where k is a constant equal to 6.5 × 10−16 mol/cm2/s and Ω is the saturation index with respect to magnesite. This equation is consistent with spiral growth step generation controlling magnesite precipitation rates. Corresponding magnesite precipitation rates measured using mixed-flow reactors are shown to be consistent with both the rates measured by HAFM and the spiral growth theory, confirming the rate limiting mechanism. Step advancement, however, is observed to slow far faster than step generation with decreasing temperature; the activation energy for step advancement is 159 kJ/mol whereas step generation rates have an estimated activation energy of 60 kJ/mol. As such, it seems likely that at ambient temperatures magnesite growth is limited by very slow step advancement rates.  相似文献   

4.
Flotation of galena. Influence of grain size,of pulp deoxygenation,and of cleaning with ammonium acetate     
Claudio Gutiérrez  Faustino Martin-Poveda 《International Journal of Mineral Processing》1981,8(2):111-123
The flotation of < 10, 10–20, and 20–40 μm galena fractions was studied. For uncleaned galena a given collector coverage produced better floatability with increasing grain size. Nitrogen had a detrimental effect only for the < 10 μm fraction, producing at a given collector coverage a recovery smaller than that obtained with air.Galena cleaned with 400 g/l ammonium acetate had very poor floatability, although xanthate abstraction was fairly high; this confirms that strong xanthate adsorption is necessary for flotation. Formation of monothiocarbonate was small in all cases, which points to a very minor influence, if any, of this compound in the flotation process.In blank flotation tests, or for very low residual xanthate concentrations, a peak at 208 nm and a shoulder at 255 nm were observed. The former was assigned to the uncomplexed Pb2+ ion, and the latter was tentatively attributed to the PbOH+ ion.Lead in solution results from dissolution of the oxidation products of galena, as galena itself has an exceedingly low solubility. The curve for total lead in solution vs. initial xanthate concentration, had a minimum for an initial xanthate concentration of 10?5M, the further increase in dissolved lead is attributed to formation of complexes such as PbX+ (X = xanthate). Dissolved lead concentrations were nearly as high for cleaned as for uncleaned galena, which indicates a high oxidation rate of the mineral.  相似文献   

5.
The fractal shape of sutured quartz grain boundaries: application as a geothermometer   总被引:6,自引:0,他引:6  
J. H. Kruhl  M. Nega 《International Journal of Earth Sciences》1996,85(1):38-43
Along grain boundaries of quartz from metamorphic and igneous rocks complex interfingering (sutures) may occur. Under the light microscope the lengths of the sutures range from approximately 10–1000 m. The sutured grain boundaries are statistically self-similar over one to two orders of magnitude. They represent fractals. Their mathematical counterpart are Koch curves which are developed after two to four iterations. The fractal (Hausdorff-Besicovitch) dimensions D of sutured quartz grain boundaries from different grades of metamorphism are between ca. 1.05 and 1.30. The D-value decreases with increasing temperature during formation of the sutures. On a statistical basis, D can be used as a measure of this temperature and, therefore, as a deformation-related thermometer.  相似文献   

6.
A test of geochemical reactivity as a function of mineral size: Manganese oxidation promoted by hematite nanoparticles     
《Geochimica et cosmochimica acta》2005,69(2):389-398
Mn2+(aq) oxidation as promoted by hematite in the presence of molecular oxygen has been studied as a function of hematite particle size. This system is a good candidate to serve as a test of the change of particle reactivity as a function of size due not only to its importance in Earth/environmental processes, but also because it involves electronic coupling between the hematite and adsorbed manganese. The properties of nanoscale hematite, including size quantization of the electronic structure and the relative proportions of terrace vs. edge/kink sites, are expected to change significantly with the particle size in this size range. Experimental results from this study suggest that the heterogeneous manganese oxidation rate is approximately one to one and a half orders of magnitude greater on hematite particles with an average diameter of 7.3 nm than with those having an average diameter of 37 nm, even when normalized to the surface areas of the particles. The acceleration of electron transfer rate for the reactions promoted by the smallest particles is rationalized in the framework of electron transfer theory. According to this theory, for a reaction such as heterogeneous Mn oxidation, the rate depends on three factors: the electronic coupling between initial and final electronic states, the substantial reorganization energy for solvent and coordinated ligands between initial and final states, and the free energy of reaction (corrected for work required to bring reactants together). The adsorbed Mn is electronically coupled with the solid during the electron transfer, and changes in the electronic structure of the solid would be expected to influence the rate. The Lewis base character of surface oxygen atoms increases as the electronic structure becomes quantized, which should allow increased coupling with adsorbed Mn. Finally, as demonstrated previously by in situ AFM observations, the reaction proceeds most readily at topographic features that distort the octahedral Mn2+ coordination environment. This has the effect of lowering the reorganization energy, which effectively controls the magnitude of the transition state barrier. Previous studies of <10 nm diameter hematite nanoparticles have demonstrated a decrease of symmetry in the average coordination environment of surface atoms, supporting the idea that smaller sizes should correspond to a decrease in reorganization energy.  相似文献   

7.
Quantification of mineral dissolution rates and applicability of rate laws: Laboratory studies of mill tailings     
《Applied Geochemistry》2006,21(2):269-288
Reliable quantification of mineral weathering rates is a key to assess many environmental problems. In this study, the authors address the applicability of pure mineral laboratory rate laws for dissolution of mill tailings samples. Mass-normalised sulfide and aluminosilicate mineral dissolution rates, determined in oxygenated batch experiments, were found to be different between two samples from the same ∼50-year-old, carbonate-depleted mill tailings deposit. Consideration of difference in particle surface area and mineralogy between the samples resolved most of this discrepancy in rates. While the mineral surface area normalised dissolution rates of pyrite in a freshly crushed pure pyrite specimen and a sulfide concentrate derived from the tailings were within the range of abiotic literature rates of oxidation by dissolved molecular O2, as were rates of sphalerite and chalcopyrite dissolution in the tailings, dissolution rates of pyrite and aluminosilicates in the tailings generally differed from literature values. This discrepancy, obtained using a consistent experimental method and scale, is suggested to be related to difficulties in quantifying individual mineral reactive surface area in a mixture of minerals of greatly varying particle size, possibly due to factors such as dependence of surface area-normalised mineral dissolution rates on particle size and time, or to non-proportionality between rates and BET surface area.  相似文献   

8.
The importance of grain size and shape in controlling the dispersion of the Vedde cryptotephra     
Jennifer Saxby  Alison Rust  Katharine Cashman  Frances Beckett 《第四纪科学杂志》2020,35(1-2):175-185
Volcanic ash is dispersed in the atmosphere according to meteorology and particle properties, including size and shape. However, the multiple definitions of size and shape for non-spherical particles affect our ability to use physical particle properties to understand tephra transport. Moreover, although particles are often excluded from operational ash dispersion model setups, ash in tephra deposits 1000 km from source can exceed . Here we measure the shape and size of samples of Vedde ash from Iceland, an exceptionally widespread tephra layer in Europe, collected in Iceland and Norway. Using X-ray computed tomography and optical microscopy, we show that distal ash is more anisotropic than proximate ash, suggesting that shape exerts an important control on tephra dispersion. Shape also impacts particle size measurements. Particle long axis, a parameter often reported by tephrochronologists, is on average greater than geometric size, used by dispersion modellers. By using geometric size and quantifying shape, we can explain the transport of Vedde ash particles more than 1200 km from source. We define a set of best practices for measuring the size and shape of cryptotephra shards and discuss the benefits and limitations of using physical particle properties to understand cryptotephra transport.  相似文献   

9.
Shear wave velocity as function of cone penetration resistance and grain size for Holocene-age uncemented soils: a new perspective     
Mourad Karray  Mahmoud N. Hussien 《Acta Geotechnica》2017,12(5):1129-1158
For feasibility studies and preliminary design estimates, field measurements of shear wave velocity, V s, may not be economically adequate and empirical correlations between V s and more available penetration measurements such as cone penetration test, CPT, data turn out to be potentially valuable at least for initial evaluation of the small-strain stiffness of soils. These types of correlations between geophysical (Vs) and geotechnical (N-SPT, q c-CPT) measurements are also of utmost importance where a great precision in the calculation of the deposit response is required such as in liquefaction evaluation or earthquake ground response analyses. In this study, the stress-normalized shear wave velocity V s1 (in m/s) is defined as statistical functions of the normalized dimensionless resistance, Q tn-CPT, and the mean effective diameter, D 50 (in mm), using a data set of different uncemented soils of Holocene age accumulated at various sites in North America, Europe, and Asia. The V s1Q tn data exhibit different trends with respect to grain sizes. For soils with mean grain size (D 50) < 0.2 mm, the V s1/Q tn 0.25 ratio undergoes a significant reduction with the increase in D 50 of the soil. This trend is completely reversed with further increase in D 50 (D 50 > 0.2 mm). These results corroborate earlier results that stressed the use of different CPT-based correlations with different soil types, and those emphasized the need to impose particle-size limits on the validity of the majority of available correlations.  相似文献   

10.
The mineral dissolution rate conundrum: Insights from reactive transport modeling of U isotopes and pore fluid chemistry in marine sediments   总被引:1,自引:0,他引:1  
Kate Maher  Carl I. Steefel  Brian E. Viani 《Geochimica et cosmochimica acta》2006,70(2):337-363
Pore water chemistry and 234U/238U activity ratios from fine-grained sediment cored by the Ocean Drilling Project at Site 984 in the North Atlantic were used as constraints in modeling in situ rates of plagioclase dissolution with the multicomponent reactive transport code Crunch. The reactive transport model includes a solid-solution formulation to enable the use of the 234U/238U activity ratios in the solid and fluid as a tracer of mineral dissolution. The isotopic profiles are combined with profiles of the major element chemistry (especially alkalinity and calcium) to determine whether the apparent discrepancy between laboratory and field dissolution rates still exists when a mechanistic reactive transport model is used to interpret rates in a natural system. A suite of reactions, including sulfate reduction and methane production, anaerobic methane oxidation, CaCO3 precipitation, dissolution of plagioclase, and precipitation of secondary clay minerals, along with diffusive transport and fluid and solid burial, control the pore fluid chemistry in Site 984 sediments. The surface area of plagioclase in intimate contact with the pore fluid is estimated to be 6.9 m2/g based on both grain geometry and on the depletion of 234U/238U in the sediment via α-recoil loss. Various rate laws for plagioclase dissolution are considered in the modeling, including those based on (1) a linear transition state theory (TST) model, (2) a nonlinear dependence on the undersaturation of the pore water with respect to plagioclase, and (3) the effect of inhibition by dissolved aluminum. The major element and isotopic methods predict similar dissolution rate constants if additional lowering of the pore water 234U/238U activity ratio is attributed to isotopic exchange via recrystallization of marine calcite, which makes up about 10-20% of the Site 984 sediment. The calculated dissolution rate for plagioclase corresponds to a rate constant that is about 102 to 105 times smaller than the laboratory-measured value, with the value depending primarily on the deviation from equilibrium. The reactive transport simulations demonstrate that the degree of undersaturation of the pore fluid with respect to plagioclase depends strongly on the rate of authigenic clay precipitation and the solubility of the clay minerals. The observed discrepancy is greatest for the linear TST model (105), less substantial with the Al-inhibition formulation (103), and decreases further if the clay minerals precipitate more slowly or as highly soluble precursor minerals (102). However, even several orders of magnitude variation in either the clay solubility or clay precipitation rates cannot completely account for the entire discrepancy while still matching pore water aluminum and silica data, indicating that the mineral dissolution rate conundrum must be attributed in large part to the gradual loss of reactive sites on silicate surfaces with time. The results imply that methods of mineral surface characterization that provide direct measurements of the bulk surface reactivity are necessary to accurately predict natural dissolution rates.  相似文献   

11.
The dissolution rates of natural glasses as a function of their composition at pH 4 and 10.6, and temperatures from 25 to 74°C     
Domenik Wolff-Boenisch  Sigurdur R. Gislason  Christine V. Putnis 《Geochimica et cosmochimica acta》2004,68(23):4843-4858
Far-from-equilibrium dissolution rates of a suite of volcanic glasses that range from basaltic to rhyolitic in composition were measured in mixed flow reactors at pH 4 and 10.6, and temperatures from 25 to 74°C. Experiments performed on glasses of similar composition suggest that dissolution rates are more closely proportional to geometric surface areas than their BET surface areas. Measured geometric surface area normalized dissolution rates (r+,geo) at 25°C were found to vary exponentially with the silica content of the glasses. For pH 4 solutions this relation is given by:
(A1)  相似文献   

12.
This paper describes the detrital mineralogy, early diagenetic reactions and authigenic mineral precipitates for freshwater contaminated sediments deposited in an urban water body (the Salford Quays of the Manchester Ship Canal, Greater Manchester, UK). These sediments contain a mix of natural and anthropogenic detrital grains. Detrital grains are dominated by quartz and clay grains, whilst anthropogenic grains are dominated by metal-rich glass grains, concentrated at a depth of 12–17 cm in the sediment as a result of historical inputs. Sediment porewaters contain significant concentrations of Fe, Mn, Zn and phosphate. Bacterial Fe(III) and Mn(IV) reduction are hypothesised to supply Fe2+ and Mn2+ to porewaters, with phosphate released from Fe oxide reduction or organic matter oxidation. Petrographic observations indicate that the metal-rich glass grains are undergoing chemical dissolution during early diagenesis, supplying Fe and Zn to porewaters.  相似文献   

13.
14.
Grain size trends have been applied in many diverse sedimentary environments to determine sediment transport paths, generally coinciding with information from tracer studies, current measurements and the orientation of sedimentary structures. The different methods proposed to date are critically analysed and compared with reference to recent field studies. It is concluded that the two-dimensional methods produce comparable results and may in fact complement each other.In spite of the advances, several problems still exist, which include the sampling method and density, the choice of trend types, the relative weight of grain size parameters and the interpretation of results. These are discussed together with possible solutions.  相似文献   

15.
Steady-state talc dissolution rates, at far-from-equilibrium conditions, were measured as a function of aqueous silica and magnesium activity, pH from 1 to 10.6, and temperature from 25 to 150 °C. All rates were measured in mixed flow reactors and exhibited stoichiometric or close to stoichiometric dissolution. All measured rates at pH > 2 obtained at a fixed ionic strength of 0.02 M can be described to within experimental uncertainty using
  相似文献   

16.
Sediment provenance studies commonly utilize isotopic signatures to resolve detrital mineral sources and routing. However, non-unique ages and geochemical characteristics across geographically distinct crystalline source regions can lead to significant ambiguities in mineral provenance interpretations. Such ambiguity is apparent in southern Australia’s Cenozoic Eucla Basin, which hosts world-class heavy mineral sand resources. Here, new Hf isotope data are provided from four heavy mineral prospects (N = 8, n = 844 [N = samples, n = grains]). Zircon grain shape data are also presented for a suite of detrital Eucla Basin samples (N = 22, n = 35,604) and the basin’s underlying basement, the Coompana Province (N = 13, n = 824). The data are integrated with published detrital and non-detrital primary zircon data to investigate the efficacy of grain shape analysis to better resolve the basin’s mineral provenance. Zircon Hf isotope compositions indicate a primary Mesoproterozoic juvenile source for zircon melts (~1250–1000 Ma, ?2.5 < ?Hf > ~+5) with additional contributions from a range of juvenile to evolved late Archean to Phanerozoic-aged zircon bearing magmas (?28.0 < ?Hf > +11). U–Pb geochronology and Hf isotopes are incapable of differentiating Mesoproterozoic-aged source rocks bounding the region for the majority of heavy mineral deposits analyzed as potential sources express overlapping crystallization ages and similarities in Hf-isotope characteristics. However, distinct zircon grain shapes (i.e., perimeter, major axis and circularity) facilitate improved differentiation across these Mesoproterozoic sources. Filtering of U–Pb age, Hf isotope and shape data implicate the underlying Madura and Coompana provinces as dominant sediment sources for Eucla Basin detritus aged ~1400–1000 Ma. The lack of direct sediment pathways between the underlying basement provinces and placer sediments analyzed demonstrates the significance of zircon reworking from intermediate sedimentary basins in the formation of the economically significant Eucla Basin beach placers. Zircon grain shape represents a cheaply acquired and readily incorporated grain characteristic that can enhance provenance investigations.  相似文献   

17.
The present study compares the dissolution rates of plagioclase, microcline and biotite/chlorite from a bulk granite to the dissolution rates of the same minerals in mineral-rich fractions that were separated from the granite sample. The dissolution rate of plagioclase is enhanced with time as a result of exposure of its surface sites due to the removal of an iron oxide coating. Removal of the iron coating was slower in the experiment with the bulk granite than in the mineral-rich fractions due to a higher Fe concentration from biotite dissolution. As a result, the increase in plagioclase dissolution rate was initially slower in the experiment with the bulk granite. The measured steady state dissolution rates of both plagioclase (6.2 ± 1.2 × 10−11 mol g−1 s−1) and microcline (1.6 ± 0.3 × 10−11 mol g−1 s−1) were the same in experiments conducted with the plagioclase-rich fraction, the alkali feldspar-rich fraction and the bulk granite.Based on the observed release rates of the major elements, we suggest that the biotite/chlorite-rich fraction dissolved non-congruently under near-equilibrium conditions. In contrast, the biotite and chlorite within the bulk granite sample dissolved congruently under far from equilibrium conditions. These differences result from variations in the degree of saturation of the solutions with respect to both the dissolving biotite/chlorite and to nontronite, which probably was precipitating during dissolution of the biotite and chlorite-rich fraction. Following drying of the bulk granite, the dissolution rate of biotite was significantly enhanced, whereas the dissolution rate of plagioclase decreased.The presence of coatings, wetting and drying cycles and near equilibrium conditions all significantly affect mineral dissolution rates in the field in comparison to the dissolution rate of fully wetted clean minerals under far from equilibrium laboratory conditions. To bridge the gap between the field and the laboratory mineral dissolution rates, these effects on dissolution rate should be further studied.  相似文献   

18.
An extensive investigation based on the redox potential and grain size distributions was made on the sediment of a Venice Lagoon mud flat subjected to excessive growth of macroalgae. Redox potential and grain size measurements are proved useful tracers for, respectively, oxygen bearing and consuming processes in the water-sediment column and hydrodynamical behavior inside the mud flat. Depth measurements and a considerable number of sites with respect to the size of the area studied are needed to obtain an outline of the behavior of the water body in response to stress conditions caused by human activities. With respect to the top 15-cm-thick sediment layer where EH variations occur, the mud flat is subdivisible into sectors with different characteristics. Positive or near-zero EH values were recorded in zones characterized by sparse macroalgae growth and a high content of coarse sediments (diameter 44 µm). On the contrary, very negative EH values were found in zones affected by overabundant macroalgae bloom and with a higher presence of fine-grained sediment (diameter 44 µm). The clear relationships between algae presence in the mud flat and both the redox potential and grain size characteristics of the sediment emphasize the hydrodynamics as a critical factor determining the variations of the environmental conditions in the ecosystem.  相似文献   

19.
Nie  Jia-Yan  Zhao  Jidong  Cui  Yi-Fei  Li  Dian-Qing 《Acta Geotechnica》2022,17(7):2783-2798
Acta Geotechnica - The multi-scale characteristics of particle morphology, including the overall form, local roundness and surface roughness, affect the critical state behavior of sands and should...  相似文献   

20.
This study explores garnet coronas around hedenbergite, which were formed by the reaction plagioclase + hedenbergite→garnet + quartz, to derive information about diffusion paths that allowed for material redistribution during reaction progress. Whereas quartz forms disconnected single grains along the garnet/hedenbergite boundaries, garnet forms ~20‐μm‐wide continuous polycrystalline rims along former plagioclase/hedenbergite phase boundaries. Individual garnet crystals are separated by low‐angle grain boundaries, which commonly form a direct link between the reaction interfaces of the plagioclase|garnet|hedenbergite succession. Compositional variations in garnet involve: (i) an overall asymmetric compositional zoning in Ca, Fe2+, Fe3+ and Al across the garnet layer; and (ii) micron‐scale compositional variations in the near‐grain boundary regions and along plagioclase/garnet phase boundaries. These compositional variations formed during garnet rim growth. Thereby, transfer of the chemical components occurred by a combination of fast‐path diffusion along grain boundaries within the garnet rim, slow diffusion through the interior of the garnet grains, and by fast diffusion along the garnet/plagioclase and the garnet/hedenbergite phase boundaries. Numerical simulation indicates that diffusion of Ca, Al and Fe2+ occurred about three to four, four and six to seven orders of magnitude faster along the grain boundaries than through the interior of the garnet grains. Fast‐path diffusion along grain boundaries contributed substantially to the bulk material transfer across the growing garnet rim. Despite the contribution of fast‐path diffusion, bulk diffusion through the garnet rim was too slow to allow for chemical equilibration of the phases involved in garnet rim formation even on a micrometre scale. Based on published garnet volume diffusion data the growth interval of a 20‐μm‐wide garnet rim is estimated at ~103–104 years at the inferred reaction conditions of 760 ± 50 °C at 7.6 kbar. Using the same parameterization of the growth law, 100‐μm‐ and 1‐mm‐thick garnet rims would grow within 105–106 and 106–107 years respectively.  相似文献   

  首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Magnesite growth rates and step velocities have been measured systematically as a function of temperature from 80 to 105 °C and saturation state in 0.1 M NaCl solutions using hydrothermal atomic force microscopy (HAFM). The observations indicate that at these conditions magnesite precipitation is dominated by the coupling of step generation via spiral growth at screw dislocations and step advancement away from these dislocations. As these two processes occur in series the slowest of these dominates precipitation rates. At 100 °C magnesite growth rates (r) determined by HAFM are consistent with
r=k(Ω-1)2,
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号