首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R. Kada 《GeoJournal》1982,6(4):367-371
Part-time farming is a wide-spread phenomenon in contemporary rural Japan. Characterized by an extremely small-scale rice farming and by a unimodal equitable rural development, most Japanese farm households have combined farming with off-farm employment. In this article, after an examination of the definition of part-time farming (farm household as the unit), the trend of and factors for part-time farming are described and analyzed. Growth and expansion of off-farm employment opportunities, continued small-sized farming, rapid increase in farmland prices and development and diffusion of labor-saving technology are among the major forces which encouraged part-time farming in Japan. Although the overall performance of part-time farms appears less efficient in the use of non-labor resources (e.g., land and machinery), part-time farms still occupy a significant share in the aggregate agricultural production and in the total farmland cropped. Various on-farm and off-farm adjustments are pointed out which have enabled dual employment patterns to be adopted by these people. In essence, due to the limited opportunities for farm-size expansion, part-time farming is considered a necessity, rather than a choise, for most Japanese farm families. But this has also caused some serious agricultural problems, especially with respect to its impact on farmsize structure and inefficient land use. At least for the purpose of maintaining a high income level and for equitable access to opportunities, part-time farming has seemingly contributed beneficially to the farming population of Japan.  相似文献   

2.
Human‐induced land use/land cover (LULC) changes are among the most important processes that shape the dynamics of the earth’s surface. This phenomenon, which is occurring at an astonishing rate, and its consequential environmental impacts have become an important area of research for scientists.Therefore, a wide range of methods and models have been developed to detect and predict these alterations, among which cellular automata (CA) models such as the CA‐Markov model, due to their affinity to geographic information system (GIS) and remote sensing (RS), are appropriate for detailed resolution modelling and simulating dynamic spatial processes. In Iran, the district of Ravansar has undergone severe LULC changes recently, thus to take the necessary precautions, decision‐makers need to predict and determine the extent of these changes. In this study, using spatial analysis methods the LULC changes in Ravansar were investigated from 1992 to 2015. Subsequently, the CA‐Markov model was applied to simulate the spatial pattern changes of LULC until 2030. Our results indicated that from 1992 to 2015, this region has witnessed a noticeable increase in the areas of the built‐up and agricultural lands (both aquatic and non‐aquatic), resulting in the decrease of the gardens, range, and bare lands. The simulated LULC map showed that this trend will continue due to more urbanization and development of agricultural areas.  相似文献   

3.
This paper describes the spatiotemporal changes pertaining to land use land cover (LULC) and the driving forces behind these changes in Doodhganga watershed of Jhelum Basin. An integrated approach utilizing remote sensing and geographic information system (GIS) was used to extract information pertaining to LULC change. Multi-date LULC maps were generated by analyzing remotely sensed images of three dates which include LandSat TM 1992, LandSat ETM+ 2001 and IRS LISS-III 2005. The LULC information was extracted by adopting on-screen image interpretation technique in a GIS environment at 1:25,000 scale. Based on the analysis, changes were observed in the spatial extent of different LULC types over a period of 13 years. Significant changes were observed in the spatial extent of forest, horticulture, built-up and agriculture. Forest cover in the watershed has decreased by 1.47 %, Agricultural by 0.93 % while as built-up area has increased by 0.92 %. The net decrease in forest cover and agriculture land indicate the anthropogenic interference into surrounding natural ecosystems. From the study it was found that the major driving forces for these changes were population growth and changes in the stream discharge. The changes in the stream discharge were found responsible for the conversion of agricultural land into horticulture, as horticulture has increased by 1.14 % in spatial extent. It has been found that increasing human population together with decreasing stream discharge account for LULC changes in the watershed. Therefore, the existing policy framework needs to focus upon mitigating the impacts of forces responsible for LULC change so as to ensure sustainable development of land resources.  相似文献   

4.
Few studies of land use change were particularly considered the hierarchical data structure originating from different scales and levels. Using interviewing data collected from 107 villages, 1,050 households and 4,780 fields between November 2003 and August 2005, the objective of this paper is to predict the occurrence of land use from field to village level in mountainous area, China, and to improve our understanding of the causes of land use. Household’s behavior in the choice of land use type is guided by multiple, often confiding, household objectives, subject to the available resources, possible productive activities, and external economic and biophysical constraints. For rice model, the household level variables cannot be substituted by village level aggregates. Aggregated variables at village level do not capture any of the variability at the household level. Village level variables can virtually be explained in virtue of the variables of field and household level. The households and the villages show significant clustering of the occurrence of rice, and they explain the 11.3 and 4.5% variance, respectively. For corn model, corn as dependent variable does not show any significant variance component. The variables of household and village level have lower effects on the occurrence of corn. There is a significant relation between slope of a field and the choice to cultivate corn and a significant random effect at the village level. However, cropland size, input–output, transportation cost, even family income in household level and road density and food market development in village level, at some extent, are controlled by slope. These variables do not influence corn cultivation significantly and that those are predominantly determined by slope. In a word, the household level can be crucial in explaining land use at the field level. Multilevel analysis can be applied to statistically model the occurrence of land use, and to explore a number of cross-scale propositions. An erratum to this article can be found at  相似文献   

5.
This paper identified 37 mining sites in ten gold mining communities of Ijesaland, Nigeria; examined the forms, levels and extent of land degradation resulted from mining activities; analyzed spatial pattern of land use and finally assessed the effects of mining on livelihood of the people. The study utilized global positioning system receiver to obtain geographic coordinates of mining sites. The forms of land degradation were captured through field observations and photographs while the levels and extent of the degraded lands were measured with measuring tape and the values were determined using mathematical formula for calculating area of a circle. Landsat datasets were used to analyze spatial pattern of land use and the effects of mining activities were examined through questionnaire administration on two hundred heads of household who were randomly selected. Focus group discussions (FGD) were organized among adult men and women to complement information obtained from questionnaire survey. The study discovered 354 mining pits as major form of land degradation, which ranges in sizes and depths. The average depth of mining pits was 3.4 m while an estimate of 25.8 ha. of land was degraded in the entire mining sites. There was a consensus among FGD participants and respondents of questionnaire survey that mining activities introduced adverse effects into their communities and attracted socio-economic benefits at the same time. The results of this study underscore the need for close monitoring of mining operations to reduce the negative impact of mining activities on the environment.  相似文献   

6.
Monitoring of land use and land cover change (LULC) is essential for water conservation and management. In this study, an attempt has been made to understand the impact of LULC change on groundwater quality. In the present study LULC map of the study area prepared using satellite image of year 1999 and 2016 which are visually interpreted with help of ERDAS IMAGINE and ArcGIS software. In this study different image interpretation elements like tone, texture, size, pattern and association were used and verified with field check and total eight LULC classes were recognized such as settlement, road, cultivation, industry, drainage, lake, open land and vegetation. Comparison of LULC of year 1999 and year 2016 indicates that the settlement (net increases 16.2%), road (net increases 0.8%), open land (net increases 14.8%) and industry (net increases 3.1%) area has expanded. In the study area groundwater pollution is mainly associated with LULC change and as well as poor waste management practices. Obtained result has been validated with nitrate concentration and found 73.33% accuracy reflecting that, applied techniques has produced significantly reliable results.  相似文献   

7.
The sustainability of water resources mainly depends on planning and management of land use; a small change in it may affect water yield largely, as both are linked through relevant hydrological processes, explicitly. However, human activities, especially a significant increase in population, in-migration and accelerated socio-economic activities, are constantly modifying the land use and land cover (LULC) pattern. The impact of such changes in LULC on the hydrological regime of a basin is of widespread concern and a great challenge to the water resource engineers. While studying these impacts, the issue that prevails is the selection of a hydrological model that may be able to accommodate spatial and temporal dynamics of the basin with higher accuracy. Therefore, in the present study, the capabilities of variable infiltration capacity hydrological model to hydrologically simulate the basin under varying LULC scenarios have been investigated. For the present analysis, the Pennar River Basin, Andhra Pradesh, which falls under a water scarce region in India, has been chosen. The water balance components such as runoff potential, evapotranspiration (ET) and baseflow of Pennar Basin have been simulated under different LULC scenarios to study the impact of change on hydrological regime of a basin. Majorly, increase in built-up (13.94% approx.) and decrease in deciduous forest cover (2.44%) are the significant changes observed in the basin during the last three decades. It was found that the impact of LULC change on hydrology is balancing out at basin scale (considering the entire basin, while routing the runoff at the basin outlet). Therefore, an analysis on spatial variation in each of the water balance components considered in the study was done at grid scale. It was observed that the impact of LULC is considerable spatially at grid level, and the maximum increase of 265 mm (1985–2005) and the decrease of 48 mm (1985–1995) in runoff generation at grid were estimated. On the contrary, ET component showed the maximum increase of 400 and decrease of 570 mm under different LULC change scenario. Similarly, in the base flow parameter, an increase of 70 mm and the decrease of 100 mm were observed. It was noticed that the upper basin is showing an increasing trend in almost all hydrological components as compared to the lower basin. Based on this basin scale study, it was concluded that change in the land cover alters the hydrology; however, it needs to be studied at finer spatial scale rather than the entire basin as a whole. The information like the spatial variation in hydrological components may be very useful for local authority and decision-makers to plan mitigation strategies accordingly.  相似文献   

8.
There is no doubt that land cover and climate changes have consequences on landslide activity, but it is still an open issue to assess and quantify their impacts. Wanzhou County in southwest China was selected as the test area to study rainfall-induced shallow landslide susceptibility under the future changes of land use and land cover (LULC) and climate. We used a high-resolution meteorological precipitation dataset and frequency distribution model to analyse the present extreme and antecedent rainfall conditions related to landslide activity. The future climate change factors were obtained from a 4-member multi-model ensemble that was derived from statistically downscaled regional climate simulations. The future LULC maps were simulated by the land change modeller (LCM) integrated into IDRISI Selva software. A total of six scenarios were defined by considering the rainfall (antecedent conditions and extreme events) and LULC changes towards two time periods (mid and late XXI century). A physically-based model was used to assess landslide susceptibility under these different scenarios. The results showed that the magnitude of both antecedent effective recharge and event rainfall in the region will evidently increase in the future. Under the scenario with a return period of 100 years, the antecedent rainfall in summer will increase by up to 63% whereas the event rainfall will increase by up to 54% for the late 21st century. The most considerable changes of LULC will be the increase of forest cover and the decrease of farming land. The magnitude of this change can reach + 22.1% (forest) and –9.2% (farmland) from 2010 until 2100, respectively. We found that the negative impact of climate change on landslide susceptibility is greater than the stabilizing effect of LULC change, leading to an over decrease in stability over the study area. This is one of the first studies across Asia to assess and quantify changes of regional landslide susceptibility under scenarios driven by LULC and climate change. Our results aim to guide land use planning and climate change mitigation considerations to reduce landslide risk.  相似文献   

9.
Agricultural land use in much of Brong-Ahafo region, Ghana has been shifting from the production of food crops towards increased cashew nut cultivation in recent years. This article explores everyday, less visible, gendered and generational struggles over family farms in West Africa, based on qualitative, participatory research in a rural community that is becoming increasingly integrated into the global capitalist system. As a tree crop, cashew was regarded as an individual man’s property to be passed on to his wife and children rather than to extended family members, which differed from the communal land tenure arrangements governing food crop cultivation. The tendency for land, cash crops and income to be controlled by men, despite women’s and young people’s significant labour contributions to family farms, and for women to rely on food crop production for their main source of income and for household food security, means that women and girls are more likely to lose out when cashew plantations are expanded to the detriment of land for food crops. Intergenerational tensions emerged when young people felt that their parents and elders were neglecting their views and concerns. The research provides important insights into gendered and generational power relations regarding land access, property rights and intra-household decision-making processes. Greater dialogue between genders and generations may help to tackle unequal power relations and lead to shared decision-making processes that build the resilience of rural communities.  相似文献   

10.
Historical and exact information about the land use/land cover change is very important for regional sustainable development. The aim of this paper is to determine the rapid changes in land use/land cover (LULC) pattern due to agriculture expansion, environmental calamities such as flood and government policies over Upper Narmada basin, India. Multi-temporal Landsat satellite images for years 1990, 2000, 2010 and 2015 were used to analyze and monitor the changes in LULC with an overall accuracy of more than 85%. Results revealed a potential decrease in natural vegetation (? 9.52%) due to the expansion of settlement (+ 0.52%) and cropland (+ 9.43%) from 1990 to 2015. In the present study, Cellular Automata and Markov (CA–Markov), an integrated tool was used to project the short-term LULC map of year 2030. The projected LULC (2030) indicated the expansion of built-up area along with the cropland and degradation in the vegetation area. The outcomes from the study can help as a guiding tool for protection of natural vegetation and the management of the built-up area. Additionally, it will help in devising the strategies to utilize every bit of land in the study area for decision makers.  相似文献   

11.
Flooding in urban area is a major natural hazard causing loss of life and damage to property and infrastructure. The major causes of urban floods include increase in precipitation due to climate change effect, drastic change in land use–land cover (LULC) and related hydrological impacts. In this study, the change in LULC between the years 1966 and 2009 is estimated from the toposheets and satellite images for the catchment of Poisar River in Mumbai, India. The delineated catchment area of the Poisar River is 20.19 km2. For the study area, there is an increase in built-up area from 16.64 to 44.08% and reduction in open space from 43.09 to 7.38% with reference to total catchment area between the years 1966 and 2009. For the flood assessment, an integrated approach of Hydrological Engineering Centre-Hydrological Modeling System (HEC-HMS), HEC-GeoHMS and HEC-River analysis system (HEC-RAS) with HEC-GeoRAS has been used. These models are integrated with geographic information system (GIS) and remote sensing data to develop a regional model for the estimation of flood plain extent and flood hazard analysis. The impact of LULC change and effects of detention ponds on surface runoff as well as flood plain extent for different return periods have been analyzed, and flood plain maps are developed. From the analysis, it is observed that there is an increase in peak discharge from 2.6 to 20.9% for LULC change between the years 1966 and 2009 for the return periods of 200, 100, 50, 25, 10 and 2 years. For the LULC of year 2009, there is a decrease in peak discharge from 10.7% for 2-year return period to 34.5% for 200-year return period due to provision of detention ponds. There is also an increase in flood plain extent from 14.22 to 42.5% for return periods of 10, 25, 50 and 100 years for LULC change between the year 1966 and year 2009. There is decrease in flood extent from 4.5% for 25-year return period to 7.7% for 100-year return period and decrease in total flood hazard area by 14.9% due to provisions of detention pond for LULC of year 2009. The results indicate that for low return period rainfall events, the hydrological impacts are higher due to geographic characteristics of the region. The provision of detention ponds reduces the peak discharge as well as the extent of the flooded area, flood depth and flood hazard considerably. The flood plain maps and flood hazard maps generated in this study can be used by the Municipal Corporation for flood disaster and mitigation planning. The integration of available software models with GIS and remote sensing proves to be very effective for flood disaster and mitigation management planning and measures.  相似文献   

12.
Estimating the potential direct runoff for urban watersheds is essential for flood risk mitigation and rainwater harvesting. Thus, this study aims to estimate the potential runoff depth based on the natural resources conservation service (NRCS) method and delineation of the watersheds in Riyadh, Saudi Arabia. To accomplish this objective, the geographic information systems (GIS) and remote sensing technique (RST) data were integrated to save time and improve analysis accuracy. The employed data include the digital elevation model (DEM), soil map, geology map, satellite images, and daily precipitation records. Accordingly, the hydrologic soil groups (HSG), the land use/land cover (LULC), and curve number (CN) were determined for each watershed in the study area. The results of this analysis show that the study area can be delineated into 40 watersheds with a total area of 8500 km2. Furthermore, the dominant HSG is group D, which represents about 71% of the total area. The LULC maps indicate four major land types in the entire study area: urban, barren land, agricultural land, and roads. The CN of the study area ranges from 64 to 98, while the weighted CN is 92 for the city. The rainfall-runoff analysis shows that the area has a high and very high daily runoff (35–50 and >?50 mm, respectively). Therefore, in this case, the runoff leads to flooding, especially in the urban area and agricultural lands.  相似文献   

13.
In this study, the effects of changes in historical and projected land use land cover (LULC) on monthly streamflow and sediment yield for the Netravati river basin in the Western Ghats of India are explored using land use maps from six time periods (1972, 1979, 1991, 2000, 2012, and 2030) and the soil and water assessment tool (SWAT). The LULC for 2030 is projected using the land change modeller with the assumption of normal growth. The sensitivity analysis, model calibration, and validation indicated that the SWAT model could reasonably simulate streamflow and sediment yield in the river basin. The results showed that the spatial extent of the LULC classes of urban (1.80–9.96%), agriculture (31.38–55.75%), and water bodies (1.48–2.66%) increased, whereas that of forest (53.04–27.03%), grassland (11.17–4.41%), and bare land (1.09–0.16%) decreased from 1972 to 2030. The streamflow increased steadily (7.88%) with changes in LULC, whereas the average annual sediment yield decreased (0.028%) between 1972 and 1991 and increased later (0.029%) until 2012. However, it may increase by 0.43% from 2012 to 2030. The results indicate that LULC changes in urbanization and agricultural intensification have contributed to the increase in runoff, amounting to 428.65 and 58.67 mm, respectively, and sediment yield, amounting to 348 and 43 ton/km2, respectively, in the catchment area from 1972 to 2030. The proposed methodology can be applied to other river basins for which temporal digital LULC maps are available for better water resource management plans.  相似文献   

14.
Kamwi  J. M.  Mbidzo  M. 《GeoJournal》2022,87(1):87-98
GeoJournal - The study evaluated patterns of land use and land cover (LULC) change in the Zambezi Region, Namibia between 1984 and 2010 using geospatial tools. Spatio-temporal dynamics of LULC...  相似文献   

15.
Frontiers constitute a major source of global land cover change hot spots, with forests and grasslands being converted into agricultural uses. As such, frontiers provide an opportunity to see how people manipulate the land and their lives in the context of social, cultural and environmental constraints. This paper examines frontier settlement and land cover change in Nang Rong district, Northeast Thailand for the last half century. It uses a Cellular Automata (CA) model to explore the land cover consequences of alternative patterns of settlement in a setting where people establish dwelling units in nucleated villages and work agricultural plots that surround villages. Forested land around the center of a village is converted into agricultural uses in an inverse relationship to the distance from the village center, but frequently modified by biophysical conditions. Land at the center of the village may be reforested after the village is established as a source of shade as well as fruit and other products. Model variation in land cover change is more sensitive to the spatial reach of village households than their temporal reach, suggesting the important role that technology plays in how villagers travel to their fields (walking versus motorized transit).  相似文献   

16.
The effects of climate and land use/land cover (LULC) dynamics have directly affected the surface runoff and flooding events. Hence, current study proposes a full-packaged model to monitor the changes in surface runoff in addition to forecast of the future surface runoff based on LULC and precipitation variations. On one hand, six different LULC classes were extracted from Spot-5 satellite image. Conjointly, land transformation model (LTM) was used to detect the LULC pixel changes from 2000 to 2010 as well as predict the 2020 ones. On the other hand, the time series-autoregressive integrated moving average (ARIMA) model was applied to forecast the amount of rainfall in 2020. The ARIMA parameters were calibrated and fitted by latest Taguchi method. To simulate the maximum probable surface runoff, distributed soil conservation service-curve number (SCS-CN) model was applied. The comparison results showed that firstly, deforestation and urbanization have been occurred upon the given time, and they are anticipated to increase as well. Secondly, the amount of rainfall has non-stationary declined since 2000 till 2015 and this trend is estimated to continue by 2020. Thirdly, due to damaging changes in LULC, the surface runoff has been also increased till 2010 and it is forecasted to gradually exceed by 2020. Generally, model calibrations and accuracy assessments have been indicated, using distributed-GIS-based SCS-CN model in combination with the LTM and ARIMA models are an efficient and reliable approach for detecting, monitoring, and forecasting surface runoff.  相似文献   

17.
Garg  Vaibhav  Anand  Aishwarya 《GeoJournal》2022,87(4):973-997

Rispana River flows through the heart of Dehradun, the capital city of Uttarakhand State, India. Uttarakhand had separated from Uttar Pradesh State in the year 2000; since then, Dehradun City has witnessed numerous changes. Both urban sprawl and densification were noticed, with around a 32% increase in population. The city had faced recurrent high runoff and urban flood situations in these last 2 decades. Therefore, the study was conducted to detect the change in land use/land cover (LULC), especially urbanization, through remote sensing data; and later to determine the impacts of such changes on the Rispana watershed hydrology. The LULC maps for the year 2003 and the 2017 were generated through supervised classification technique using the Landsat Series satellite datasets. The LULC change analysis depicted that mainly the urban settlement class increased with significant area among other classes from the year 2003–2017. It was noticed that majorly agriculture and fallow land (8.18 km2, which is 13.52% of total watershed area) converted to urban, increasing the impervious area. Almost all the municipal wards, falling in the Rispana watershed, showed urbanization during the said period, with an increase of as high as 71%. The change in LULC or effect of urbanization on the hydrological response of the watershed was assessed using the most widely used Natural Resources Conservation Services Curve Number method. It was noticed that the area under moderated runoff potential (approx. 10.23 km2) steeply increased during the lean season, whereas, high runoff potential zones (5 km2) increased significantly under wet season. Therefore, it was concluded that an increase in impervious surface resulted in high runoff generation. Further, such LULC change along with climate might lead to high runoff within the watershed, which the present storm drainage network could not withstand. The situation generally led to urban floods and affected urban dwellers regularly. Therefore, it is critical to assess the hydrological impacts of LULC change for land use planning and water resource management. Furthermore, under the smart city project, the local government has various plans to improve present infrastructure; therefore, it becomes necessary to incorporate such observations in the policies.

  相似文献   

18.
In recent times, soil erosion interlocked with land use and land cover (LULC) changes has become one of the most important environmental issues in developing countries. Evaluation of this complex interaction between LULC change and soil erosion is indispensable in land use planning and conservation works. This paper analysed the impact of LULC change on soil erosion in the north-western highland Ethiopia over the period 1986–2016. Rib watershed, the area with dynamic LULC change and severe soil erosion problem, was selected as a case study site. Integrated approach that combined geospatial technologies with revised universal soil loss equation model was utilized to evaluate the spatio-temporal dynamics of soil loss over the study period. Pixel-based overlay of soil erosion intensity maps with LULC maps was carried out to understand the change in soil loss due to LULC change. Results showed that the annual soil loss in the study area varied from 0 to 236.5 t ha?1 year?1 (tons per hectare per year) in 1986 and 0–807 t ha?1 year?1 in 2016. The average annual soil loss for the entire watershed was estimated about 40 t ha?1 year?1 in 1986 comparing with 68 t ha?1 year?1 in 2016, a formidable increase. Soil erosion potential that was estimated to exceed the average soil loss tolerance level increased from 34.5% in 1986 to 66.8% in 2016. Expansion of agricultural land at the expense of grassland and shrubland was the most detrimental factor for severe soil erosion in the watershed. The most noticeable change in soil erosion intensity was observed from cropland with mean annual soil loss amount increased to 41.38 t ha?1 year?1 in 2016 from 26.60 in 1986. Moreover, the most successive erosion problems were detected in eastern, south-eastern and northern parts of the watershed. Therefore, the results of this study can help identify the soil erosion hot spots and conservation priority areas at local and regional levels.  相似文献   

19.
M. Upton  C. Bishop  R. Pearce 《GeoJournal》1982,6(4):343-350
Part-time farming is a feature and a consequence of economic change which involves labour movement out of agriculture. It helps to sustain the rural sector by reducing the rate of outmigration. This paper reports on a pilot survey of part-time farmers in the S, Government-controlled part of Cyprus. The economy is growing rapidly with agriculture declining in relative importance although still contributing nearly half the value of exports. Over 50 % of farmers are part-time, meaning in this case they have another occupation. In general, farming is a minor activity and time spent in off-farm work is often increasing to maintain income levels. However the majority of the sample are keen to maintain their farming activity.In the Cyprus study part-time farmers appear slightly younger and operate smaller units than average; they rent in less land and irrigate a smaller area. Considerable differences are found between the four main agricultural zones; mountain, vines, dryland and coastal. At one extreme, exemplified by the coastal zone, commercial part-time farming provides a high standard of living on farms which are somewhat smaller than average. Off-farm work is available locally and complements farm work. Farmers' confidence in long-term prospects is reflected in their willingness (and ability) to invest on the farm and in their low levels of family, migration. At the other extreme, found in the depressed areas of the mountain zone, overt government policies may be required to ensure the continued existence of farming. The combined income of on and off farm work may be inadequate and farmers often have to borrow to meet basic household needs. These farmers travel long distances to find work and may have more than one off-farm occupation. Much of the burden of farm work falls on other family members. Although farmers would prefer to spend more time in agriculture they have limited confidence in its future prospects and recognize the possible necessity of outmigration.  相似文献   

20.
The assessment of land use land cover (LULC) and climate change over the hydrology of a catchment has become inevitable and is an essential aspect to understand the water resources-related problems within the catchment. For large catchments, mesoscale models such as variable infiltration capacity (VIC) model are required for appropriate hydrological assessment. In this study, Ashti Catchment (sub-catchment of Godavari Basin in India) is considered as a case study to evaluate the impacts of LULC changes and rainfall trends on the hydrological variables using VIC model. The land cover data and rainfall trends for 40 years (1971–2010) were used as driving input parameters to simulate the hydrological changes over the Ashti Catchment and the results are compared with observed runoff. The good agreement between observed and simulated streamflows emphasises that the VIC model is able to evaluate the hydrological changes within the major catchment, satisfactorily. Further, the study shows that evapotranspiration is predominantly governed by the vegetation classes. Evapotranspiration is higher for the forest cover as compared to the evapotranspiration for shrubland/grassland, as the trees with deeper roots draws the soil moisture from the deeper soil layers. The results show that the spatial extent of change in rainfall trends is small as compared to the total catchment. The hydrological response of the catchment shows that small changes in monsoon rainfall predominantly contribute to runoff, which results in higher changes in runoff as the potential evapotranspiration within the catchments is achieved. The study also emphasises that the hydrological implications of climate change are not very significant on the Ashti Catchment, during the last 40 years (1971–2010).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号