, J., Cabrol, N.A., Grin, E.A., Zent, A.P., Quinn, R., 2001. J. Geophys. Res. 106 (E10), 23317-23326; Lobitz, B., Wood, B.L., Averner, M.M., McKay, C.P., 2001. Proc. Natl. Acad. Sci. 98, 2132-2137]. Low-latitude polygonal ground as transient, and hydrologically active over wide areas transforms our understanding of the recent climatic evolution of Mars, supporting models of atmospheric water-ice migration [Mischna, M., Richardson, M.I., Wilson, R.J., McCleese, D.J., 2003. J. Geophys. Res. 108 (E6). 5062], complex, volatile stratigraphies [Clifford, S.M., Parker, T.J., 2001. Icarus 154, 40-79], and hypothesised, geologically recent ‘ice ages’ [Head, J.W., Mustard, J.F., Kreslavsky, M.A., Milliken, R.E., Marchant, D.R., 2003. Nature 426, 797-802]. The temporal coincidence of glacial epochs on the Earth and Mars during the Quaternary and latest Amazonian would suggest a coupled system linking both [Sagan, C., Young, A.T., 1973. Nature 243, 459].  相似文献   

14.
Conor Laver  Imke de Pater 《Icarus》2009,201(1):172-181
We present ground based observations of Io taken with a high spatial resolution imaging spectrometer on 1 and 2 June 2006. We mapped the 1.98 and 2.12 μm absorptions of SO2 frost, across Io's surface. We analyze these data with surface reflectance modeling using the Hapke method to determine the general frost distribution. This analysis also determined a lower limit of 700 μm on the grain size for the areas of strongest absorption. We incorporate our findings of a predominantly equatorial distribution of SO2 frost, with the maps of Carlson et al. [Carlson, R.W., Smythe, W.D., Lopes-Gautier, R.M.C., Davies, A.G., Kamp, L.W., Mosher, J.A., Soderblom, L.A., Leader, F.E., Mehlman, R., Clark, R.N., Fanale, F.P., 1997. Geophys. Res. Lett. 24, 2479-2482], McEwen [McEwen, A.S., 1988. Icarus 73, 385-426] and Douté et al. [Douté, S., Schmitt, B., Lopes-Gautier, R., Carlson, R., Soderblom, L., Shirley, J., and The Galileo NIMS Team, 2001. Icarus 149, 107-132] to produce a self consistent explanation of the global distribution of SO2. We propose that the differences between the above maps is attributable, in part, to the different bands that were studied by the investigators.  相似文献   

15.
Gullies are among the most intriguing structures identified on the surface of Mars. Most common are gullies located on the slopes of craters which are probably formed by liquid water transported by shallow aquifers (Heldmann, J.L., Carlsson, E., Johansson, H., Mellon, M.T., Toon, O.B. [2007]. Icarus 188, 324-344). Two particular types of gullies are found on slopes of isolated hills and dunes. The hill-slope gullies are located mostly at 50°S, which is at the high end of latitudes of bulk of the gullies found so far. The dune gullies are found in several locations up to 65°S (Reiss, D., Jaumann, R., Kereszturi, A., Sik, A., Neukum, G. [2007]. Lunar Planet. Sci. XXXVIII. Abstract 1993), but the best known are those in Russel crater at 54°S. The hill and dune gullies are longer than others making the aquifers explanation for their formation unlikely (Balme, M., Mangold, N., Baratoux, D., Costard, F., Gosselin, M., Masson, P., Pnet, P., Neukum, G. [2006]. J. Geophys. Res. 111. doi:10.1029/2005JE002607). Recently it has been noted that thin liquid films of interfacial water can play a role in rheological processes on the surface of Mars (Moehlmann, D. [2008]. Icarus 195, 131-139. Kereszturi, A., Moehlmann, D., Berczi, Sz., Ganti, T., Kuti, A., Sik, A., Horvath, A. [2009]. Icarus 201, 492-503.). Here we try to answer the question whether interfacial liquid water may occur on Mars in quantities large enough to play a role in formation of gullies. To verify this hypothesis we have calculated thermal models for hills and dunes of various steepness, orientation and physical properties. We find that within a range of average expected values of parameters it is not possible to have more than a few monolayers of liquid water at depths greater than a centimeter. To create subsurface interfacial water film significantly thicker and hence to produce conditions for the slope instability, parameters have to be chosen to have their extreme realistic values or an additional source of surface heating is needed. One possibility for additional heating is a change of atmospheric conditions due to a local dust storm. We conclude that if interfacial water is responsible for the formation of the hill-slope gullies, our results may explain why the hill gullies are rare.  相似文献   

16.
Carlos E. Chavez 《Icarus》2009,203(1):233-237
In this article we explore the aspect of the F ring with respect to the anti-alignment configuration between the ring and Prometheus. We focus our attention on the shape of the F ring’s azimuthal channels which were first reported by Porco et al. (Porco, C.C., Baker, E., Barbara, J., Beurle, K., Brahic, A., Burns, J.A., Charnoz, S., Cooper, N., Dawson, D.D., Del Genio, A.D., Denk, T., Dones, L., Dyudina, U., Evans, M.W., Giese, B., Grazier, K., Helfenstein, P., Ingersoll, A.P., Jacobson, R.A., Johnson, T.V., McEwen, A., Murray, C.D., Neukum, G., Owen, W.M., Perry, J., Roatsch, T., Spitale, J., Squyres, S., Thomas, P., Tiscareno, M., Turtle, E., Vasavada, A.R., Veverka, J., Wagner, R., West, R. [2005] Science, 307, 1226-1236) and numerically explored by Murray et al. (Murray, C.D., Chavez, C., Beurle, K., Cooper, N., Evans, M.W., Burns, J.A., Porco, C.C. [2005] Nature 437, 1326-1329) who found excellent agreement between Cassini’s ISS reprojected images and their numerical model via a direct comparison. We find that for anti-alignment the channels are wider and go deeper inside the ring material. From our numerical model we find a new feature, an island in the middle of the channel. This island is made up of the particles that have been perturbed the most by Prometheus and only appears when this satellite is close to apoapsis. In addition, plots of the anti-alignment configuration for different orbital stages of Prometheus are obtained and discussed here.  相似文献   

17.
18.
The surface heat flux of a planet is an important parameter to characterize its internal activity and to determine its thermal evolution. Here we report on a new method to constrain the surface heat flux of Mars during the Hesperian. For this, we explore the consequences for the martian surface heat flux from a recently presented new hypothesis for the formation of Aram Chaos (Zegers, T.E., Oosthoek, J.H.P., Rossi, A.P., Blom, J.K., Schumacher, S. [2010]. Earth Planet. Sci. Lett. 297, 496-504. doi:10.1016/j.epsl.2010.06.049.). In this hypothesis the chaotic terrain is thought to have formed by melting of a buried ice sheet. The slow sedimentation and burial of the ice sheet led to an increased thermal insulation of the ice and subsequently to a temperature increase high enough to trigger melting and the formation of the subsurface lake. As these processes highly depend on the thermal properties of the subsurface and especially on the surface heat flux, it is possible to constrain the latter by using numerical simulations. Based on the hypothesis for the formation of Aram Chaos, we conducted an extensive parameter study to determine the parameter settings leading to sufficient melting of the buried ice sheet. We find that the surface heat flux in the Aram Chaos region during the Hesperian was most likely between 20 and 45 mW m−2 with a possible maximum value of up to 60 mW m−2.  相似文献   

19.
Though optimized to discover and track fast moving Near-Earth Objects (NEOs), the Near-Earth Asteroid Tracking (NEAT) survey dataset can be mined to obtain information on the comet population observed serendipitously during the asteroid survey. We have completed analysis of over 400 CCD images of comets obtained during the autonomous operations of two 1.2-m telescopes: the first on the summit of Haleakala on the Hawaiian island of Maui and the second on Palomar Mountain in southern California. Photometric calibrations of each frame were derived using background catalog stars and the near-nucleus comet photometry measured. We measured dust production and normalized magnitudes for the coma and nucleus in order to explore cometary activity and comet size-frequency distributions. Our data over an approximately two-year time frame (2001 August-2003 February) include 52 comets: 12 periodic, 19 numbered, and 21 non-periodic, obtained over a wide range of viewing geometries and helio/geocentric distances. Nuclear magnitudes were estimated for a subset of comets observed. We found that for low-activity comets (Afρ<100 cm) our model gave reasonable estimates for nuclear size and magnitude. The slope of the cumulative luminosity function of our sample of low-activity comets was 0.33 ± 0.04, consistent with the slope we measured for the Jupiter-family cometary nuclei collected by Fernández et al. [Fernández, J.A., Tancredi, G., Rickman, H., Licandro, J., 1999. Astron. Astrophys. 392, 327-340] of 0.38 ± 0.02. Our slopes of the cumulative size distribution α=1.50±0.08 agree well with the slopes measured by Whitman et al. [Whitman, K., Morbidelli, A., Jedicke, R., 2006. Icarus 183, 101-114], Meech et al. [Meech, K.J., Hainaut, O.R., Marsden, B.G., 2004. Icarus 170, 463-491], Lowry et al. [Lowry, S.C., Fitzsimmons, A., Collander-Brown, S., 2003. Astron. Astrophys. 397, 329-343], and Weissman and Lowry [Weissman, P.R., Lowry, S.C., 2003. Lunar Planet. Sci. 34. Abstract 34].  相似文献   

20.
Sascha Kempf  Uwe Beckmann 《Icarus》2010,206(2):446-457
Pre-Cassini models of Saturn’s E ring [Horányi, M., Burns, J., Hamilton, D., 1992. Icarus 97, 248-259; Juhász, A., Horányi, M., 2002. J. Geophys. Res. 107, 1-10] failed to reproduce its peculiar vertical structure inferred from Earth-bound observations [de Pater, I., Martin, S.C., Showalter, M.R., 2004. Icarus 172, 446-454]. After the discovery of an active ice-volcanism of Saturn’s icy moon Enceladus the relevance of the directed injection of particles for the vertical ring structure of the E ring was swiftly recognised [Juhász, A., Horányi, M., Morfill, G.E., 2007. Geophys. Res. Lett. 34, L09104; Kempf, S., Beckmann, U., Moragas-Klostermeyer, G., Postberg, F., Srama, R., Economou, T., Schmidt, J., Spahn, F., Grün, E., 2008. Icarus 193, 420-437]. However, simple models for the delivery of particles from the plume to the ring predict a too small vertical ring thickness and overestimate the amount of the injected dust.Here we report on numerical simulations of grains leaving the plume and populating the dust torus of Enceladus. We run a large number of dynamical simulations including gravity and Lorentz force to investigate the earliest phase of the ring particle life span. The evolution of the electrostatic charge carried by the initially uncharged grains is treated selfconsistently. Freshly ejected plume particles are moving in almost circular orbits because the Enceladus orbital speed exceeds the particles’ ejection speeds by far. Only a small fraction of grains that leave the Hill sphere of Enceladus survive the next encounter with the moon. Thus, the flux and size distribution of the surviving grains, replenishing the ring particle reservoir, differs significantly from the flux and size distribution of the particles freshly ejected from the plume. Our numerical simulations reproduce the vertical ring profile measured by the Cassini Cosmic Dust Analyzer (CDA) [Kempf, S., Beckmann, U., Moragas-Klostermeyer, G., Postberg, F., Srama, R., EconoDmou, T., Smchmidt, J., Spahn, F., Grün, E., 2008. Icarus 193, 420-437]. From our simulations we calculate the deposition rates of plume particles hitting Enceladus’ surface. We find that at a distance of 100 m from a jet a 10 m sized ice boulder should be covered by plume particles in 105-106 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号