首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stable isotopes of benthic foraminifera have widely been applied in micropalaeontological research to understand vital effects in foraminifera. Isotopic fractionations are mainly controlled by ontogeny, bottom/pore water chemistry, habitat preference, kinetic effect and respiration. Discontinuous abundance of a species for isotopic analysis has forced us to select multiple species from down-core samples. Thus standardisation factors are required to convert isotopic values of one species with respect to other species. The present study is pursued on isotopic values of different pairs of benthic foraminifera from the Krishna–Godavari basin and Peru offshore to understand habitat-wise isotopic variation and estimation of isotopic correction factors for the paired species (Cibicides wuellerstorfi–Bulimina marginata, Ammonia spp.–Loxostomum amygdalaeformis and Bolivina seminuda–Nonionella auris). Infaunal species (B. marginata, Ammonia spp. and N. auris) show a lighter carbon isotopic excursion with respect to the epifaunal to shallow infaunal forms (C. wuellerstorfi, L. amygdalaeformis and B. seminuda). These lighter \(\updelta ^{13}\) \(\hbox {C}\) values are related to utilisation of \(\hbox {CO}_{2}\) produced by anaerobic remineralisation of organic matter. However, enrichment of \(\updelta ^{18}\) \(\hbox {O}\) for the deeper microhabitat (bearing lower pH and decreased \({\hbox {CO}_{3}}^{2-})\) is only recorded in case of B. marginata. It is reverse in case of N. auris and related to utilisation of respiratory \(\hbox {CO}_{2}\) and internal dissolve inorganic carbon pool. Estimation of interspecies isotopic correction factors for the species pairs (\(\updelta ^{13}\) \(\hbox {C}\) of C. wuellerstorfiB. marginata, L. amygdalaeformisAmmonia spp., N. aurisB. seminuda) and \(\updelta ^{18}\) \(\hbox {O}\) of C. wuellerstorfiB. marginata are statistically reliable and may be used in palaeoecological studies.  相似文献   

2.
Over the last decade, sea surface temperature (SST) reconstructed from the Mg/Ca ratio of foraminiferal calcite has increasingly been used, in combination with the δ18O signal measured on the same material, to calculate the δ18Ow, a proxy for sea surface salinity (SSS). A number of studies, however, have shown that the Mg/Ca ratio is also sensitive to other parameters, such as pH or , and salinity. To increase the reliability of foraminiferal Mg/Ca ratios as temperature proxies, these effects should be quantified in isolation. Individuals of the benthic foraminifera Ammonia tepida were cultured at three different salinities (20, 33 and 40 psu) and two temperatures (10-15 °C). The Mg/Ca and Sr/Ca ratios of newly formed calcite were analyzed by Laser Ablation ICP-MS and demonstrate that the Mg concentration in A. tepida is overall relatively low (mean value per experimental condition between 0.5 and 1.3 mmol/mol) when compared to other foraminiferal species, Sr being similar to other foraminiferal species. The Mg and Sr incorporation are both enhanced with increasing temperatures. However, the temperature dependency for Sr disappears when the distribution factor DSr is plotted as a function of calcite saturation state (Ω). This suggests that a kinetic process related to Ω is responsible for the observed dependency of Sr incorporation on sea water temperature. The inferred relative increase in DMg per unit salinity is 2.8% at 10 °C and 3.3% at 15 °C, for the salinity interval 20-40 psu. This implies that a salinity increase of 2 psu results in enhanced Mg incorporation equivalent to 1 °C temperature increase. The DSr increase per unit salinity is 0.8% at 10 °C and 1.3% at 15 °C, for the salinity interval 20-40 psu.  相似文献   

3.
We investigate the sensitivity of U/Ca, Mg/Ca, and Sr/Ca to changes in seawater [CO32−] and temperature in calcite produced by the two planktonic foraminifera species, Orbulina universa and Globigerina bulloides, in laboratory culture experiments. Our results demonstrate that at constant temperature, U/Ca in O. universa decreases by 25 ± 7% per 100 μmol [CO32−] kg−1, as seawater [CO32−] increases from 110 to 470 μmol kg−1. Results from G. bulloides suggest a similar relationship, but U/Ca is consistently offset by ∼+40% at the same environmental [CO32−]. In O. universa, U/Ca is insensitive to temperature between 15°C and 25°C. Applying the O. universa relationship to three U/Ca records from a related species, Globigerinoides sacculifer, we estimate that Caribbean and tropical Atlantic [CO32−] was 110 ± 70 μmol kg−1 and 80 ± 40 μmol kg−1 higher, respectively, during the last glacial period relative to the Holocene. This result is consistent with estimates of the glacial-interglacial change in surface water [CO32−] based on both modeling and on boron isotope pH estimates. In settings where the addition of U by diagenetic processes is not a factor, down-core records of foraminiferal U/Ca have potential to provide information about changes in the ocean’s carbonate concentration.Below ambient pH (pH < 8.2), Mg/Ca decreased by 7 ± 5% (O. universa) to 16 ± 6% (G. bulloides) per 0.1 unit increase in pH. Above ambient pH, the change in Mg/Ca was not significant for either species. This result suggests that Mg/Ca-based paleotemperature estimates for the Quaternary, during which surface-ocean pH has been at or above modern levels, have not been biased by variations in surface-water pH. Sr/Ca increased linearly by 1.6 ± 0.4% per 0.1 unit increase in pH. Shell Mg/Ca increased exponentially with temperature in O. universa, where Mg/Ca = 0.85 exp (0.096*T), whereas the change in Sr/Ca with temperature was within the reproducibility of replicate measurements.  相似文献   

4.
Specimens of two species of planktic foraminifera, Globigerinoides ruber and Globigerinella siphonifera, were grown under controlled laboratory conditions at a range of temperatures (18-31 °C), salinities (32-44 psu) and pH levels (7.9-8.4). The shells were examined for their calcium isotope compositions (δ44/40Ca) and strontium to calcium ratios (Sr/Ca) using Thermal Ionization Mass Spectrometry and Inductively Coupled Plasma Mass Spectrometry. Although the total variation in δ44/40Ca (∼0.3‰) in the studied species is on the same order as the external reproducibility, the data set reveals some apparent trends that are controlled by more than one environmental parameter. There is a well-defined inverse linear relationship between δ44/40Ca and Sr/Ca in all experiments, suggesting similar controls on these proxies in foraminiferal calcite independent of species. Analogous to recent results from inorganically precipitated calcite, we suggest that Ca isotope fractionation and Sr partitioning in planktic foraminifera are mainly controlled by precipitation kinetics. This postulation provides us with a unique tool to calculate precipitation rates and draws support from the observation that Sr/Ca ratios are positively correlated with average growth rates. At 25 °C water temperature, precipitation rates in G. siphonifera and G. ruber are calculated to be on the order of 2000 and 3000 μmol/m2/h, respectively. The lower δ44/40Ca observed at ?29 °C in both species is consistent with increased precipitation rates at high water temperatures. Salinity response of δ44/40Ca (and Sr/Ca) in G. siphonifera implies that this species has the highest precipitation rates at the salinity of its natural habitat, whereas increasing salinities appear to trigger higher precipitation rates in G. ruber. Isotope effects that cannot be explained by precipitation rate in planktic foraminifera can be explained by a biological control, related to a vacuolar pathway for supply of ions during biomineralization and a pH regulation mechanism in these vacuoles. In case of an additional pathway via cross-membrane transport, supplying light Ca for calcification, the δ44/40Ca of the reservoir is constrained as −0.2‰ relative to seawater. Using a Rayleigh distillation model, we calculate that calcification occurs in a semi-open system, where less than half of the Ca supplied by vacuolization is utilized for calcite precipitation. Our findings are relevant for interpreting paleo-proxy data on δ44/40Ca and Sr/Ca in foraminifera as well as understanding their biomineralization processes.  相似文献   

5.
Trace/minor element signatures (DCd, DBa, DMg, and DSr) were measured in the tests (shells) of benthic foraminifera cultured in a trace-metal-concentration-controlled system. The culture system was constructed of inert materials and designed to limit microhabitat effects. This system ensured that variation observed in cultured foraminiferal element:calcium (TE/Ca) signatures was due to biologically mediated (vital) effects only. Two species, Bulimina aculeata and Rosalina vilardeboana, reproduced prolifically during two 4-to-8-month culture periods. In every case (i.e., for both species and each element), the inter-individual variability was larger than the analytical precision. Mean (±1 standard deviation) DE signatures for B. aculeata were: DCd: 1.5 ± 0.4, DBa × 10: 2.1 ± 0.7, DMg × 1000: 0.62 ± 0.15, and DSr × 10: 1.5 ± 0.1. Cultured B. aculeata DMg, calibrated from culture and core-top (live) field specimens, predicted temperatures within ±2.0 °C. The observed inter-individual variability from culture specimens was as large or larger than comparable results from core-top investigations. R. vilardeboana DCd signatures were significantly lower, while DBa, DMg, and DSr signatures were significantly higher than B. aculeata values. Since our culture system minimizes microhabitat variability, the variation in measured TE/Ca ratios suggests that biological processes are a significant factor in inter-individual and inter-species variability. Comparison of cultured and field-collected foraminiferal DBa signatures supports previous findings that pore-water chemistry is a major environmental influence on foraminiferal test chemistry.  相似文献   

6.
This paper presents the results of the δ18O study of the precious opals from Primor’e (Raduzhnoe deposit), Australia, and Ethiopia and the modern opals from the hydrotherms of the Mendeleev Volcano (Kunashir Island, Kuril Islands). It is established that the oxygen isotope ratio in opals may serve as a criterion for the estimation of their formation temperature. The low-temperature sedimentary opals are relatively enriched in the heavy oxygen isotope independently of the sedimentary or volcanic host rocks. Examples are the Australian and Slovakian opals of the A-type. The hydrothermal opals are enriched in the light oxygen isotope, which depends on the precipitation temperature. The higher the temperature, the lighter the oxygen isotope ratio of the precipitating opal is and the closer it is to that of the hydrothermal fluid.  相似文献   

7.
通过对江西万年县神农宫和陕西宁强县祥龙洞两个洞穴内、外温度连续19个月的同步监测以了解不同时间尺度下洞穴温度变化特征。结果显示神农宫及祥龙洞洞内温度存在明显的季节性变化:(1)神农宫夏秋季洞内温度在小时-日尺度上受到降水事件的影响显著,洞内夏秋季温度波动明显高于冬春季。祥龙洞监测点所处支洞环境相对封闭,温度波动在冬春季大于夏秋季,且全年洞温变幅小于神农宫。(2)旬—季节尺度的洞温数据显示,一个完整水文年内,神农宫两个监测点SN1、SN2的温度变幅分别达到4.8 ℃和4.6 ℃,祥龙洞达到3.2 ℃。(3)两个洞穴洞内温度响应洞外气温的变化都存在滞后性,且冬春季滞后大于夏秋季,可能受深部围岩温度相对偏高、空气和围岩热导率的季节变化以及降水季节差异的影响。最后,针对洞温存在较大季节变化的洞穴讨论了不同沉积模式下洞穴温度变化对石笋氧同位素组成18O的可能影响。认为此类洞穴某一时期石笋δ18O出现较大幅度偏正或偏负不一定反映了外界气候的大幅变化,也可能仅仅是由于洞穴沉积条件发生改变而造成的。   相似文献   

8.
《Geochimica et cosmochimica acta》1999,63(13-14):2001-2007
Stable oxygen isotope ratios of foraminiferal calcite are widely used in paleoceanography to provide a chronology of temperature changes during ocean history. It was recently demonstrated that the stable oxygen isotope ratios in planktonic foraminifera are affected by changes of the seawater chemistry carbonate system: the δ18O of the foraminiferal calcite decreases with increasing CO32− concentration or pH. This paper provides a simple explanation for seawater chemistry dependent stable oxygen isotope variations in the planktonic foraminifera Orbulina universa which is derived from oxygen isotope partitioning during inorganic precipitation. The oxygen isotope fractionation between water and the dissolved carbonate species S = [H2CO3] + [HCO3] + [CO32−] decreases with increasing pH. Provided that calcium carbonate is formed from a mixture of the carbonate species in proportion to their relative contribution to S, the oxygen isotopic composition of CaCO3 also decreases with increasing pH. The slope of shell δ18O vs. [CO32−] of Orbulina universa observed in culture experiments is −0.0022‰ (μmol kg−1)−1 (Spero et al., 1997), whereas the slope derived from inorganic precipitation is −0.0024‰ (μmol kg−1). The theory also provides an explanation of the nonequilibrium fractionation effects in synthetic carbonates described by Kim and O’Neil (1997) which can be understood in terms of equilibrium fractionation at different pH. The results presented here emphasize that the oxygen isotope fractionation between calcium carbonate and water does not only depend on the temperature but also on the pH of the solution from which it is formed.  相似文献   

9.
Clumped-isotope geochemistry deals with the state of ordering of rare isotopes in molecules, in particular with their tendency to form bonds with other rare isotopes rather than with the most abundant ones. Among its possible applications, carbonate clumped-isotope thermometry is the one that has gained most attention because of the wide potential of applications in many disciplines of the earth sciences. In particular, it allows reconstructing the temperature of formation of carbonate minerals without knowledge of the isotopic composition of the water from which they were formed. In addition, the O isotope composition of the waters from which they were formed can be calculated using the δ18O of the same carbonate sample. This feature offers new approaches in paleoclimatology for reconstructing past global geochemical cycles. In this contribution two applications of this method are presented. First the potential of a new analytical method of measurement of clumped isotopes on small samples of foraminifera, for high-resolution SST and seawater δ18O reconstructions from marine sediments is shown. Furthermore the potential of clumped isotope analysis of belemnites, for reconstructing seawater δ18O and temperatures in the Cretaceous is shown.  相似文献   

10.
干旱化对成土碳酸盐碳同位素组成的影响   总被引:12,自引:1,他引:12       下载免费PDF全文
土壤碳酸盐的碳同位素组成可以作为古环境变化的指标.本文对黄土高原地区S1以来成土碳酸盐和红粘土中碳酸盐的碳同位素进行了研究.根据渭南、吉县、长武和会宁4个剖面末次间冰期以来土壤碳酸盐的碳同位素分析结果,探讨了不同气候条件下成土碳酸盐碳同位素组成的特征及其环境意义,指出气候的干湿程度可能是影响黄土地区成土碳酸盐δ13C值的主要原因;西峰红粘土序列碳酸盐的碳同位素记录表明,δ13C值在4.0Ma B.P.前后有一个明显增加的趋势,反映了我国西北地区上新世干旱化的发展,可能与青藏高原在这一时期发生较大规模的隆升有关.  相似文献   

11.
胡镕 《第四纪研究》2018,38(5):1142-1155

北大西洋(特别是亚极地海区)是对全球气候变化响应最敏感的区域之一,也是全球气候变化研究关注的焦点之一。地质记录和模拟研究指出末次间冰期(MIS 5e)全球地表平均温度比全新世(Holocene)高约1℃,因而可以作为未来全球变暖趋势的历史对照,但目前北大西洋水体温盐变化在这两个时期的对比研究仍然较少。底栖有孔虫氧同位素作为古气候研究常用的指标,与冰量、温度和洋流变化紧密相关。本文统计并对比了北大西洋47个深海沉积物钻孔MIS 5e和全新世的底栖有孔虫氧同位素数据,发现研究区不同深度、不同纬度的数据在这两个间冰期具有系统的差异。MIS 5e氧同位素平均值和极低值比全新世系统性偏轻0.08 ‰,反映了陆地冰量变化对整个区域的影响,且深水温度整体可能比全新世偏高。氧同位素时空分布表明北大西洋中层水(1~2 km)全新世和MIS 5e的有孔虫氧同位素差值(> 0.2 ‰)比深水(> 2 km)更显著,可能记录更大的温度变化幅度,而1.5 km之上MIS 5e氧同位素值变重(平均重约0.36 ‰)则主要响应了大洋环流的变化。此外,高纬地区(45°N以北)深水底栖有孔虫氧同位素值在MIS 5e系统性偏轻约0.12 ‰,比中低纬(0°~45°N)深水变化更显著,可能反映高纬深水变暖程度更高,与海表温度重建和模拟结果相吻合。因此,联合多钻孔的底栖有孔虫氧同位素是分辨区域古海洋变化的有效手段,在未来气候变暖中北大西洋高纬和中层海域的变化是气候模式需要重点关注的区域之一。

  相似文献   

12.
Understanding the influence of climatic and non-climatic factors on geochemical signals in corals is critical for assessing coral-derived records of tropical climate variability. Porites microatolls form large, disk-shaped colonies constrained in their upward growth by exposure at or close to mean spring low water level, and occur on Indo-Pacific reefs. Microatolls appear suitable for paleoclimate reconstruction, however the systematics of the microatoll chemistry-climate relationship are yet to be characterized. In this study, the δ18O signal in Porites microatolls from well-flushed reef flats on Kiritimati (Christmas) Island, central Pacific was investigated for intra-coral (growth aspect and extension rate effects) and between-coral effects, and to explore the climate signal contained within their skeletons. Samples for δ18O analysis were taken from six individual transects from different positions within Porites microatoll XM22. The results show that: (1) the average standard deviation for the mean δ18O values of transects that represent the same time periods is 0.03‰, and is within measurement error for a single analysis (0.04‰); (2) the average standard deviation for time-equivalent, near-monthly samples along the transects within the same microatoll is 0.07‰ and; (3) comparison of the average δ18O values of records for different microatolls from across Kiritimati Island show only a small between-coral differences of 0.04‰ and 0.11‰ for different time periods. These differences in mean δ18O are within the range for intra- and inter-colony differences in seasonal and interannual δ18O reported for dome-shaped Porites. Based on these results, a stacked microatoll δ18O record was constructed for the period 1978-2007 for comparison with published coral δ18O records for nearby dome-shaped Porites. There is a systematic offset between the two types of records, which is probably due to variations in δ18O seawater across Kiritimati Island. Despite the offset, all records show similar amplitudes for the seasonal-cycle of δ18O, and there is a strong correlation (= −0.71) between microatoll δ18O and local sea surface temperature (SST). The δ18O-SST slope relationship for microatolls is −0.15‰/°C, very similar to that reported for fast-growing domed corals (−0.18‰ to −0.22‰/°C). Statistical analysis of the stacked microatoll δ18O record shows that it is correlated with both local and large-scale climate variables (primarily SST) at semiannual, annual and interannual timescales. Our results show that the signal reproducibility and fidelity of skeletal δ18O in coral microatolls is comparable to that observed for more conventional coral growth forms. Longer-lived, and fossil, Porites microatolls, where they have grown in suitably flushed environments, are likely to contain δ18O signals that can significantly extend instrumental records of tropical climate variability.  相似文献   

13.
基于AMS 14C年龄和底栖有孔虫氧同位素建立的地层年代框架,重点探讨了冲绳海槽中北部CSHC-15孔MIS6期以来(约200 ka)底栖有孔虫δ13C特征及其古海洋指示意义。结果显示,冰期-间冰期表层初级生产力和有机质通量的变化是导致底栖有孔虫δ13C值在MIS4和MIS6期负偏而在MIS1、MIS3和MIS5期正偏的主要原因。MIS2期的底栖有孔虫δ13C正偏,指示了NPIW侵入冲绳海槽,导致通风性加强,底层水呈弱氧化状态。甲烷渗漏引发的甲烷厌氧氧化作用(AOM)是导致CSHC-15孔底栖有孔虫在MIS4期碳同位素大幅负偏的原因。  相似文献   

14.
Assessments of inorganic elemental speciation in seawater span the past four decades. Experimentation, compilation and critical review of equilibrium data over the past forty years have, in particular, considerably improved our understanding of cation hydrolysis and the complexation of cations by carbonate ions in solution. Through experimental investigations and critical evaluation it is now known that more than forty elements have seawater speciation schemes that are strongly influenced by pH. In the present work, the speciation of the elements in seawater is summarized in a manner that highlights the significance of pH variations. For elements that have pH-dependent species concentration ratios, this work summarizes equilibrium data (S = 35, t = 25°C) that can be used to assess regions of dominance and relative species concentrations. Concentration ratios of complex species are expressed in the form log[A]/[B] = pH - C where brackets denote species concentrations in solution, A and B are species important at higher (A) and lower (B) solution pH, and C is a constant dependent on salinity, temperature and pressure. In the case of equilibria involving complex oxy-anions (MO x (OH) y ) or hydroxy complexes (M(OH) n ), C is written as pK n = -log K n or pK n * = -log K n * respectively, where K n and K n * are equilibrium constants. For equilibria involving carbonate complexation, the constant C is written as pQ = -log(K 2 l K n [HCO3 -]) where K 2 l is the HCO3 - dissociation constant, K n is a cation complexation constant and [HCO3 -] is approximated as 1.9 × 10-3 molar. Equilibrium data expressed in this manner clearly show dominant species transitions, ranges of dominance, and relative concentrations at any pH.  相似文献   

15.
The chemical and stable isotope compositions of unpolluted ground waters in carbonate terranes are a function of the pH, PCO2, 13C content of the ground water recharge, the 13C content of the carbonate rock, and the manner in which the rock is dissolved or precipitated. Physico-chemical models show that significantly different relationships exist between Ca2+ plus Mg2+, HCO3?, pH and 13C content of unpolluted ground waters when carbonate solution occurs in the presence or absence of a gas phase. A study was made of these relationships in waters from 21 springs and 13 wells in Nittany Valley, Pennsylvania. Assuming that CO2 in the recharge zone has a 13C contents below ?21%. vs PDB, the data indicate that ground water flow to wells and springs, and carbonate rock solution probably occurs chiefly in the absence of a gas phase. This is in spite of the fact that most of such flow is under water table conditions. 13C contents averaged ?12·3%. for the spring waters and ?13·3%. for the well waters. Five well waters polluted by septic tank or sewage effluents had carbon isotopic compositions from ?13·5 to ?16·4%.,vs ?11·3 to?12·7 %. for the eight well waters relatively free of organic wastes.  相似文献   

16.
This study was designed to investigate the effect of light and temperature on Sr/Ca and Mg/Ca ratios in the skeleton of the coral Acropora sp. for the purpose of evaluating temperature proxies for paleoceanographic applications. In the first experiment, corals were cultivated under three light levels (100, 200, 400 μmol photons m−2 s−1) and constant temperature (27 °C). In the second experiment, corals were cultivated at five temperatures (21, 23, 25, 27, 29 °C) and constant light (400 μmol photons m−2 s−1). Increasing the water temperature from 21 to 29 °C, induced a 5.7-fold increase in the rate of calcification, which induced a 30% increase in the Mg/Ca ratio. In contrast, by increasing the light level by a factor of 4, the rate of calcification was increased only by a factor of 1.7, with a corresponding 9% increase in the Mg/Ca ratio. Thus, the relative change in the calcification rate in the two experiments (5.7 vs. 1.7) scales with the corresponding relative change in Mg/Ca ratio (30% vs. 9%). We conclude that there is a strong biological control on the incorporation of Mg.For Sr/Ca, good correlations were also observed with water temperature and the calcification rate induced by temperature changes. However, in sharp contrast with the Mg/Ca ratio, a temperature-induced 5.7-fold increase in the calcification rate only induced a 4.5% change (decrease) in the Sr/Ca ratio. An important finding for paleoceanographic applications is that the Sr/Ca ratio did not appear to be sensitive to changes in the light level, or to changes in calcification rate induced by changes in the light level. Thus, in this study, water temperature was found to be the dominant parameter controlling the skeletal Sr/Ca ratio.  相似文献   

17.
H. Honma  H. Sakai 《Lithos》1976,9(3):173-178
18O/16O ratios have been obtained for 99 minerals from rocks of the Hiroshima granite complex and adjacent Ryoke granites. Zonal distribution of oxygen isotopes is observed on a regional scale almost parallel to the extension of the Ryoke plutono-metamorphic belt, granites in or around the metamorphic belt being 2–3%0 richer in 18O than those farther away from the belt. Isotopic fractionations among coexisting minerals indicate that isotopic zonation existed at a magmatic stage. The zonal enrichment of 18O in the granite magma in the Ryoke belt and its periphery is a result of isotopic interaction between country rocks and the magma through fluid media. Genetic relationship between granites of the Ryoke and Chugoku belts are discussed with regard to the geological situation of the former belt.  相似文献   

18.
Carbon and oxygen isotope compositions of Lower-Middle Ordovician carbonate rocks in the northwestern Russian Platform (eastern Ladoga Klint, Lynna River, and Babino quarry sections) are considered. In the studied section interval, average δ13C and δ18O values are 0 ± 0.5 and ?5 ± 0.5‰ (V-PDB), respectively. Two closely-spaced negative carbon isotope excursions with the amplitude of 2‰ are established near the Lower-Middle Ordovician boundary (between the Floian and Dapingian stages). The lower part of the Darriwilian Stage is marked by the gradual decrease in δ13C values to 1‰. Excursions of δ13C do not correlate with δ18O variations and can be considered as primary. The carbon isotope event defined at the Lower-Middle Ordovician boundary is traceable at the interregional level and represents a promising stratigraphic reference level. It may likely be explained by decrease in the relative rate of organic matter burial due to sea level fall and expansion of well-aerated shallow-water basins with a low primary production of phytoplankton.  相似文献   

19.
The Vindhyan sedimentary succession in central India spans a wide time bracket from the Paleoproterozoic to the Neoproterozoic period. Chronostratigraphic significance of stable carbon and oxygen isotope ratios of the carbonate phase in Vindhyan sediments has been discussed in some recent studies. However, the subtle controls of facies variation, depositional setting and post-depositional diagenesis on stable isotope compositions are not yet clearly understood. The Vindhyan Supergroup hosts four carbonate units, exhibiting a wide variability in depositional processes and paleogeography. A detailed facies-specific carbon and oxygen isotope study of the carbonate units was undertaken by us to investigate the effect of these processes and to identify the least altered isotope values. It is seen that both carbon and oxygen isotope compositions have been affected by early meteoric water diagenesis. The effect of diagenetic alteration is, however, more pronounced in case of oxygen isotopes than carbon isotopes. Stable isotope compositions remained insensitive to facies only when sediments accumulated in a shallow shelf setting without being exposed. Major alteration of original isotope ratios was observed in case of shallow marine carbonates, which became exposed to meteoric fluids during early diagenetic stage. Duration of exposure possibly determined the magnitude of alteration and shift from the original values. Moreover, dolomitization is found to be accompanied by appreciable alteration of isotope compositions in some of the carbonates. The present study suggests that variations in sediment depositional settings, in particular the possibility of subaerial exposure, need to be considered while extracting chronostratigraphic significance from δ13C data.  相似文献   

20.
The end of the Permian was a time of great death and massive upheaval in the biosphere, atmosphere and hydrosphere. Over the last decades, many causes have been suggested to be responsible for that catastrophe such as global warming, anoxia and acidification. The Gyanyima limestone block was an open ocean seamount in the southern Neotethys at subtropical latitude, and it affords us insight into open-ocean oceanographic changes during the end of the Permian. After careful screening using multiple tests, we reconstructed carbonate/seawater curves from the geochemical data stored in pristine brachiopod shell archives from the shallow water limestone of the Changhsingian Gyanyima Formation of Tibet. The reconstructed strontium isotope curve and data for the late Changhsingian are relatively invariant about 0.707013, but in the upper part of the succession the values become more radiogenic climaxing at about 0.707244. The 87Sr/86Sr curve and trend are similar to those observed for the Upper Permian succession in northern Italy, but dissimilar (less radiogenic) to whole rock results from Austria, Iran, China and Spitsbergen. The Ce/Ce* anomaly results ranging from 0.310 to 0.577 for the brachiopods and from 0.237 to 0.655 for the coeval whole rock before the event, and of 0.276 for whole rock during the extinction event, suggest normal redox conditions. These Ce* values are typical of normal open-ocean oxic water quality conditions observed in modern and other ancient counterparts. The biota and Ce* information clearly discounts global anoxia as a primary cause for the end-Permian biotic crisis. Carbon isotopes from brachiopod shells and whole rock are relatively invariant for most of the latest Permian interval, which is in stark contrast to the distinct negative carbon isotope excursion observed near and about the event. Estimates of seawater temperature at shallow depth fluctuated from 22.2 to 29.0 °C up to unit 8–2, and then gradually rise from 29.7 °C in unit 8–13 to values exceeding 35 °C at a stratigraphic level about 120 ky before the Permian–Triassic boundary, and just before the onset of the extinction interval. This dramatic increase in seawater temperature has been observed in global successions from tropical to mid latitude and from restricted to open ocean localities (e.g., northern Italy, Iran). The brachiopod archive and its geochemical proxies from Tibet support the paradigm that global warming must have been an important factor of the biotic crisis for the terrestrial and marine faunas and floras of the late Paleozoic world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号