首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The Mg/Ca ratio of seawater has varied significantly throughout the Phanerozoic Eon, primarily as a function of the rate of ocean crust production. Specimens of the crustose coralline alga Neogoniolithon sp. were grown in artificial seawaters encompassing the range of Mg/Ca ratios shown to have existed throughout the Phanerozoic. Significantly, the coralline algae’s skeletal Mg/Ca ratio varied in lockstep with the Mg/Ca ratio of the artificial seawater. Specimens grown in seawater treatments formulated with identical Mg/Ca ratios but differing absolute concentrations of Mg and Ca exhibited no significant differences in skeletal Mg/Ca ratios, thereby emphasizing the importance of the ambient Mg/Ca ratio, and not the absolute concentration of Mg, in determining the Mg/Ca ratio of coralline algal calcite. Specimens grown in seawater of the lowest molar Mg/Ca ratio (mMg/Ca = 1.0) actually changed their skeletal mineralogy from high-Mg (skeletal mMg/Ca > 0.04) to low-Mg calcite (skeletal mMg/Ca < 0.04), suggesting that ancient calcitic red algae, which exhibit morphologies and modes of calcification comparable to Neogoniolithon sp., would have produced low-Mg calcite from the middle Cambrian to middle Mississippian and during the middle to Late Cretaceous, when oceanic mMg/Ca approached unity. By influencing the original Mg content of carbonate facies in which these algae have been ubiquitous, this condition has significant implications for the geochemistry and diagenesis of algal limestones throughout most of the Phanerozoic. The crustose coralline algae’s precipitation of high-Mg calcite from seawater that favors the abiotic precipitation of aragonite indicates that these algae dictate the precipitation of the calcitic polymorph of CaCO3. However, the algae’s nearly abiotic pattern of Mg fractionation in their skeletal calcite suggests that their biomineralogical control is limited to polymorph specification and is generally ineffectual in the regulation of skeletal Mg incorporation. Therefore, the Mg/Ca ratio of well-preserved fossils of crustose coralline algae, when corrected for the effect of seawater temperature, may be an archive of oceanic Mg/Ca throughout the Phanerozoic. Magnesium fractionation algorithms that model algal skeletal Mg/Ca as a function of seawater Mg/Ca and temperature are presented herein. The results of this study support the empirical fossil evidence that secular variation of oceanic Mg/Ca has caused the mineralogy and skeletal chemistry of many calcifying marine organisms to change significantly over geologic time.  相似文献   

2.
The onset of pelagic sedimentation attending the radiation of pelagic calcifiers during the Mesozoic was an important divide in Earth history, shifting the locus of significant carbonate sedimentation from the shallow shelf environments of the Paleozoic to the deep sea. This shift would have impacted the CO2 cycle, given that decarbonation of subducted pelagic carbonate is an important return flux of CO2 to the atmosphere. Coupled with the fact that the mean residence time of continental platform and basin sedimentary carbonate exceeds that of the oceanic crust, it thus becomes unclear whether carbon cycling would have operated on a substantially different footing prior to the pelagic transition. Here, we examine this uncertainty with sensitivity analyses of the timing of this transition using a coupled model of the Phanerozoic atmosphere, ocean, and shallow lithosphere. For purposes of comparison, we establish an age of 250 Ma (i.e., after the Permo-Triassic extinctions) as the earliest opportunity for deposition of extensive biogenic pelagic carbonate on the deep seafloor, an age that predates known occurrences of pelagic calcifiers (and intact seafloor). Although an approximate boundary, we do show that attempts to shift this datum either significantly earlier or later in time produce model results that are inconsistent with observed trends in the mass–age distribution of the rock record and with accepted trends in seawater composition as constrained by proxy data. Significantly, we also conclude that regardless of the timing of the onset of biogenic pelagic carbonate sedimentation, a carbon sink involving seawater-derived dissolved inorganic carbon played a critical role in carbon cycling, particularly in the Paleozoic. This CaCO3 sink may have been wholly abiogenic, involving calcium derived either directly from seawater (thus manifest as a direct seafloor deposit), or alternatively from basalt–seawater reactions (represented by precipitation of CaCO3 in veins and fissures within the basalt). Despite the uncertainty in the source and magnitude of this abiogenic CaCO3 flux, it is likely a basic and permanent feature of global carbon cycling. Subduction of this CaCO3 would have acted as a basic return circuit for atmospheric CO2 even in the absence of biogenically derived pelagic carbonate sedimentation. Lastly, model calculations of the ratio of dissolved calcium to carbonate ion (Ca2+/CO3 2?) show this quantity underwent significant secular evolution over the Phanerozoic. As there is increasing recognition of this ratio’s role in CaCO3 growth and dissolution reactions, this evolution, together with progressive increases in nutrient availability and saturation state, may have created a tipping point ultimately conducive to the appearance of pelagic calcifiers in the Mesozoic.  相似文献   

3.
The Mesoproterozoic Tieling Formation, near Jixian, northern China, contains thick beds of vertically branched, laterally elongate, columnar stromatolites. Carbonate mud is the primary component of both the stromatolites and their intervening matrix. Mud abundance is attributed to water column ‘whiting’ precipitation stimulated by cyanobacterial photosynthesis. Neomorphic microspar gives the stromatolites a ‘streaky’ microfabric and small mud flakes are common in the matrix. The columns consist of low‐relief, mainly non‐enveloping, laminae that show erosive truncation and well‐defined repetitive lamination. In plan view, the columns form disjunct elongate ridges <10 cm wide separated by narrow matrix‐filled runnels. The stromatolite surfaces were initially cohesive, rather than rigid, and prone to scour, and are interpreted as current aligned microbial mats that trapped carbonate mud. The pervasive ridge–runnel system suggests scale‐dependent biophysical feedback between: (i) carbonate mud supply; (ii) current duration, strength and direction; and (iii) growth and trapping by prolific mat growth. Together, these factors determined the size, morphology and arrangement of the stromatolite columns and their laminae, as well as their branching patterns, alignment and ridge–runnel spacing. Ridge–runnel surfaces resemble ripple mark patterns, but whether currents were parallel and/or normal to stromatolite alignment remains unclear. The formation and preservation of Tieling columns required plentiful supply of carbonate mud, mat‐building microbes well‐adapted to cope with this abundant sediment, and absence of both significant early lithification and bioturbation. These factors were time limited, and Tieling stromatolites closely resemble coeval examples in the Belt‐Purcell Supergroup of Laurentia. The dynamic interactions between mat growth, currents and sediment supply that determined the shape of Tieling columns contributed to the morphotypical diversity that characterizes mid–late Proterozoic branched stromatolites.  相似文献   

4.
Calcium carbonate (CaCO3) is an important component of the near-surface environment. Understanding the nature of its precipitation is important for a variety of environmental processes, as well as for the geologic sequestration of anthropogenic carbon dioxide. Calcite is the most thermodynamically stable bulk polymorph, but energy crossovers may exist that could favor the precipitation of vaterite or aragonite with decreasing particle size. The purpose of this study is to determine the surface energy of calcite, which is the first step towards understanding the effect of particle size on thermodynamic stability in the calcium carbonate system. The enthalpies of five well-characterized calcite samples (four nanophase and one bulk) were measured by acid solution isothermal and water adsorption calorimetric techniques. From the calorimetric data, the surface energies of calcite were determined to be 1.48 ± 0.21 and 1.87 ± 0.16 J/m2 for hydrous and anhydrous surfaces. These values are similar to those measured for many oxides but larger than predicted from computational models for idealized calcite surfaces. The surfaces of synthetic CaCO3 particles contain a range of planes and defect structures, which may give rise to the difference between the experimental and modeled values.  相似文献   

5.
Nanostructure, composition and mechanisms of bivalve shell growth   总被引:3,自引:0,他引:3  
Freshwater and marine cultured pearls form via identical processes to the shells of bivalves and can therefore serve as models for the biomineralization of bivalve shells in general. Their nanostructure consists of membrane-coated granules (vesicles) which contain amorphous calcium carbonate (ACC) at the beginning of the biomineralization sequence, preceding the crystallization of aragonite and vaterite. In contrast to the commonly accepted view, crystallization of ACC occurs rapidly and within the granular nano-compartments mediated by organic molecules much earlier than platelet formation. The interlamellar organic sheets in nacre that form the platelet structure of nacre themselves form by self-organization after the crystallization process of CaCO3 is completed and, thus, cannot serve as a nucleation template for aragonite. Pores in the organic sheets are postulated to be a result of this process rather than to represent the pathways for CaCO3 through pre-existing interlamellar sheets. The amorphous phase has the highest concentrations of Mg (5.8 mol%), Mn (6.6 mol%), S (4.7 mol%) and P (1 mol%) of the three CaCO3-polymorphs. Mg/Ca and Mn/Ca ratios are found to decrease in the order ACC > vaterite > aragonite, corresponding to decreasing organic content in the different phases. This, as well as an observed enrichment of Mg in the organic-rich growth-banding of the pearls, suggests an at least partially organic speciation of Mg and Mn in bivalves and may be responsible for the observed physiological influence on Mg/Ca and Mn/Ca ratios in bivalves as a proxy for environmental parameters.  相似文献   

6.
Fossil stromatolites may reveal information about their hydrochemical palaeoenvironment, provided that assignment to a specific microbial community and a corresponding biogeochemical mechanism of formation can be made. Tithonian stromatolites of the Münder Formation at Thüste, north Germany, have traditionally been considered as formed by intertidal cyanobacterial communities. However, thin sections of the stromatolites show elongated angular traces of former gypsum crystals in a dense arrangement, but no algal or cyanobacterial filament traces. Moreover, high Fe2+ and Mn2+ contents, oxygen‐isotope and sulphur‐isotope ratios of carbonate‐bound sulphates, and sulphurized hydrocarbon biomarkers of the stromatolitic carbonate indicate that CaCO3 precipitation occurred near the oxic–anoxic interface as a result of intensive bacterial sulphur cycling rather than photosynthetic activity. Furthermore, anaerobic oxidation of methane by Archaea may have driven CaCO3 precipitation in deeper parts of the biofilm community, as reflected by high concentrations of squalane with a strongly negative δ13C in conjunction with evaporite pseudomorphs showing extremely low δ13CCarb ratios. Consequently, the Thüste stromatolites are now interpreted as having initially formed by gypsum impregnation of biofilms. Subsequently, early Mg‐calcitic calcitization within the biofilms occurred because of combined bacterial iron, manganese and sulphate reduction, with an increasing contribution of anaerobic oxidation of methane with depth. This model plausibly explains the prominent preservation of signals derived from oxygen‐independent metabolic pathways, whereas virtually no geochemical record exists for an aerobic community that may, nevertheless, have prevailed at the stromatolite surface. Photic‐zone stromatolites with a prominent signal of anaerobic oxidation of methane may be common in, and indicative of, oxygen‐depleted sulphate‐bearing environments with high rates of methane production, conditions that possibly were fulfilled at the Archaean to Proterozoic transition.  相似文献   

7.
This survey of magnesium stable isotope compositions in marine biogenic aragonite and calcite includes samples from corals, sclerosponges, benthic porcelaneous and planktonic perforate foraminifera, coccolith oozes, red algae, and an echinoid and brachiopod test. The analyses were carried out using MC-ICP-MS with an external repeatability of ±0.22‰ (2SD for δ26Mg; n = 37), obtained from a coral reference sample (JCp-1).Magnesium isotope fractionation in calcitic corals and sclerosponges agrees with published data for calcitic speleothems with an average Δ26Mgcalcite-seawater = −2.6 ± 0.3‰ that appears to be weakly related to temperature. With one exception (Vaceletia spp.), aragonitic corals and sclerosponges also display uniform Mg isotope fractionations relative to seawater with Δ26Mgbiogenic aragonite-seawater = −0.9 ± 0.2.Magnesium isotopes in high-Mg calcites from red algae, echinoids and perhaps some porcelaneous foraminifera as well as in all low-Mg calcites (perforate foraminifera, coccoliths and brachiopods) display significant biological influences. For planktonic foraminifera, the Mg isotope data is consistent with the fixation of Mg by organic material under equilibrium conditions, but appears to be inconsistent with Mg removal from vacuoles. Our preferred model, however, suggests that planktonic foraminifera synthesize biomolecules that increase the energetic barrier for Mg incorporation. In this model, the need to remove large quantities of Mg from vacuole solutions is avoided. For the high-Mg calcites from echinoids, the precipitation of amorphous calcium carbonate may be responsible for their weaker Mg isotope fractionation.Disregarding superimposed biological effects, it appears that cation light isotope enrichments in CaCO3 principally result from a chemical kinetic isotope effect, related to the incorporation of cations at kink sites. In this model, the systematics of cation isotope fractionations in CaCO3 relate to the activation energy required for cation incorporation, which probably reflects the dehydration of the cation and the crystal surface and bond formation at the incorporation site. This kinetic incorporation model predicts (i) no intrinsic dependence on growth rate, unless significant back reaction upon slow growth reduces the isotope fractionation towards that characteristic for equilibrium isotope partitioning (this may be observed for Ca isotopes in calcites), (ii) a small decrease of isotope fractionation with increasing temperature that may be amplified if higher temperatures promote back reaction and (iii) a sensitivity to changes in the activation barrier caused by additives such as anions or biomolecules or by the initial formation of amorphous CaCO3.  相似文献   

8.
Substantial isotopic fractionations are associated with many microbial sulfur metabolisms and measurements of the bulk δ34S isotopic composition of sulfur species (predominantly sulfates and/or sulfides) have been a key component in developing our understanding of both modern and ancient biogeochemical cycling. However, the interpretations of bulk δ34S measurements are often non-unique, making reconstructions of paleoenvironmental conditions or microbial ecology challenging. In particular, the link between the μm-scale microbial activity that generates isotopic signatures and their eventual preservation as a bulk rock value in the geologic record has remained elusive, in large part because of the difficulty of extracting sufficient material at small scales. Here we investigate the potential for small-scale (∼100 μm-1 cm) δ34S variability to provide additional constraints for environmental and/or ecological reconstructions. We have investigated the impact of sulfate concentrations (0.2, 1, and 80 mM SO4) on the δ34S composition of hydrogen sulfide produced over the diurnal (day/night) cycle in cyanobacterial mats from Guerrero Negro, Baja California Sur, Mexico. Sulfide was captured as silver sulfide on the surface of a 2.5 cm metallic silver disk partially submerged beneath the mat surface. Subsequent analyses were conducted on a Cameca 7f-GEO secondary ion mass spectrometer (SIMS) to record spatial δ34S variability within the mats under different environmental conditions. Isotope measurements were made in a 2-dimensional grid for each incubation, documenting both lateral and vertical isotopic variation within the mats. Typical grids consisted of ∼400-800 individual measurements covering a lateral distance of ∼1 mm and a vertical depth of ∼5-15 mm. There is a large isotopic enrichment (∼10-20‰) in the uppermost mm of sulfide in those mats where [SO4] was non-limiting (field and lab incubations at 80 mM). This is attributed to rapid recycling of sulfur (elevated sulfate reduction rates and extensive sulfide oxidation) at and above the chemocline. This isotopic gradient is observed in both day and night enrichments and suggests that, despite the close physical association between cyanobacteria and select sulfate-reducing bacteria, photosynthetic forcing has no substantive impact on δ34S in these cyanobacterial mats. Perhaps equally surprising, large, spatially-coherent δ34S oscillations (∼20-30‰ over 1 mm) occurred at depths up to ∼1.5 cm below the mat surface. These gradients must arise in situ from differential microbial metabolic activity and fractionation during sulfide production at depth. Sulfate concentrations were the dominant control on the spatial variability of sulfide δ34S. Decreased sulfate concentrations diminished both vertical and lateral δ34S variability, suggesting that small-scale variations of δ34S can be diagnostic for reconstructing past sulfate concentrations, even when original sulfate δ34S is unknown.  相似文献   

9.
Formation of microlaminated sediments in solar salt works along the Mediterranean coast in southern France only occurs within a restricted salinity range of 60–150 gl?1. These salinities are associated with development of a laminated cyanobacterial mat composed primarily of the filamentous cyanobacteria Microcoleus chthonoplastes interbedded with detrital laminae. Transplants of the cyanobacterial mat to a less saline zone (36–60 gl?1) indicated that the cyanobacterial mats failed to colonize the less saline waters due to herbivorous snails and competition for light from floating algal masses of Cladophora and Enteromorpha. Neither the snails nor the Cladophora and Enteromorpha masses are tolerant of salinities above 60 gl?1, and therefore the Microcoleus mats are restricted to those areas of the solar salt works with these higher salinities. Analyses of salinity, conductivity, dissolved oxygen and pH in shallow salt pans (with salinities of 60–150 gl?1) established a relationship between the daily development of oxygen supersaturation and cyanobacterial photosynthesis. Sediments are unlaminated in those portions of the solar salt works where there are no cyanobacterial mats. These mats are frequently drained of their overlying water, and thus desiccation cracks divide them into polygonal plates. The development and translocation of these plates is enhanced by gas bubbles which form under the surface of the mats. No correlation between the microlaminae in sections from two cores located approximately 1 m apart was observed. This was consistent with the hypothesis that the surface of the desiccation crack polygons can be removed by currents and redeposited on the top of other cyanobacterial mat polygons. This process results in a ‘patchwork quilt’of young and old cyanobacterial mat polygons with an irregular microlamination pattern. The presence of such an irregular pattern of laminae permits an important distinction to be made between sediments associated with stromatolite formation and those associated with the very fine and horizontal varved sediments of stratified (meromictic) water bodies. The sedimentological significance of these observations is reviewed in relation to the processes of stromatolite genesis.  相似文献   

10.
微生物沉积作用在前寒武纪地层中普遍发育,在显生宙的一些地层中也较为发育。在碳酸盐岩地层之中,以叠层石为代表的微生物岩尤为引人注目。经过长期研究,2000年Riding曾经将微生物碳酸盐岩分为叠层石、凝块石、树形石和均一石4大类型。实际上,核形石以其较为广泛的发育和特殊的微组构也应该作为一种典型的微生物碳酸盐岩类型而纳入微生物碳酸盐岩的分类体系之中,而不能简单地作为球状叠层石。而那些纹理石灰岩,较厚的纹理和较深的产出沉积环境与叠层石形成明显的区别,也应该作为一种微生物碳酸盐岩的类型。生物沉积作用所形成的碳酸盐岩,以生物礁岩最为典型,在20世纪70年代曾经被Embry和Kloven归为骨架岩、障积岩、粘结岩三大类型,后来又增加了胶结岩,这是对20世纪50年代Folk、Dunham关于灰岩成因结构分类体系的良好补充。这些生物礁岩石以其高能量形成环境而有时又几乎见不到颗粒而与"颗粒含量越高沉积环境的能量越高"的基本理念不相符,所以Wright在1992年将它们归为生物作用类岩石,从而将灰岩划分为沉积作用、生物作用、成岩作用三大类。根据该分类,Folk和Dunham所描述的分类则属于沉积作用类灰岩,而Embry和Kloven所描述的生物礁岩石则归为生物作用类灰岩。微生物碳酸盐岩,总体上构成生物作用类碳酸盐岩中的粘结岩类,以其明显的微生物作用特点而具有自己的分类体系;它不但作为生物礁岩石的主要类型,而且也常常以生物礁、生物层和生物丘三种形式发育在地层之中。因此,上述概念和认识的进步,在强调微生物沉积作用的重要性的同时,有必要将微生物碳酸盐岩重新分为6大类:叠层石、凝块石、核形石、树形石、纹理石和均一石。  相似文献   

11.
The present analysis adjusts previous estimates of global ocean CaCO3 production rates substantially upward, to 133 × 1012 mol yr?1 plankton production and 42 × 1012 mol yr?1 shelf benthos production. The plankton adjustment is consistent with recent satellite-based estimates; the benthos adjustment includes primarily an upward adjustment of CaCO3 production on so-called carbonate-poor sedimentary shelves and secondarily pays greater attention to high CaCO3 mass (calcimass) and turnover of shelf communities on temperate and polar shelves. Estimated CaCO3 sediment accumulation rates remain about the same as they have been for some years: ~20 × 1012 mol yr?1 on shelves and 11 × 1012 mol yr?1 in the deep ocean. The differences between production and accumulation of calcareous materials call for dissolution of ~22 × 1012 mol yr?1 (~50 %) of shelf benthonic carbonate production and 122 × 1012 mol yr?1 (>90 %) of planktonic production. Most CaCO3 production, whether planktonic or benthonic, is assumed to take place in water depths of <100 m, while most dissolution is assumed to occur below this depth. The molar ratio of CO2 release to CaCO3 precipitation (CO2↑/CaCO3↓) is <1.0 and varies with depth. This ratio, Ψ, is presently about 0.66 in surface seawater and 0.85 in ocean waters deeper than about 1000 m. The net flux of CO2 associated with CaCO3 reactions in the global ocean in late preindustrial time is estimated to be an apparent influx from the atmosphere to the ocean, of +7 × 1012 mol C yr?1, at a time scale of 102–103 years. The CaCO3-mediated influx of CO2 is approximately offset by CO2 release from organic C oxidation in the water column. Continuing ocean acidification will have effects on CaCO3 and organic C metabolic responses to the oceanic inorganic C cycle, although those responses remain poorly quantified.  相似文献   

12.
Rising atmospheric pCO2 and ocean acidification originating from human activities could result in increased dissolution of metastable carbonate minerals in shallow-water marine sediments. In the present study, in situ dissolution of carbonate sedimentary particles in Devil’s Hole, Bermuda, was observed during summer when thermally driven density stratification restricted mixing between the bottom water and the surface mixed layer and microbial decomposition of organic matter in the subthermocline layer produced pCO2 levels similar to or higher than those levels anticipated by the end of the 21st century. Trends in both seawater chemistry and the composition of sediments in Devil’s Hole indicate that Mg-calcite minerals are subject to selective dissolution under conditions of elevated pCO2. The derived rates of dissolution based on observed changes in excess alkalinity and estimates of vertical eddy diffusion ranged from 0.2 mmol to 0.8 mmol CaCO3 m−2 h−1. On a yearly basis, this range corresponds to 175–701 g CaCO3 m−2 year−1; the latter rate is close to 50% of the estimate of the current average global coral reef calcification rate of about 1,500 g CaCO3 m−2 year−1. Considering a reduction in marine calcification of 40% by the year 2100, or 90% by 2300, as a result of surface ocean acidification, the combination of high rates of carbonate dissolution and reduced rates of calcification implies that coral reefs and other carbonate sediment environments within the 21st and following centuries could be subject to a net loss in carbonate material as a result of increasing pCO2 arising from burning of fossil fuels.  相似文献   

13.
Throughout most of the Phanerozoic, reef rigidity resulted as much, or more, from early lithification by microbial carbonates and biologically induced cements (non-enzymatic carbonates) than from biological encrustation of, or by, large, enzymatically secreted metazoan skeletons. Reef framework is divided into four categories: (1) skeletal metazoan; (2) non-skeletal microbialite (stromatolite and thrombolite); (3) calcimicrobe; and (4) biocementstone, in which small or delicate organisms serve as scaffolds for rigid cement crusts. The last three categories are dominated by non-enzymatic carbonates. Skeletal framework and non-skeletal microbialite framework were the most abundant framework types through the Phanerozoic. The composition and abundance of skeletal framework was controlled largely by mass extinction events, but most reefs consisted of both microbialite and skeletal organisms in a mutually beneficial relationship. Microbialite framework was abundant throughout the Palaeozoic and early Mesozoic, but declined after the Jurassic. Calcimicrobe framework was important during the Cambrian-Early Ordovician and Devonian and biocementstone framework was important from the late Mississippian to the Late Triassic. The Phanerozoic history of reefs does not correlate well with the stratigraphic distribution of large, skeletal ‘reef builders’, or with a variety of physicochemical parameters, including sea-level history, Wilson Cycle or global climate cycles. Because non-enzymatic carbonates result from induction by non-obligate calcifiers, and not enzymatic precipitation by obligate calcifiers, the distribution of these carbonates was controlled to a larger extent by temporal changes in physicochemical parameters affecting the saturation state of sea water with respect to carbonate minerals. Changes in pCO2, Ca/Mg ratios, cation concentrations and temperature may have affected the abundance of non-enzymatic carbonates and, hence, reefs, independently from the effects of these same parameters and mass extinction events on skeletal reef biota. The decline in abundance of reefal microbialite and absence of calcimicrobe and biocementstone reef framework after the Jurassic may be a result of relatively low saturation states of sea water owing to increased removal and sequestration of finite marine carbonate resources by calcareous plankton since the Jurassic. Reef history is difficult to correlate with temporal changes in specific global parameters because these parameters affect skeletal biota and biologically induced carbonate precipitation independently. Hence, reef history was regulated not just by skeletal reef biota, but by parameters governing non-enzymatic carbonates.  相似文献   

14.
Release of CO2 from surface ocean water owing to precipitation of CaCO3 and the imbalance between biological production of organic matter and its respiration, and their net removal from surface water to sedimentary storage was studied by means of a quotient θ = (CO2 flux to the atmosphere)/(CaCO3 precipitated). θ depends not only on water temperature and atmospheric CO2 concentration but also on the CaCO3 and organic carbon masses formed. In CO2 generation by CaCO3 precipitation, θ varies from a fraction of 0.44 to 0.79, increasing with decreasing temperature (25 to 5°C), increasing atmospheric CO2 concentration (195–375 ppmv), and increasing CaCO3 precipitated mass (up to 45% of the initial DIC concentration in surface water). Primary production and net storage of organic carbon counteracts the CO2 production by carbonate precipitation and it results in lower CO2 emissions from the surface layer. When atmospheric CO2 increases due to the ocean-to-atmosphere flux rather than remaining constant, the amount of CO2 transferred is a non-linear function of the surface layer thickness because of the back-pressure of the rising atmospheric CO2. For a surface ocean layer approximated by a 50-m-thick euphotic zone that receives input of inorganic and organic carbon from land, the calculated CO2 flux to the atmosphere is a function of the CaCO3 and Corg net storage rates. In general, the carbonate storage rate has been greater than that of organic carbon. The CO2 flux near the Last Glacial Maximum is 17 to 7×1012 mol/yr (0.2–0.08 Gt C/yr), reflecting the range of organic carbon storage rates in sediments, and for pre-industrial time it is 38–42×1012 mol/yr (0.46–0.50 Gt C/yr). Within the imbalanced global carbon cycle, our estimates indicate that prior to anthropogenic emissions of CO2 to the atmosphere the land organic reservoir was gaining carbon and the surface ocean was losing carbon, calcium, and total alkalinity owing to the CaCO3 storage and consequent emission of CO2. These results are in agreement with the conclusions of a number of other investigators. As the CO2 uptake in mineral weathering is a major flux in the global carbon cycle, the CO2 weathering pathway that originates in the CO2 produced by remineralization of soil humus rather than by direct uptake from the atmosphere may reduce the relatively large imbalances of the atmosphere and land organic reservoir at 102–104-year time scales.  相似文献   

15.
河北承德路通沟剖面芙蓉统凤山组中部发育厚层块状叠层石生物丘,构成一个淹没不整合型层序的强迫型海退体系域,指示这些叠层石形成于中高能浅海环境。该生物丘宏观上主要由柱状叠层石组成,叠层石内部纹层较粗糙,在构成叠层石的致密泥晶和微亮晶组构中,还见到球粒、底栖鲕粒及凝聚颗粒等多种生物成因颗粒类型,代表着复杂的微生物活动特征,以此而区别于前寒武纪的叠层石。更为重要的是,叠层石生物丘中的致密泥晶基质中发育一些“石松藻(Lithocodium)”状的钙化蓝细菌菌落残余物,以及一些丝状钙化蓝细菌化石,指示了形成叠层石的微生物席为蓝细菌所主导的微生物席。因此,凤山组叠层石生物丘内复杂而特殊的碳酸盐岩沉积组构为研究叠层石形成过程中复杂的微生物代谢活动所产生的钙化作用机制提供了一个宝贵的地质实例。  相似文献   

16.
17.
The Mid-Brunhes dissolution interval (MBDI) represents a period of global carbonate dissolution, lasting several hundred thousand years, centred around Marine Isotope Stage (MIS) 11. Here we report the effects of dissolution in ODP core 982, taken from 1134 m in the North Atlantic. Paradoxically, records of atmospheric CO2 from Antarctic ice-cores reveal no long term trend over the last 400 kyr and suggest that CO2 during MIS 11 was no higher than during the present interglacial. We suggest that a global increase in pelagic carbonate production during this period, possibly related to the proliferation of the Gephyrocapsa coccolithophore, could have altered marine carbonate chemistry in such a way as to drive increased dissolution under the constraints of steady state. An increase in the production of carbonate in surface waters would cause a drawdown of global carbonate saturation and increase dissolution at the seafloor. In order to reconcile the record of atmospheric CO2 variability we suggest that an increase in the flux of organic matter from the surface to deep ocean, associated with either a net increase in primary production or the enhanced ballasting effect provided by an increased flux of CaCO3, could have countered the effect of increased calcification on CO2.  相似文献   

18.
The global rise in atmospheric greenhouse gas concentrations calls for practicable solutions to capture CO2. In this study, a mineral carbonation process was applied in which CO2 reacts with alkaline lignite ash and forms stable carbonate solids. In comparison to previous studies, the assays were conducted at low temperatures and pressures and under semi-dry reaction conditions in an 8 L laboratory mixing device. In order to find optimum process conditions the pCO2 (10-20%), stirring rate (500-3000 rpm) and the liquid to solid ratio (L/S = 0.03-0.36 L kg−1) were varied. In all experiments a considerable CO2 uptake from the gas phase was observed. Concurrently the solid phase contents of Ca and Mg (hydr)oxides decreased and CaCO3 and MgCO3 fractions increased throughout the experiments, showing that CO2 was stabilized as a solid carbonate. The carbonation reaction depends on three factors: Dissolution of CO2 in the liquid phase, mobilization of Ca and Mg from the mineral surface and precipitation of the carbonate solids. Those limitations were found to depend strongly on the variation of the process parameters. Optimum reaction conditions could be found for L/S ratios between 0.12 and 0.18, medium stirring velocities and pCO2 between 10% and 20%.Maximum CO2 uptake by the solid phase was 4.8 mmol g−1 after 120 min, corresponding to a carbonation efficiency for the alkaline material of 53% of the theoretical CO2 binding capacity. In comparison to previous studies both CO2 uptake and carbonation efficiencies were in a similar range, but the reaction times in the semi-dry process were considerably shorter. The proposed method additionally allows for a more simple carbonation setup due to low T and P, and produces an easier to handle product with low water content.  相似文献   

19.
The preservation potential of some recent stromatolites   总被引:3,自引:0,他引:3  
Stromatolites are laminated organo-sedimentary structures, generally compared to present day blue-green algal mats. Their morphology, species composition and overall extent are largely governed by the amount of wetting, although other factors such as competition, predation and desiccation, also contribute. The Trucial Coast mats are essentially intertidal. Stromatolite accretion rates in this area are of the order of 0·2 mm p.a. but lamina growth is far from regular. The area is also characterized by the development of evaporites, especially gypsum which proves to be an important agent of mat destruction. The growth of crystals causes disruption within the upper portions of the stromatolite section with the result that none of the upper intertidal mat forms are preserved. Other agencies of destruction include bacterial decay, desiccation and dehydration, and compaction under burial which may depress and deform the original mat relief. Decay results in the almost total loss of cellular contents, only a few empty sheaths and the pigment surviving into the fossil record. Preservation may be effected via (a) burial or (b) lithification. However, few modern algal mat structures bear any resemblance to fossil stromatolite heads with the exception of those from Shark Bay. From this, one might infer that pene-contemporaneous lithification is a prerequisite for their preservation.  相似文献   

20.
Thermodynamic mixing properties and subsolidus phase relations of the rhombohedral carbonate system, (1 − x) · CaCO3 − x · MgCO3, were modelled in the temperature range of 623-2023 K with static structure energy calculations based on well-parameterised empirical interatomic potentials. Relaxed static structure energies of a large set of randomly varied structures in a 4 × 4 × 1 supercell of calcite (a = 19.952 Å, c = 17.061 Å) were calculated with the General Utility Lattice Program (GULP). These energies were cluster expanded in a basis set of 12 pair-wise effective interactions. Temperature-dependent enthalpies of mixing were calculated by the Monte Carlo method. Free energies of mixing were obtained by thermodynamic integration of the Monte Carlo results. The calculated phase diagram is in good agreement with experimental phase boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号