首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Hodson mining district is in the westernmost foothills of the Sierra Nevada in California, about 17 km west of the town of Angels Camp. This district is part of the West Gold Belt, which lies about 12–16 km west of, and generally parallel to, the better known Mother Lode Gold Belt in central California. The district produced several million dollars worth of Au between about 1890 and 1940.  相似文献   

2.
A regional soil and sediment geochemical study in northern California   总被引:7,自引:7,他引:0  
Regional-scale variations in soil geochemistry were investigated in a 20,000-km2 study area in northern California that includes the western slope of the Sierra Nevada, the southern Sacramento Valley and the northern Coast Ranges. Over 1300 archival soil samples collected from the late 1970s to 1980 in El Dorado, Placer, Sutter, Sacramento, Yolo and Solano counties were analyzed for 42 elements by inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry following a near-total dissolution. These data were supplemented by analysis of more than 500 stream-sediment samples from higher elevations in the Sierra Nevada from the same study site. The relatively high-density data (1 sample per 15 km2 for much of the study area) allows the delineation of regional geochemical patterns and the identification of processes that produced these patterns. The geochemical results segregate broadly into distinct element groupings whose distribution reflects the interplay of geologic, hydrologic, geomorphic and anthropogenic factors. One such group includes elements associated with mafic and ultramafic rocks including Cr, Ni, V, Co, Cu and Mg. Using Cr as an example, elevated concentrations occur in soils overlying ultramafic rocks in the foothills of the Sierra Nevada (median Cr = 160 mg/kg) as well as in the northern Coast Ranges. Low concentrations of these elements occur in soils located further upslope in the Sierra Nevada overlying Tertiary volcanic, metasedimentary and plutonic rocks (granodiorite and diorite). Eastern Sacramento Valley soil samples, defined as those located east of the Sacramento River, are lower in Cr (median Cr = 84 mg/kg), and are systematically lower in this suite compared to soils from the west side of the Sacramento Valley (median Cr = 130 mg/kg). A second group of elements showing a coherent pattern, including Ca, K, Sr and REE, is derived from relatively silicic rocks types. This group occurs at elevated concentrations in soils overlying volcanic and plutonic rocks at higher elevations in the Sierras (e.g. median La = 28 mg/kg) and the east side of the Sacramento Valley (median 20 mg/kg) compared to soils overlying ultramafic rocks in the Sierra Nevada foothills (median 15 mg/kg) and the western Sacramento Valley (median 14 mg/kg). The segregation of soil geochemistry into distinctive groupings across the Sacramento River arises from the former presence of a natural levee (now replaced by an artificial one) along the banks of the river. This levee has been a barrier to sediment transport. Sediment transport to the Valley by glacial outwash from higher elevations in the Sierra Nevada and, more recently, debris from placer Au mining has dominated sediment transport to the eastern Valley. High content of mafic elements (and low content of silicic elements) in surface soil in the west side of the valley is due to a combination of lack of silicic source rocks, transport of ultramafic rock material from the Coast Ranges, and input of sediment from the late Mesozoic Great Valley Group, which is itself enriched in mafic elements. A third group of elements (Zn, Cd, As and Cu) reflect the impact of mining activity. Soil with elevated content of these elements occurs along the Sacramento River in both levee and adjacent flood basin settings. It is interpreted that transport of sediment down the Sacramento River from massive sulfide mines in the Klamath Mountains to the north has caused this pattern. The Pb, and to some extent Zn, distribution patterns are strongly impacted by anthropogenic inputs. Elevated Pb content is localized in major cites and along major highways due to inputs from leaded gasoline. Zinc has a similar distribution pattern but the source is tire wear.  相似文献   

3.
The magnitude and sources of lead (Pb) pollution in the Gulf of California Ecoregion (GCE) in northwest Mexico were evaluated using various samples collected from urban and rural areas around two typical subtropical coastal ecosystems. Lead concentrations and isotopic compositions (206Pb/207Pb, 208Pb/207Pb, 206Pb/204Pb and 208Pb/204Pb) were measured using high resolution inductively-coupled plasma mass spectrometry (HR-ICP-MS) and thermal ionization mass spectrometry (TIMS). Urban street dust (157 ± 10.1 μg g− 1) was heavily enriched with Pb, compared to the Pb enrichment of agricultural soils (29.0 ± 16.0 μg g− 1) and surface estuary sediments (35.6 ± 15.4 μg g− 1), all of which contained higher Pb concentrations than found in the natural bedrock (16.0 ± 5.0 μg g− 1). Pb concentrations in SPM (> 95% of total Pb) were significantly higher in sewage effluent (132 ± 49.9 μg g− 1) than in agricultural effluents (29.3 ± 5.9 μg g− 1), and river runoff (7.3 ± 4.2 μg g− 1). SPM in estuary water column averaged 68.3 ± 48.0 μg g−1. The isotopic composition of Pb (206Pb/207Pb, 208Pb/207Pb) in rural samples of aerosols (1.181 ± 0.001, 2.444 ± 0.003) and soil runoff (1.181 ± 0.003, 2.441 ± 0.004) was comparable to that of natural Pb-bearing bedrock (1.188 ± 0.005, 2.455 ± 0.008); while urban samples of aerosols, street dust, and sewage (1.190–1.207, 2.452–2.467) showed a significant contribution from automotive emissions from past leaded gasoline combustion (1.201 ± 0.006, 2.475 ± 0.005). The absence of lead from fertilizer (1.387 ± 0.008, 2.892 ± 0.005) suggests that this mixture is not representative of the GCE. A mixing model revealed that the Pb content in the environmental samples is predominantly derived from natural weathering and the past leaded gasoline combustion with the later influence of inputs from a more radiogenic source related with anthropogenic lead of North American origin (1.21 ± 0.02; 2.455 ± 0.02).  相似文献   

4.
The depth-distribution of lead and its stable isotope ratios were determined in a dated sediment core from a Canadian Shield lake receiving anthropogenic Pb inputs exclusively from atmospheric deposition. The results demonstrate that anthropogenic Pb deposited to the sediments of this lake since the preindustrial period can be modeled successfully using as little as two isotopically distinct Pb types. The first, whose flux was not detectable before 1850, reached a maximum value around 1950, and then decreased significantly thereafter; it was characterized by 206Pb/207Pb and 206Pb/208Pb ratios of 1.222 and 0.495, respectively, and was derived mainly from coal combustion. The second, whose flux was not detectable before 1880, increased sharply to exceed that of the Pb type derived from coal combustion around 1930, and reached a maximum in the mid 1970s; it is characterized by 206Pb/207Pb and 206Pb/208Pb ratios of 1.179 and 0.482, respectively, and was derived mainly from leaded gasoline combustion and industrial sources. The chronology of deposition of these two anthropogenic lead types agrees well with the historical records of fossil fuel uses in Canada and the USA, and also with the history of sediment-deposited polycyclic aromatic hydrocarbons (PAHs) originating from coal combustion. The inventory of Pb derived from coal combustion (0.09 μmol cm−2) is ∼30% of that derived mainly, but not exclusively, from leaded gasoline (0.31 μmol cm−2). Apportionment among source regions of lead deposited to the sediments during the period when leaded gasoline dominated Pb atmospheric emissions indicates that ∼50% of this lead originated in the USA.  相似文献   

5.
River waters play a significant role in supplying naturally- and anthropogenically-derived materials to Lake Qinghai, northeastern Tibetan Plateau. To define the sources and controlling processes for river water chemistry within the Lake Qinghai catchment, high precision ICP-MS trace element concentrations were measured in water samples collected from the Buha River weekly in 2007, and from other major rivers in the post-monsoon (late October 2006) and monsoon (late July 2007) seasons. The distributions of trace elements vary in time and space with distinct seasonal patterns. The primary flux in the Buha River is higher TDS and dissolved Al, B, Cr, Li, Mo, Rb, Sr and U during springtime than those during other seasons and is attributed to the inputs derived from both rock weathering and atmospheric processes. Among these elements, the fluxes of dissolved Cr, B and Rb are strongly influenced by eolian dust input. The fluxes of dissolved Li, Mo, Sr and U are also influenced by weathering processes, reflecting the sensitivity of chemical weathering to monsoon conditions. The anthropogenic sources appear to be the dominant contribution to potentially harmful metals (Ni, Cu, Co, Zn and Pb), with high fluxes at onset of the main discharge pulses due, at least partially, to a runoff washout effect. For other major rivers, except for Ba, concentrations of trace elements are higher in the monsoon than in the post-monsoon season. A total of 38.5 ± 3.1 tons of potentially harmful elements are transported into the lake annually, despite human activities within the catchment being limited. Nearly all river water samples contain dissolved trace elements below the World Health Organization guidelines for drinking water, with the exception of As and B in the Daotang River water samples collected in late July probably mobilized from underlying lacustrine sediments.  相似文献   

6.
A soil geochemical survey was conducted in a 27,000-km2 study area of northern California that includes the Sierra Nevada Mountains, the Sacramento Valley, and the northern Coast Range. The results show that soil geochemistry in the Sacramento Valley is controlled primarily by the transport and weathering of parent material from the Coast Range to the west and the Sierra Nevada to the east. Chemically and mineralogically distinctive ultramafic (UM) rocks (e.g. serpentinite) outcrop extensively in the Coast Range and Sierra Nevada. These rocks and the soils derived from them have elevated concentrations of Cr and Ni. Surface soil samples derived from UM rocks of the Sierra Nevada and Coast Range contain 1700–10,000 mg/kg Cr and 1300–3900 mg/kg Ni. Valley soils west of the Sacramento River contain 80–1420 mg/kg Cr and 65–224 mg/kg Ni, reflecting significant contributions from UM sources in the Coast Range. Valley soils on the east side contain 30–370 mg/kg Cr and 16–110 mg/kg Ni. Lower Cr and Ni concentrations on the east side of the valley are the result of greater dilution by granitic sources of the Sierra Nevada.Chromium occurs naturally in the Cr(III) and Cr(VI) oxidation states. Trivalent Cr is a non-toxic micronutrient, but Cr(VI) is a highly soluble toxin and carcinogen. X-ray diffraction and scanning electron microscopy of soils with an UM parent show Cr primarily occurs within chromite and other mixed-composition spinels (Al, Mg, Fe, Cr). Chromite contains Cr(III) and is highly refractory with respect to weathering. Comparison of a 4-acid digestion (HNO3, HCl, HF, HClO4), which only partially dissolves chromite, and total digestion by lithium metaborate (LiBO3) fusion, indicates a lower proportion of chromite-bound Cr in valley soils relative to UM source soils. Groundwater on the west side of the Sacramento Valley has particularly high concentrations of dissolved Cr ranging up to 50 μg L−1 and averaging 16.4 μg L−1. This suggests redistribution of Cr during weathering and oxidation of Cr(III)-bearing minerals. It is concluded that regional-scale transport and weathering of ultramafic-derived constituents have resulted in enrichment of Cr and Ni in the Sacramento Valley and a partial change in the residence of Cr.  相似文献   

7.
A peat core from an ombrotrophic bog documents the isotopic evolution of atmospheric Pb in central Ontario since AD 1804 ± 53 (210Pb dating). Despite the introduction of unleaded gasoline in the mid-1970’s, the ratio 206Pb/207Pb in atmospheric deposition has not increased as expected, but rather continues to decline. In fact, snowpack sampling (2005 and 2009) and rainwater samples (2008) show that the isotopic composition of atmospheric Pb today is often far less radiogenic than the gasoline lead that had been used in Canada in the past. The peat, snow, and rainwater data presented here are consistent with the Pb isotope data for aerosols collected in Dorset in 1984 and 1986 which were traced by Sturges and Barrie (1989) to emissions from the Noranda smelter in northern Quèbec, Canada’s largest single source of atmospheric Pb. Understanding atmospheric Pb deposition in central Ontario, therefore, requires not only consideration of natural sources and past contributions from leaded gasoline, but also emissions from metal smelting and refining.Lead in the streams which enter Kawagama Lake today (206Pb/207Pb = 1.16 − 1.19) represents a mixture between the natural values (1.191 − 1.201 estimated using pre-industrial lake sediments) and the values found in the humus layer of the surrounding forest soils (206Pb/207Pb = 1.15 − 1.19). In the lake itself, however, Pb is much less radiogenic (206Pb/207Pb as low as 1.09) than in the streams, with the dissolved fraction less radiogenic than particulate material. The evolution of Pb isotope ratios within the watershed apparently reflects preferential removal by sedimentation of comparatively dense, radiogenic, terrestrial particles (derived from the mineral fraction of soils) from the humus particles with lower ratios of 206Pb/207Pb (because of atmospheric Pb contamination). Despite the contemporary enrichments of Pb in rain and snow, concentrations of dissolved Pb in the lake are extremely low (sometimes below 10 ng/l), with Pb concentrations and Pb/Sc ratios approaching “natural” values because of efficient binding to particles, and their subsequent removal in the watershed.  相似文献   

8.
The history records of polycyclic aromatic hydrocarbons (PAHs), lead and its stable isotope ratios were determined in a sediment core to receive anthropogenic impacts on the Shilianghe Reservoir in eastern China. The historical changes of PAHs concentrations, PAHs fluxes, Pb/Al and Pb isotope ratios showed a synchronous trend throughout the core, suggesting changes in energy usage and correlating closely with the experience of a rapid economic and industrial development of the catchment, Linyi City in eastern China. PAHs isomer ratios results reveal PAHs in sediments are dominantly anthropogenic pyrogenic source, dominated by the combustion of coal and biomass. Furthermore, the Pb isotopic composition also clearly indicates that coal combustion dust mainly contributed to the Pb burden in the reservoir sediments. Based on mix end member model of Pb isotope ratios, coal combustion dust dominated anthropogenic Pb sources over fifty years contributing from 31% to 62% of total Pb in sediment. And the contribution of leaded gasoline was low than average 25%. In addition, a stable increase of coal combustion source was found in sediment core, while the contribution of leaded gasoline had declined in recent decades, with the phase-out of leaded gasoline in China.  相似文献   

9.
Few data are available on mercury (Hg) dynamics at high-elevation mountain sites. In this project, a whole-watershed approach was used to quantify major fluxes and pools of Hg in Sagehen basin, a closed basin in the Sierra Nevada mountains in California. Over a period spanning 9 months (January-September 2009), we estimated wet deposition inputs to the watershed at 3.8 μg m−2. Dry deposition added additional Hg in the range of 0.30-2.45 μg m−2 during this time period, and was the dominant deposition process during summer time. Seasonal snowpack accounted for only half of the Hg deposited by wet deposition. We suggest that photo-induced reduction of Hg(II) in snow and subsequent volatilization was responsible for this loss. Thus, snowpacks in the Sierra Nevada mountains likely reduce the effective atmospheric mercury flux via wet deposition due to significant emission fluxes prior to snowmelt. As such, wet Hg deposition could be of lesser importance as a Hg source in snow-dominated systems. Finally, stream runoff collected at the outlet of the watershed could account for only 4% of total Hg wet deposition suggesting that a large fraction of mercury deposition was sequestered in the ecosystem, specifically in the soils.  相似文献   

10.
Lago Verde is a fresh-water maar found on the lower slopes of San Martin volcano, at the Sierra de Los Tuxtlas, Mexico, currently the northernmost remnant of the tropical rain forest in America. 210Pb and 137Cs analyzed in a sediment core were used to reconstruct the historical fluxes of Ag, Cd, Cu, Pb, Hg and Zn to the site during the last ∼ 150 yr. The 210Pbxs-derived sediment accumulation rates, the magnetic susceptibility, C/N ratios and δ13C data evidenced background conditions at the lake until 1960s, when enhanced erosion related to the clearing of large forested areas at Los Tuxtlas promoted higher accumulation rates of a heavier and more magnetic sedimentary material. Recent sediments from Lago Verde were found enriched by Pb (26-fold natural concentration level [NCLs]) and moderately enriched by Cd > Cu > Zn and Hg (6-, 5-, 4- and 4-fold corresponding NCLs, respectively). The fluxes of Cu, Hg, Pb and Zn have significantly increased since 1940s, with peak ratios of total modern to pre-industrial fluxes of 11, 11, 19 and 49, respectively. The lake occupies a relatively pristine, non-industrialized basin, and therefore the increased metal fluxes might be related to long-distance aeolian transport of trace metals.  相似文献   

11.
Lignin phenol concentrations and compositions were determined on dissolved organic carbon (DOC) extracts (XAD resins) within the Sacramento-San Joaquin River Delta (the Delta), the tidal freshwater portion of the San Francisco Bay Estuary, located in central California, USA. Fourteen stations were sampled, including the following habitats and land-use types: wetland, riverine, channelized waterway, open water, and island drains. Stations were sampled approximately seasonally from December, 1999 through May, 2001. DOC concentrations ranged from 1.3 mg L−1 within the Sacramento River to 39.9 mg L−1 at the outfall from an island drain (median 3.0 mg L−1), while lignin concentrations ranged from 3.0 μg L−1 within the Sacramento River to 111 μg L−1 at the outfall from an island drain (median 11.6 μg L−1). Both DOC and lignin concentrations varied significantly among habitat/land-use types and among sampling stations. Carbon-normalized lignin yields ranged from 0.07 mg (100 mg OC)−1 at an island drain to 0.84 mg (100 mg OC)−1 for a wetland (median 0.36 mg (100 mg OC)−1), and also varied significantly among habitat/land-use types. A simple mass balance model indicated that the Delta acted as a source of lignin during late autumn through spring (10-83% increase) and a sink for lignin during summer and autumn (13-39% decrease). Endmember mixing models using S:V and C:V signatures of landscape scale features indicated strong temporal variation in sources of DOC export from the Delta, with riverine source signatures responsible for 50% of DOC in summer and winter, wetland signatures responsible for 40% of DOC in summer, winter, and late autumn, and island drains responsible for 40% of exported DOC in late autumn. A significant negative correlation was observed between carbon-normalized lignin yields and DOC bioavailability in two of the 14 sampling stations. This study is, to our knowledge, the first to describe organic vascular plant DOC sources at the level of localized landscape features, and is also the first to indicate a significant negative correlation between lignin and DOC bioavailability within environmental samples. Based upon observed trends: (1) Delta features exhibit significant spatial variability in organic chemical composition, and (2) localized Delta features appear to exert strong controls on terrigenous DOC as it passes through the Delta and is exported into the Pacific Ocean.  相似文献   

12.
There are several suspected sources of lead contamination in the Dominican Republic (DR) to which populations, to a greater or lesser extent, may be exposed. These sources include: a lead battery recycling plant, a gold mine and vehicles using leaded gasoline. In this paper we create and compare indices of spatial vulnerability using different index construction methods including: the weighted average, ordered weighted average, and Data Envelopment Analysis. The vulnerability attributes used to create these indices include: exposure to lead effluents in water from the gold mine as measured by distance from potentially contaminated water, point source lead air emissions from the battery recycling plant estimated by air plume analysis; and mobile source exposure to lead emissions from road transportation measured by potential traffic impacts. The intensities of vulnerability to lead of the towns and cities in the DR, produced by each of the different index construction methods, are compared and evaluated.  相似文献   

13.
The continental shelf benthic iron flux and its isotope composition   总被引:1,自引:0,他引:1  
Benthic iron fluxes from sites along the Oregon-California continental shelf determined using in situ benthic chambers, range from less than 10 μmol m−2 d−1 to values in excess of ∼300 μmol m−2 d−1. These fluxes are generally greater than previously published iron fluxes for continental shelves contiguous with the open ocean (as opposed to marginal seas, bays, or estuaries) with the highest fluxes measured in the regions around the high-sediment discharge Eel River and the Umpqua River. These benthic iron fluxes do not covary with organic carbon oxidation rates in any systematic fashion, but rather seem to respond to variations in bottom water oxygen and benthic oxygen demand. We hypothesize that the highest rates of benthic iron efflux are driven, in part, by the greater availability of reactive iron deposited along these river systems as compared to other more typical continental margin settings. Bioirrigation likely plays an important role in the benthic Fe flux in these systems as well. However, the influence of bottom water oxygen concentrations on the iron flux is significant, and there appears to be a threshold in dissolved oxygen (∼60-80 μM), below which sediment-ocean iron exchange is enhanced. The isotope composition of this shelf-derived benthic iron is enriched in the lighter isotopes, and appears to change by ∼3‰ (δ56Fe) during the course of a benthic chamber experiment with a mean isotope composition of −2.7 ± 1.1‰ (2 SD, n = 9) by the end of the experiment. This average value is slightly heavier than those from two high benthic Fe flux restricted basins from the California Borderland region where δ56Fe is −3.4 ± 0.4‰ (2 SD, n = 3). These light iron isotope compositions support previous ideas, based on sediment porewater analyses, suggesting that sedimentary iron reduction fractionates iron isotopes and produces an isotopically light iron pool that is transferred to the ocean water column. In sum, our data suggest that continental shelves may export a higher efflux of iron than previously hypothesized, with the likelihood that along river-dominated margins, the benthic iron flux could well be orders of magnitude larger than non-river dominated shelves. The close proximity of the continental shelf benthos to the productive surface ocean means that this flux is likely to be essential for maintaining ecosystem micronutrient supply.  相似文献   

14.
Concentrations of total lead as high as 1,600 g/L were detected in gasoline-contaminated and uncontaminated groundwater at three gasoline-release sites in South Carolina. Total lead concentrations were highest in turbid groundwater samples from gasoline-contaminated and uncontaminated wells, whereas lower turbidity groundwater samples (collected using low-flow methods) had lower total lead concentrations. Dissolved lead concentrations in all wells sampled, however, were less than 15 g total lead/L, the current United States Environmental Protection Agency (US EPA) maximum contaminant level (MCL). Because many total lead concentrations exceeded the MCL, the source of lead to the groundwater system at two of the three sites was investigated using a stable lead isotope ratio approach. Plots of the stable isotope ratios of lead (Pb) in groundwater as 207Pb/206Pb versus 208Pb/206Pb, and 208Pb/204Pb versus 206Pb/204Pb were similar to ratios characteristic of lead-based minerals in local rocks of the southeastern US, and were not similar to the stable lead isotopes ratios characteristic of distant lead ore deposits such as Broken Hill, Australia, used to produce tetraethyl lead in gasoline products prior to its phase-out and ban in the United States. Moreover, the isotopic composition of dissolved lead was equivalent to the isotopic composition of total lead in turbid samples collected from the same well, suggesting that the majority of the lead detected in the groundwater samples was associated with sediment particulates of indigenous aquifer material, rather than lead associated with spilled leaded gasoline. The results of this investigation indicate that (1) lead detected at some gasoline-release sites may be derived from the local aquifer material, rather than the gasoline release, and consequently may affect site-specific remediation goals; (2) non-low flow groundwater sampling methods, such as a disposable bailer, may result in turbid groundwater samples and high total lead concentrations, and; (3) stable lead isotopes can be used to clarify the source of lead detected above permissible levels in gasoline-contaminated groundwater systems.  相似文献   

15.
The watershed in the southern Jiangxi Province (Jiangxi Province is called simply Gan) (SGW) and the watershed in the central Guizhou Province (Guizhou Province is called simply Qian) (CQW) are two subtropical watersheds of the Yangtze River in China. Both watersheds have similar latitudes and climate, but distinct differences in basin lithology. These similarities and differences provide a good natural laboratory in which to investigate weathering processes and Sr end-members in river waters. This work aims to identify and contrast the sources, fluxes and controls on Sr isotopic composition in the river waters of these two areas. Results showed that the 87Sr/86Sr in the SGW waters ranged from 0.716501 to 0.724931, with dissolved Sr averaging 27 μg l− 1. Rhyolites and granites are two major sources for the dissolved Sr. The SGW waters receive 42% of their Sr from silicates weathering, 32% from carbonates and 3.2% from evaporites. 87Sr/86Sr in the CQW waters has a lesser variation from 0.707694 to 0.710039, but higher Sr contents (average of 208 μg l− 1). Dolomite, limestone and dolomitic limestone are major sources of Sr in the waters. The CQW waters receive 69% of their Sr from carbonates, 1.7% from silicates and 0.9% from evaporites. The chemical erosion rate and Sr flux in the CQW are 122 t km− 2 a− 1 and 0.079 t km− 2 a− 1, respectively, which are higher than those of the SGW (56 t km− 2 a− 1 and 0.021 t km− 2 a− 1, respectively). These data suggest that the intensive carbonates weathering occurred in the karstic area in the upper-reach of the Yangtze River exert great influence on the high Sr concentration and low Sr isotopic ratios in the River.  相似文献   

16.
About 5400 cal yr BP, a large landslide formed a > 400-m-tall dam in the upper Marsyandi River, central Nepal. The resulting lacustrine and deltaic deposits stretched > 7 km upstream, reaching a thickness of 120 m. 14C dating of 7 wood fragments reveals that the aggradation and subsequent incision occurred remarkably quickly (∼ 500 yr). Reconstructed volumes of lacustrine (∼ 0.16 km3) and deltaic (∼ 0.09 km3) deposits indicate a bedload-to-suspended load ratio of 1:2, considerably higher than the ≤ 1:10 that is commonly assumed. At the downstream end of the landslide dam, the river incised a new channel through ≥ 70 m of Greater Himalayan gneiss, requiring a minimum bedrock incision rate of 13 mm/yr over last 5400 yr. The majority of incision presumably occurred over a fraction of this time, suggesting much higher rates. The high bedload ratio from such an energetic mountain river is a particularly significant addition to our knowledge of sediment flux in orogenic environments.  相似文献   

17.
High-precision Pb isotopic measurements on teeth and possible sources in a given area can provide important insights for the lead (Pb) sources and pathways in the human body. Pb isotopic analyses on soils from the area of Sofia, Bulgaria show that Pb is contributed by three end-members represented by two natural sources and leaded gasoline. Sequential leaching experiments reveal that the alumosilicate fraction of the soils is mainly controlled by natural Pb derived from two mountain massifs bordering the city. Around 1/3 to a half of the Pb in the soil leachates, however, can be explained by contamination from leaded gasoline. Contemporary teeth from Sofia residents show very similar Pb isotopic compositions to the soil leachates, also indicating that around 1/3 to a half of the Pb can be explained by derivation from leaded gasoline. The remarkable isotopic similarities between the teeth and the most labile fractions of the local soils suggest that the lead can be derived from the latter. Pb incorporation in the human body via soil-plant–human or soil–plant–animal–human chains is unlikely due to the fact that no significant farming occurs in the city area. The isotopic compositions of the local soil labile fractions can be used as approximation of the bioaccessible lead for humans. Considering all possible scenarios it appears that soil and/or soil-born dust inhalation and/or ingestion is the most probable pathway for incorporation of local soil lead in the local population. The high-precision Pb isotope data presented in this work indicate that apparently the local soil is what plays major role in the human Pb exposure.  相似文献   

18.
This study presents a detailed discrimination between the natural and anthropogenic sources of dissolved major elements in the Têt River, a typical small coastal river in the south of France. The main objectives were to quantify the materials that were released by human activities in the basin, and to determine the specific element inputs for the major land use forms. The dissolved material fluxes were estimated by weekly monitoring over a hydrological year (2000–2001) along the major water gauging stations, and the flux relationships were examined in the context of anthropogenic and natural basin characteristics as determined by a Geographical Information System (GIS). Intensive agricultural land use in the form of fruit tree cultures and vineyards has a strong control on the dissolved element fluxes in the river. Area specific element releases for these cultures are greatest for SO4, with an estimated average of about 430 ± 18 keq km−2 a−1. This is ?11 times the natural SO4 release by rock weathering. Also for K, NO3, PO4 and Mg, the specific releases were ?6 times the natural weathering rates (respectively about 44, 60, 4 and 265 keq km−2 a−1). Waste-waters are the other major source of anthropogenic elements in the river. They have an important role for the fluxes of inorganic P and N, but they are also a considerable source of Cl and Na to the river. For example, the average annual release of Cl is around 150 moles/inhabitant in the rural basin parts. Further downstream, however, where population density strongly increases, industrial effluents can enhance this value (>300 moles/inhabitant). The waste-waters contribute more than 70% of the dissolved inorganic N export to the sea, although their contribution to the average DOC export is almost negligible (3%).  相似文献   

19.
The impact of natural source emissions on atmospheric mercury concentrations and the biogeochemical cycle of mercury is not known. To begin to assess this impact, mercury emissions to the atmosphere were scaled up for three areas naturally enriched in mercury: the Steamboat Springs geothermal area, Nevada, the New Idria mercury mining district, California, and the Medicine Lake volcano, California. Data used to scale up area emissions included mercury fluxes, measured in-situ using field flux chambers, from undisturbed and disturbed geologic substrates, and relationships between mercury emissions and geologic rock types, soil mercury concentrations, and surface heat flux. At select locations mercury fluxes were measured for 24 h and the data were used to adjust fluxes measured at different times of the day to give an average daily flux. This adjustment minimized daily temporal variability, which is observed for mercury flux because of light and temperature effects. Area emissions were scaled spatially and temporally with GIS software. Measured fluxes ranged from 0.3 to approximately 50 ng m-2 h-1 at undisturbed sites devoid of mercury mineralization, and to greater than 10,000 ng m-2 h-1 from substrates that were in areas of mercury mining. Area-averaged fluxes calculated for bare soil at Steamboat Springs, New Idria, and Medicine Lake of 181, 9.2, and 2 ng m-2 h-1, respectively, are greater than fluxes previously ascribed to natural non-point sources, indicating that these sources may be more significant contributors of mercury to the atmosphere than previously realized.  相似文献   

20.
Numerous studies of weathering fluxes have been carried out on major world rivers during the last decade, to estimate CO2 consumption rates, landscape evolution and global erosion rates. For obvious logistical reasons, most of these studies were based on large scale investigations carried out on short timescales. By comparison, much less effort has been devoted to long term monitoring, as a means to verify the temporal variability of the average characteristics, their trends, and the representativeness of short-term investigations. Here we report the results of a three-year survey (November 2000 to December 2003) of the major and trace element composition of dissolved and suspended matter in the lower Rhone River (France), the largest river of the Mediterranean area. Subsurface water samples were collected in Arles, about 48 km upstream of the estuary, twice a month routinely, and at higher frequency during flood events.During each flood event, the suspended particulate matter (SPM) show the usual trend of clockwise hysteresis with higher SPM concentrations on the rising limb of the flood than at the same discharge on the falling limb. We show that the annual average SPM flux of the Rhone River to the Mediterranean Sea (7.3 ± 0.6 × 106 tons yr−1) was largely controlled by the flood events (83% of the solid discharge occurred in less than 12% of the time), and that the precision on the total output flux depends strongly on the precise monitoring of SPM variations during the floods.The chemical composition of water and SPM are characterized by the predominance of Ca2+ due to the abundance of carbonate rocks in the Rhone watershed. Chemical budgets have been calculated to derive the contributions of atmospheric deposition, carbonate, silicate and evaporite weathering, and anthropogenic inputs. The chemical weathering rate of carbonates is estimated to be 89 ± 5 t km−2 yr−1 compared to 14.4 ± 3 t km−2 yr−1 from silicates. By contrast, the physical erosion rate of silicates is about 51 t km−2 yr−1 against 19 t km−2 yr−1 for carbonates.The steady-state model of Gaillardet et al. (1995) has been applied to the chemical composition of dissolved and solid products. The results show that the Rhone River currently exports much less material than produced at steady-state by weathering in its watershed. The sediment flux inferred from the steady-state calculation (21-56 × 106 t yr−1) is on the same order as that estimated in literature for the 19th and the beginning of the 20th centuries. This imbalance may suggest that the Rhone is under a transient erosion regime following climate change (i.e. significant decrease of the flooding frequency since the beginning of the 19th century). On the other hand, the imbalance may also be due to the trapping of alluvion by the numerous dams on the river and its tributaries.Our data corroborate with previous studies that suggest a strong coupling between chemical and physical erosion fluxes, during the hydrological seasonal cycle of the Rhone River. The correlation between physical and chemical transport rates is, however, clearly different from that reported for global annual averages in large world rivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号