首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A systematic investigation on silica contents and silicon isotope compositions of bamboos was undertaken. Seven bamboo plants and related soils were collected from seven locations in China. The roots, stem, branch and leaves for each plant were sampled and their silica contents and silicon isotope compositions were determined. The silica contents and silicon isotope compositions of bulk and water-soluble fraction of soils were also measured. The silica contents of studied bamboo organs vary from 0.30% to 9.95%. Within bamboo plant the silica contents show an increasing trend from stem, through branch, to leaves. In bamboo roots the silica is exclusively in the endodermis cells, but in stem, branch and leaves, the silica is accumulated mainly in epidermal cells. The silicon isotope compositions of bamboos exhibit significant variation, from −2.3‰ to 1.8‰, and large and systematic silicon isotope fractionation was observed within each bamboo. The δ30Si values decrease from roots to stem, but then increase from stem, through branch, to leaves. The ranges of δ30Si values within each bamboo vary from 1.0‰ to 3.3‰. Considering the total range of silicon isotope composition in terrestrial samples is only 7‰, the observed silicon isotope variation in single bamboo is significant and remarkable. This kind of silicon isotope variation might be caused by isotope fractionation in a Rayleigh process when SiO2 precipitated in stem, branches and leaves gradually from plant fluid. In this process the Si isotope fractionation factor between dissolved Si and precipitated Si in bamboo (αpre-sol) is estimated to be 0.9981. However, other factors should be considered to explain the decrease of δ30Si value from roots to stem, including larger ratio of dissolved H4SiO4 to precipitated SiO2 in roots than in stem. There is a positive correlation between the δ30Si values of water-soluble fractions in soils and those of bulk bamboos, indicating that the dissolved silicon in pore water and phytoliths in soil is the direct sources of silicon taken up by bamboo roots. A biochemical silicon isotope fractionation exists in process of silicon uptake by bamboo roots. Its silicon isotope fractionation factor (αbam-wa) is estimated to be 0.9988. Considering the distribution patterns of SiO2 contents and δ30Si values among different bamboo organs, evapotranspiration may be the driving force for an upward flow of a silicon-bearing fluid and silica precipitation. Passive silicon uptake and transportation may be important for bamboo, although the role of active uptake of silicic acid by roots may not be neglected. The samples with relatively high δ30Si values all grew in soils showing high content of organic materials. In contrast, the samples with relatively low δ30Si values all grew in soil showing low content of organic materials. The silicon isotope composition of bamboo may reflect the local soil type and growth conditions. Our study suggests that bamboos may play an important role in global silicon cycle.  相似文献   

2.
硅同位素动力学分馏的实验研究及地质应用   总被引:8,自引:4,他引:8  
由于硅在自然界中没有化学阶态变化,主要呈硅氧四面体形式存在,因此硅同位素的热力学分馏很小,由此产生的硅同位素变化不大。溶液中SiO2沉淀过程的同位素动力学分馏是引起自然界硅同位素明显变化的主要原因。本文实验测定了溶液中SiO2沉淀过程的硅同位素动力学分馏系数α,并结合所测定的硅同位素动力学分馏系数对现代海底黑烟囱、太古代条带状磁铁石英岩、风化成因粘土矿物的δ^30Si值明显偏低;浅海碳酸盐台地中硅  相似文献   

3.
Silicon shows no variation in its chemical valence in nature and exists mainly in the form of silicon-oxygen tetrahedra, so very small silicon isotope thermodynamic fractionation occurs and the resultant silicon isotope variation is limited. Dynamic fractionation of Si isotopes during precipitation of SiO2 from a solution is a main factor leading to substantial variations in silicon isotopes in nature. In this experimental study, we determined the dynamic fractionation factorα for silicon isotopes during precipitation of SiO2 from the solution. And in combination of α, a theoretical explanation is presented of the considerably low δ30Si values of black smokers on modern seafloor, Archean banded magnetite-quartzite and clay minerals of weathering origin, and of clearly high δ30Si values of siliceous rocks in shallow-sea carbonate platforms. This paper won the Paper of Excellence in the Second National Young Scientist Symposium on Geochemistry of Minerals and Rocks.  相似文献   

4.
Oxygen isotope partitioning between calcite and tremolite was experimentally calibrated in the presence of small amounts of a supercritical CO2–H2O fluid at temperatures from 520 to 680° C and pressures from 3 to 10 kbar. The experiments were carried out within the stability field of the calcite-tremolite assemblage based on phase equilibrium relationships in the system CaO–MgO–SiO2–CO2–H2O, so that decomposition of calcite and tremolite was avoided under the experimental conditions. Appropriate proportions of carbon dioxide to water were used to meet this requirement. Large weight ratios of mineral to fluid were employed in order to make the isotopic exchange between calcite and tremolite in the presence of a fluid close to that without fluid. The data processing method for isotopic exchange in a three-phase system has been applied to extrapolate partial equilibrium data to equilibrium values. The determined fractionation factors between calcite (Cc) and tremolite (Tr) are expressed as:1031n Cc-Tr=3.80 × 106/T 2-1.67By combining the present data with the experimental calibrations of Clayton et al. (1989) on the calcite-quartz system, we obtain the fractionation for the quartztremolite system: 1031n Qz-Tr=4.18 × 106/T 2-1.67Our experimental calibrations are in good agreement with the theoretical calculations of Hoffbauer et al. (1994) and the empirical estimates of Bottinga and Javoy (1975) based on isotopic data from naturall assemblages. At 700 C good agreement also exists between our experimental data and theoretical values calculated by Zheng (1993b). With decreasing temperature, however, an increasing difference between these data appears.Retrograde isotopic reequilibration by oxygen diffusion may be common for amphibole relative to diopside in metamorphic rocks. However, isotopic equilibrium in amphibole can be preserved in cases of rapid cooling.  相似文献   

5.
Although iron isotopes provide a new powerful tool for tracing a variety of geochemical processes, the unambiguous interpretation of iron isotope ratios in natural systems and the development of predictive theoretical models require accurate data on equilibrium isotope fractionation between fluids and minerals. We investigated Fe isotope fractionation between hematite (Fe2O3) and aqueous acidic NaCl fluids via hematite dissolution and precipitation experiments at temperatures from 200 to 450 °C and pressures from saturated vapor pressure (Psat) to 600 bar. Precipitation experiments at 200 °C and Psat from aqueous solution, in which Fe aqueous speciation is dominated by ferric iron (FeIII) chloride complexes, show no detectable Fe isotope fractionation between hematite and fluid, Δ57Fefluid-hematite = δ57Fefluid − δ57Fehematite = 0.01 ± 0.08‰ (2 × standard error, 2SE). In contrast, experiments at 300 °C and Psat, where ferrous iron chloride species (FeCl2 and FeCl+) dominate in the fluid, yield significant fluid enrichment in the light isotope, with identical values of Δ57Fefluid-hematite = −0.54 ± 0.15‰ (2SE) both for dissolution and precipitation runs. Hematite dissolution experiments at 450 °C and 600 bar, in which Fe speciation is also dominated by ferrous chloride species, yield Δ57Fefluid-hematite values close to zero within errors, 0.15 ± 0.17‰ (2SE). In most experiments, chemical, redox, and isotopic equilibrium was attained, as shown by constancy over time of total dissolved Fe concentrations, aqueous FeII and FeIII fractions, and Fe isotope ratios in solution, and identical Δ57Fe values from dissolution and precipitation runs. Our measured equilibrium Δ57Fefluid-hematite values at different temperatures, fluid compositions and iron redox state are within the range of fractionations in the system fluid-hematite estimated using reported theoretical β-factors for hematite and aqueous Fe species and the distribution of Fe aqueous complexes in solution. These theoretical predictions are however affected by large discrepancies among different studies, typically ±1‰ for the Δ57Fe Fe(aq)-hematite value at 200 °C. Our data may thus help to refine theoretical models for β-factors of aqueous iron species. This study provides the first experimental calibration of Fe isotope fractionation in the system hematite-saline aqueous fluid at elevated temperatures; it demonstrates the importance of redox control on Fe isotope fractionation at hydrothermal conditions.  相似文献   

6.
Using H235S, anaerobic oxidation of sulfide to sulfate by D. desulfuricans was demonstrated. This was probably the result of a reversal of the sulfate reduction pathway.  相似文献   

7.
文石—水体系氧同位素分馏机理的实验研究   总被引:3,自引:1,他引:3  
周根陶  郑永飞 《地球化学》1999,28(6):521-533
采用“附晶生长法”分别在50和70℃下合成文石下矿物,获得了两种不同的文石与水之间的氧同位素分馏关系。结果证明,文石与水之间氧同位素分馏的化学动力学机 为两步:(1)碳酸根与水之间进行氧同位素交换和平衡,即:「C^16O3」^^3-+2H2^18O=「C^18O3^16O」^2-+2H2O16O;(2)与水平衡以后的「CO2」^2-离子与Ca^2+结合生成文石,即:Ca^2++_「C^18O2^1  相似文献   

8.
Isotope fractionation during the evaporation of silicate melt and condensation of vapor has been widely used to explain various isotope signals observed in lunar soils, cosmic spherules, calcium–aluminum-rich inclusions, and bulk compositions of planetary materials. During evaporation and condensation, the equilibrium isotope fractionation factor (α) between high-temperature silicate melt and vapor is a fundamental parameter that can constrain the melt’s isotopic compositions. However, equilibrium α is difficult to calibrate experimentally. Here we used Mg as an example and calculated equilibrium Mg isotope fractionation in MgSiO3 and Mg2SiO4 melt–vapor systems based on first-principles molecular dynamics and the high-temperature approximation of the Bigeleisen–Mayer equation. We found that, at 2500 K, δ25Mg values in the MgSiO3 and Mg2SiO4 melts were 0.141?±?0.004 and 0.143?±?0.003‰ more positive than in their respective vapors. The corresponding δ26Mg values were 0.270?±?0.008 and 0.274?±?0.006‰ more positive than in vapors, respectively. The general \(\alpha - T\) equations describing the equilibrium Mg α in MgSiO3 and Mg2SiO4 melt–vapor systems were: \(\alpha_{{{\text{Mg}}\left( {\text{l}} \right) - {\text{Mg}}\left( {\text{g}} \right)}} = 1 + \frac{{5.264 \times 10^{5} }}{{T^{2} }}\left( {\frac{1}{m} - \frac{1}{{m^{\prime}}}} \right)\) and \(\alpha_{{{\text{Mg}}\left( {\text{l}} \right) - {\text{Mg}}\left( {\text{g}} \right)}} = 1 + \frac{{5.340 \times 10^{5} }}{{T^{2} }}\left( {\frac{1}{m} - \frac{1}{{m^{\prime}}}} \right)\), respectively, where m is the mass of light isotope 24Mg and m′ is the mass of the heavier isotope, 25Mg or 26Mg. These results offer a necessary parameter for mechanistic understanding of Mg isotope fractionation during evaporation and condensation that commonly occurs during the early stages of planetary formation and evolution.  相似文献   

9.
Various isotope studies require accurate fractionation factors (α’s) between different chemical compounds in thermodynamic equilibrium. Although numerous isotope systems involve aqueous solutions, the conventional theory is formulated for the gas-phase and predicts incorrect α’s for many compounds dissolved in water. Here I show that quantum-chemistry calculations, which take into account solute–water interactions, accurately predict, for instance, oxygen isotope fractionation between dissolved and H2O (hereafter ). Simple force field and quantum-chemistry calculations for the ‘gas-phase’ ion predict (15‰) at 25 °C. However, based on -clusters with up to 22 H2O molecules, I calculate a value of 25‰, which agrees with the experimental value of 24.5 ± 0.5‰. Effects of geometry and anharmonicity on the calculated α were also examined. The calculations reveal the critical role of hydration in solution, which is ignored in the gas-phase theory. The approach presented provides an adequate framework for calculating fractionation factors involving dissolved compounds; it may also be used to predict α’s that cannot (or have not yet been) determined experimentally.  相似文献   

10.
Tri-octahedral Li-Mg smectites (hectorites) were synthesized at temperatures ranging from 25 to 250 °C, in the presence of solutions highly enriched in lithium. After removing all the exchangeable lithium from the synthesized clays, Li isotope fractionation (Δ7Liclay-solution) was determined. This fractionation was linked to Li incorporation into the structural octahedral site, substituting for Mg2+. As predicted, experimental Δ7Liclay-solution inversely correlates with temperature, and ranges from −1.6‰ ± 1.3‰ at 250 °C to −10.0‰ ± 1.3‰ at 90 °C, and then stays relatively constant down to 25 °C. The relatively constant isotope fractionation factor below 90 °C may be due to high concentrations of edge octahedra in low crystallinity smectites. The isotopic fractionation factor (α), for a given temperature, does not depend on the solution matrix, nor on the amount of structural Li incorporated into the clay. Empirical linear laws for α as a function of 1/T (K) were inferred. Smectite Li contents and smectite-solution distribution coefficients (DLi/Mg) increase with temperature, as expected for a substitution process. The fractions of dissolved Li incorporated into the smectite octahedral sites are small and do not depend on the duration of the experiment. In a seawater-like matrix solution, less Li is incorporated into the smectites, probably as a result of competition with dissolved Mg2+ ions for incorporation into the octahedral sites. The high Li contents observed in marine smectites are therefore best explained either by a significant contribution from basalts, by adsorption processes, or by the influence of seawater chemical composition on distribution coefficients. We also calculate, using present-day estimates of hydrothermal water and river fluxes, that a steady-state ocean would require a relatively large global clay-water Li isotope fractionation (−12‰ to −21‰). This study demonstrates the ability of laboratory experiments to quantify the impact of secondary phases on the Li geochemical cycle and associated isotope fractionations.  相似文献   

11.
The partitioning of stable carbon isotopes between calcite, graphite and CO2 was experimentally determined at temperatures from 500 to 1200 °C and 1 to 15 kbar pressure. Attainment of carbon isotope equilibrium in CO2-calcite runs was proven by achieving the same fractionation from isotopically opposite directions. The resultant CO2-calcite fractionation curve for carbon differs from Bottinga's calculation by 1.2 and confirms recent experiments of Chacko et al. and Mattey et al. In CO2-graphite experiments equilibrium fractions were extrapolated by applying the partial-exchange technique of Northrop and Clayton and by optimizing the contribution of surface reaction in graphite. CO2-graphite fractionations at temperatures up to 800 °C are in fair agreement with Bottinga's calculation, but yield a surprisingly high fractionation of 5 at upper mantle temperatures. The combination of CO2-calcite (carbon) and CO2-graphite fractionation results in a new experimentally determined calcite-grapite fractionation curve, expressed by the equation:
  相似文献   

12.
受到植物化石材料局限性与时代久远性的限制,目前用古生代植物化石δ13C值来反演古环境的研究程度较低。文中通过对云南省曲靖市下泥盆统徐家冲组和文山州下泥盆统坡松冲组的部分植物化石进行稳定碳同位素测试,分析了早泥盆世植物的光合作用途径以及古环境。结果表明: 徐家冲组镰蕨属(Drepanophycus)δ13C值为-29.0‰~-22.8‰,平均值为-24.5‰,其中镰蕨属茎轴的δ13C值高于叶片0.1‰~0.3‰;坡松冲组工蕨属(Zosterophyllum)和始叶蕨属(Eophyllophyton)δ13C值分别为-24.8‰~-22.1‰和-23.0‰~-22.6‰,平均值分别为-23.2‰和-22.7‰;三者的δ13C值分布范围都与现代C3植物一致。自徐家冲组第57至第79沉积旋回,δ13C值总体呈上升趋势,达到2‰左右,推测可能与早泥盆世大气CO2浓度下降和气候变冷相关。镰蕨属和工蕨属的Ci/Ca值较为稳定,说明这2种植物可能对大气CO2浓度变化较为敏感,曲靖市古气候可能为当今的热带疏林草原气候或热带季风气候。  相似文献   

13.
We report the results of an experimental calibration of oxygen isotope fractionation between quartz and zircon. Data were collected from 700 to 1000 °C, 10–20 kbar, and in some experiments the oxygen fugacity was buffered at the fayalite–magnetite–quartz equilibrium. Oxygen isotope fractionation shows no clear dependence on oxygen fugacity or pressure. Unexpectedly, some high-temperature data (900–1000 °C) show evidence for disequilibrium oxygen isotope partitioning. This is based in part on ion microprobe data from these samples that indicate some high-temperature quartz grains may be isotopically zoned. Excluding data that probably represent non-equilibrium conditions, our preferred calibration for oxygen isotope fractionation between quartz and zircon can be described by:
This relationship can be used to calculate fractionation factors between zircon and other minerals. In addition, results have been used to calculate WR/melt–zircon fractionations during magma differentiation. Modeling demonstrates that silicic magmas show relatively small changes in δ18O values during differentiation, though late-stage mafic residuals capable of zircon saturation contain elevated δ18O values. However, residuals also have larger predicted melt–zircon fractionations meaning zircons will not record enriched δ18O values generally attributed to a granitic protolith. These results agree with data from natural samples if the zircon fractionation factor presented here or from natural studies is applied.  相似文献   

14.
Silicon isotope compositions of main channel samples of the Yangtze River were systematically investigated along with their chemical compositions. The concentration of suspended matter in the Yangtze River tends to decrease from the upper reaches to the lower reaches, corresponding to settling of the sediments in the lakes and reservoirs due to reduction of the velocity of water flow. The silica contents of suspended matter vary from 52.1% to 56.9% and their δ30Si values vary from 0 to −0.7‰, both similar to those of shales. From the upper to lower reaches, the silica contents of suspended matter tend to increase, whilst their δ30Si values tend to decrease. Both trends reflect the increase of clay minerals and decrease of carbonates in suspended matter.The concentrations of dissolved silicon vary from 97 to 121 μmol/L and their δ30Si values vary over a wide range from 0.7 to 3.4‰. From the upper to lower reaches, dissolved silica concentrations tend to decrease and their δ30Si values tend to increase. These trends mainly reflect the change of chemical and isotopic characteristics of the tributaries from the upper to lower reaches. The major factors responsible for these changes may be the high meteoric precipitation and significant silicon absorption by grass (in wetlands) and rice (in paddy fields) in drainage areas of the middle and lower reaches.There is no correlation between δ30Si of dissolved silicon and that of suspended matter. The Δ30SiDiss-SPM values vary over a wide range of 1.0-3.7‰, indicating that (1) they are out of isotopic equilibrium, (2) dissolved silicon and the associated suspended matter do not belong to one physico-chemical system, and (3) isotopic exchange rate between them is very slow.The δ30Si value of dissolved silicon output from the Yangtze River to the East Sea is estimated to be 3.0‰, much higher than the values reported for the Amazon and Congo rivers. This increases the δ30Si range of dissolved silicon in the world’s rivers from 0.4-1.2%; to 0.4-3.4%.  相似文献   

15.
Oxygen isotope fractionation was experimentally studied in the quartz-wolframite-water system from 200 to 420 °C. The starting wolframite was synthesized in aqueous solutions of Na2WO4 · 2H2O + FeCl2 · 4H2O or MnCl2 · 4H2O. The starting solutions range in salinity from 0 to 10 equivalent wt.% NaCl. Experiments were conducted in a gold-lined stainless steel autoclave, with filling degrees of about 50%. The results showed no significant difference in equilibrium isotope fractionation between water and wolframite, ferberite and huebnerite at the same temperature (310 °C ). The equilibrium oxygen isotope fractionation factors of wolframite and water tend to be equal with increasing temperature above 370 °C, but to increase significantly with decreasing temperature below 370 °C: 1000 ln αwf-H2o= 1.03×106T−2-4.91 (370 °C ±200 °C ) 1000 ln αwf-H2o = 0.21×106T −2-2.91 (420 °C -370 °C ±) This projects was financially supported by the National Natural Science Foundation of China.  相似文献   

16.
To determine oxygen isotope fractionation between aragonite and water, aragonite was slowly precipitated from Ca(HCO3)2 solution at 0 to 50°C in the presence of Mg2+ or SO42−. The phase compositions and morphologies of synthetic minerals were detected by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The effects of aragonite precipitation rate and excess dissolved CO2 gas in the initial Ca(HCO3)2 solution on oxygen isotope fractionation between aragonite and water were investigated. For the CaCO3 minerals slowly precipitated by the CaCO3 or NaHCO3 dissolution method at 0 to 50°C, the XRD and SEM analyses show that the rate of aragonite precipitation increased with temperature. Correspondingly, oxygen isotope fractionations between aragonite and water deviated progressively farther from equilibrium. Additionally, an excess of dissolved CO2 gas in the initial Ca(HCO3)2 solution results in an increase in apparent oxygen isotope fractionations. As a consequence, the experimentally determined oxygen isotope fractionations at 50°C indicate disequilibrium, whereas the relatively lower fractionation values obtained at 0 and 25°C from the solution with less dissolved CO2 gas and low precipitation rates indicate a closer approach to equilibrium. Combining the lower values at 0 and 25°C with previous data derived from a two-step overgrowth technique at 50 and 70°C, a fractionation equation for the aragonite-water system at 0 to 70°C is obtained as follows:
  相似文献   

17.
A synthesis of previous results, which we dub the “standard model,” provides a prediction as to how isotope fractionation during sulfate reduction should respond to physiological variables such as specific rate of sulfate reduction and environmental variables such as substrate availability and temperature. The standard model suggests that isotope fractionation should decrease with increasing specific rates of sulfate reduction (rate per cell). Furthermore, the standard model predicts that low fractionations should be found at both high and low temperatures whereas the highest fractionations should be found in the intermediate temperature range. These fractionation trends are controlled, as a function of temperature, by the balance between the transfer rates of sulfate into and out of the cell and the exchange between the sulfur pools internal to the organism. We test this standard model by conducting experiments on the growth physiology and isotope fractionation, as a function of temperature, by the sulfate-reducing bacterium Desulfovibrio desulfuricans (DSMZ 642). Our results contrast with the “standard model” by showing a positive correlation between specific rates of sulfate reduction and fractionation. Also by contrast with the standard model, we found the highest fractionations at low and high temperatures and the lowest fractionations in the intermediate temperature range. We develop a fractionation model which can be used to explain both our results as well as the results of the “standard model.” Differences in fractionation with temperature relate to differences in the specific temperature response of internal enzyme kinetics as well as the exchange rates of sulfate in and out of the cell. It is expected that the kinetics of these processes will show strain-specific differences.  相似文献   

18.
A first experimental study was conducted to determine the equilibrium iron isotope fractionation between pyrrhotite and silicate melt at magmatic conditions. Experiments were performed in an internally heated gas pressure vessel at 500 MPa and temperatures between 840 and 1000 °C for 120-168 h. Three different types of experiments were conducted and after phase separation the iron isotope composition of the run products was measured by MC-ICP-MS. (i) Kinetic experiments using 57Fe-enriched glass and natural pyrrhotite revealed that a close approach to equilibrium is attained already after 48 h. (ii) Isotope exchange experiments—using mixtures of hydrous peralkaline rhyolitic glass powder (∼4 wt% H2O) and natural pyrrhotites (Fe1 − xS) as starting materials— and (iii) crystallisation experiments, in which pyrrhotite was formed by reaction between elemental sulphur and rhyolitic melt, consistently showed that pyrrhotite preferentially incorporates light iron. No temperature dependence of the fractionation factor was found between 840 and 1000 °C, within experimental and analytical precision. An average fractionation factor of Δ 56Fe/54Fepyrrhotite-melt = −0. 35 ± 0.04‰ (2SE, n = 13) was determined for this temperature range. Predictions of Fe isotope fractionation between FeS and ferric iron-dominated silicate minerals are consistent with our experimental results, indicating that the marked contrast in both ligand and redox state of iron control the isotope fractionation between pyrrhotite and silicate melt. Consequently, the fractionation factor determined in this study is representative for the specific Fe2+/ΣFe ratio of our peralkaline rhyolitic melt of 0.38 ± 0.02. At higher Fe2+/ΣFe ratios a smaller fractionation factor is expected. Further investigation on Fe isotope fractionation between other mineral phases and silicate melts is needed, but the presented experimental results already suggest that even at high temperatures resolvable variations in the Fe isotope composition can be generated by equilibrium isotope fractionation in natural magmatic systems.  相似文献   

19.
Although the stable oxygen isotope fractionation between dissolved sulfate ion and H2O (hereafter ) is of physico-chemical and biogeochemical significance, no experimental value has been established until present. The primary reason being that uncatalyzed oxygen exchange between and H2O is extremely slow, taking 105 years at room temperature. For lack of a better approach, values of 16‰ and 31‰ at 25 °C have been assumed in the past, based on theoretical ‘gas-phase’ calculations and extrapolation of laboratory results obtained at temperatures >75 °C that actually pertain to the bisulfate system. Here I use novel quantum-chemistry calculations, which take into account detailed solute-water interactions to establish a new value for of 23‰ at 25 °C. The results of the corresponding calculations for the bisulfate ion are in agreement with observations. The new theoretical values show that sediment -data, which reflect oxygen isotope equilibration between sulfate and ambient water during microbial sulfate reduction, are consistent with the abiotic equilibrium between and water.  相似文献   

20.
Silicic acid (H4SiO4) flux from the sediment, H4SiO4 concentration and river flow were used to obtain an annual dissolved silicon budget for Chesapeake Bay. H4SiO4 concentrations vary seasonally in the estuary: for a 12-year period, mean H4SiO4 concentrations in the mesohaline region were high both in spring and in late summer to early fall, and were low in late spring—occasionally approaching levels potentially limiting to diatom growth. Most of the annual allochthonous H4SiO4 supply to the estuary derives from the three major rivers, but regenerative H4SiO4 flux from the sediment to the water column exceeds the total riverine input by a factor of at least five. Sediment H4SiO4 efflux exhibits seasonality and averages approximately 2–3 mol Si m?2 yr?1. The high rates of sediment dissolution and efflux appear to maintain high levels of H4SiO4 in the mesohaline region, and Si-limitation of diatom growth there seems unlikely. The relative rates of biogenic silica formation and dissolution do not vary synchronously: seasonal variations in diatom productivity, sedimentary release of H4SiO4 and river flow all contribute to the observed late winter and late summer seasonal maxima and late spring minimum in water column H4SiO4 concentrations. If the only source of Si to support sedimentary H4SiO4 efflux is biogenic particulate silica recently deposited from the water column and this silica in turn was produced by diatoms in a ratio of 8C:1 Si, the minimum annual primary production by diatoms is at least 260 g C m?2, approximately half of annual total plankton primary production. This estimate would be revised upwards according to the amount of particulate biogenic silica dissolving in the water column. Burial of biogenic silica amounts to from 2 to 84% of the sediment efflux of H4SiO4, depending on location in the bay. On an annual basis, burial represents from 60 to 100% of fluvial H4SiO4-Si inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号