首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Seasonal variations in dissolved nitrogen and silica loadings were related to seasonal variability in river discharge. Dissolved nutrient concentrations measured weekly at three stations in the Yaquina River, Oregon from 1999 through 2001, and then monthly in 2002 were used as the basis for developing a nutrient loading regression as part of a larger agency program for evaluating nutrient processes. Because realistic models of nutrient transport require dense data sets to capture both long and short term fluctuations in nutrient concentrations, data at one freshwater station also were collected hourly for the same years using an in-stream monitor.The effects of storm events on dissolved nutrient transport were examined during three storms, including one in a high rainfall-discharge year, and two in average years, one of which followed a drought year. During the drought year (WY2001), total dissolved nitrate input was considerably less than in wetter years. Dissolved nitrate concentrations, however, were unusually high in the first winter storm runoff after the drought. The freshwater dissolved nitrate nitrogen loads varied from 40,380 kg day−1 during a high-flow storm event to 0.11 kg day−1 during late summer, low flow conditions. Dissolved silica dynamics differed from those of nitrate because during storm events, silica concentrations in the Yaquina River decreased to near zero at the storm height, probably due to dilution by near surface or overland flow, and later recovered.During the time interval studied, over 94% of the dissolved nitrate and silica were transported from the watershed during the winter months of greater rainfall, indicating that seasonality and river flow are primary factors when considering nutrient loadings from this watershed system.  相似文献   

2.
The dynamics of the Lesina coastal lagoon (Italy) in terms of nutrients, phytoplankton and chemical–physical parameters were evaluated, together with their functional relationships with freshwater inputs, in order to identify ecosystem responses to changes in driving forces in a Mediterranean non-tidal lentic environment. Lesina Lagoon is a shallow coastal environment characterised by limited exchange with coastal waters, which favours enrichment of nutrients and organic matter and benthic fluxes within the system. Lagoon–sea exchanges are influenced by human management. There is a steep salinity gradient from East to West. High nitrogen and silica values were found close to freshwater inputs, indicating wastewater discharges and agricultural runoff, especially in winter. Dissolved oxygen was well below saturation (65%) near sewage and runoff inputs in the western part of the lagoon during summer. Classification in accordance with EEA (2001) guidelines suggests the system is of “poor” or “bad” quality in terms of nitrogen concentrations in the eastern zone during the winter rainy period. In terms of phosphate concentrations, the majority of the stations fall into the “good” category, with only two stations (close to the sewage and runoff inputs) classed as “bad”. In both cases, the raw nitrogen levels make the lagoon a P-limited system, especially in the eastern part. There was wide space–time variability in chlorophyll a concentrations, which ranged from 0.25 to 56 μg l−1. No relationships between chlorophyll a and nutrients were found, suggesting that autotrophic biomass may be controlled by a large number of internal and external forcing factors driving eutrophication processes. Water quality for this type of environment depends heavily on pressure from human activities but also on the management of sewage treatment plants, agricultural practices and the channels connecting the lagoon with the sea.  相似文献   

3.
Physical and biological processes controlling spatial and temporal variations in material concentration and exchange between the Southern Everglades wetlands and Florida Bay were studied for 2.5 years in three of the five major creek systems draining the watershed. Daily total nitrogen (TN), and total phosphorus (TP) fluxes were measured for 2 years in Taylor River, and ten 10-day intensive studies were conducted in this creek to estimate the seasonal flux of dissolved inorganic nitrogen (N), phosphorus (P), total organic carbon (TOC), and suspended matter. Four 10-day studies were conducted simultaneously in Taylor, McCormick, and Trout Creeks to study the spatial variation in concentration and flux. The annual fluxes of TOC, TN, and TP from the Southern Everglades were estimated from regression equations. The Southern Everglades watershed, a 460-km2 area that includes Taylor Slough and the area south of the C-111 canal, exported 7.1 g C m−2, 0.46 g N m−2, and 0.007 g P m−2, annually. Everglades P flux is three to four orders of magnitude lower than published flux estimates from wetlands influenced by terrigenous sedimentary inputs. These low P flux values reflect both the inherently low P content of Everglades surface water and the efficiency of Everglades carbonate sediments and biota in conserving and recycling this limiting nutrient. The seasonal variation of freshwater input to the watershed was responsible for major temporal variations in N, P, and C export to Florida Bay; approximately 99% of the export occurred during the rainy season. Wind-driven forcing was most important during the later stages of the dry season when low freshwater head coincided with southerly winds, resulting in a net import of water and materials into the wetlands. We also observed an east to west decrease in TN:TP ratio from 212:1 to 127:1. Major spatial gradients in N:P ratios and nutrient concentration and flux among the creek were consistent with the westward decrease in surface water runoff from the P-limited Everglades and increased advection of relatively P-rich Gulf of Mexico (GOM) waters into Florida Bay. Comparison of measured nutrient flux from Everglades surface water inputs from this study with published estimates of other sources of nutrients to Florida Bay (i.e. atmospheric deposition, anthropogenic inputs from the Florida Keys, advection from the GOM) show that Everglades runoff represents only 2% of N inputs and 0.5% of P input to Florida Bay.  相似文献   

4.
The temporal and spatial variability of dissolved inorganic phosphate (DIP), nitrogen (DIN), carbon (DIC) and dissolved organic carbon (DOC) were studied in order to determine the net ecosystem metabolism (NEM) of San Diego Bay (SDB), a Mediterranean-climate lagoon. A series of four sampling campaigns were carried out during the rainy (January 2000) and the dry (August 2000 and May and September 2001) seasons. During the dry season, temperature, salinity and DIP, DIC and DOC concentrations increased from oceanic values in the outer bay to higher values at the innermost end of the bay. DIP, DIC and DOC concentrations showed a clear offset from conservative mixing implying production of these dissolved materials inside the bay. During the rainy season, DIP and DOC increased to the head, whereas salinity decreased toward the mouth due to land runoff and river discharges. The distributions of DIP and DOC also showed a deviation from conservative mixing in this season, implying a net addition of these dissolved materials during estuarine mixing within the bay. Mass balance calculations showed that SDB consistently exported DIP (2.8–9.8 × 103 mol P d−1), DIC (263–352 × 103 mol C d−1) and DOC (198–1233 × 103 mol C d−1), whereas DIN (5.5–18.2 × 103 mol N d−1) was exported in all samplings except in May 2001 when it was imported (8.6 × 103 mol N d−1). The DIP, DIC and DOC export rates along with the strong relationship between DIP, DIC or DOC and salinity suggest that intense tidal mixing plays an important role in controlling their distributions and that SDB is a source of nutrients and DOC to the Southern California Bight. Furthermore, NEM ranged from −8.1 ± 1.8 mmol C m−2 d−1 in September to −13.5 ± 5.8 mmol C m−2 d−1 in January, highlighting the heterotrophic character of SDB. In order to explain the net heterotrophy of this system, we postulate that phytoplankton-derived particulate organic matter, stimulated by upwelling processes in the adjacent coastal waters, is transported into the bay, retained and then remineralized within the system. Our results were compared with those reported for the heterotrophic hypersaline coastal lagoons located in the semi-arid coast of California–Baja California, and with those autotrophic hypersaline systems found in the semi-arid areas of Australia. We point out that the balance between autotrophy and heterotrophy in inverse estuaries is dependent on net external inputs of either inorganic nutrients or organic matter as it has been indicated for positive estuaries.  相似文献   

5.
Taylor Slough is one of the natural freshwater contributors to Florida Bay through a network of microtidal creeks crossing the Everglades Mangrove Ecotone Region (EMER). The EMER ecological function is critical since it mediates freshwater and nutrient inputs and controls the water quality in Eastern Florida Bay. Furthermore, this region is vulnerable to changing hydrodynamics and nutrient loadings as a result of upstream freshwater management practices proposed by the Comprehensive Everglades Restoration Program (CERP), currently the largest wetland restoration project in the USA. Despite the hydrological importance of Taylor Slough in the water budget of Florida Bay, there are no fine scale (∼1 km2) hydrodynamic models of this system that can be utilized as a tool to evaluate potential changes in water flow, salinity, and water quality. Taylor River is one of the major creeks draining Taylor Slough freshwater into Florida Bay. We performed a water budget analysis for the Taylor River area, based on long-term hydrologic data (1999–2007) and supplemented by hydrodynamic modeling using a MIKE FLOOD (DHI, http://dhigroup.com/) model to evaluate groundwater and overland water discharges. The seasonal hydrologic characteristics are very distinctive (average Taylor River wet vs. dry season outflow was 6 to 1 during 1999–2006) with a pronounced interannual variability of flow. The water budget shows a net dominance of through flow in the tidal mixing zone, while local precipitation and evapotranspiration play only a secondary role, at least in the wet season. During the dry season, the tidal flood reaches the upstream boundary of the study area during approximately 80 days per year on average. The groundwater field measurements indicate a mostly upwards-oriented leakage, which possibly equals the evapotranspiration term. The model results suggest a high importance of groundwater contribution to the water salinity in the EMER. The model performance is satisfactory during the dry season where surface flow in the area is confined to the Taylor River channel. The model also provided guidance on the importance of capturing the overland flow component, which enters the area as sheet flow during the rainy season. Overall, the modeling approach is suitable to reach better understanding of the water budget in the mangrove region. However, more detailed field data is needed to ascertain model predictions by further calibrating overland flow parameters.  相似文献   

6.
Elkhorn Slough is California's second largest estuary and the United States' first estuarine sanctuary. It occupies the western reaches of Elkhorn Valley, a relic river valley eroded by drainage pouring out of the Santa Clara and/or Great Valley of California into Monterey Bay during the early Pleistocene. During the mid-late Pleistocene Elkhorn Valley was tectonically truncated from its headwaters by right-lateral movement along the San Andreas Fault.During the last glacial maximum, 16–18 × 103 years before present (b.p), local drainage in Elkhorn Valley incised a stream channel at least 29 m below present day sea-level, as its base level was progressively lowered. With the ensuing Holocene sea-level rise, marine waters invaded this incised channel, floored with non-marine sandy gravels, creating a high-energy tidal inlet at the mouth of Elkhorn Slough approximately 8000 years b.p. As sea-level continued to rise, the main channel of Elkhorn Slough became filled by an estuarine, fining-upward sequence characterized by progressively shallower, lower-energy deposits. A quiet water estuary, considerably larger than the present-day Elkhorn Slough, existed approximately 3000 years b.p. As the Slough was slowly filling, salt marshes developed along its landward margins and have progressively advanced toward the center of the Slough during the past 5000 years.Historical records indicate numerous natural changes in the Elkhorn Slough vicinity. In the mid-1850s a.d. Elkhorn Slough was a minor tributary to the much larger Pajaro-Salinas River system which shared a common entrance to the Pacific Ocean north of Moss Landing. In 1909 winter storms modified the course of the Salinas River to its present location south of Moss Landing, while Elkhorn Slough persisted as a tributary to the Old Salinas River channel. Construction of jetties at the Moss Landing Harbor in 1946 provided a direct link between the Pacific Ocean and Elkhorn Slough. At this time, salt marshes began to retreat from the axis of Elkhorn Slough as it evolved into its present form as a relatively stable estuarine embayment. Had the jetties not been installed, Elkhorn Slough would have likely evolved into a freshwater wetland and eventually into a dry alluvial valley within 2000 years. The future fate of Elkhorn Slough will undoubtedly be controlled by relative sea-level changes, sediment supply, and human activities.  相似文献   

7.
Climatological variability of picophytoplankton populations that consisted of >64% of total chlorophyll a concentrations was investigated in the equatorial Pacific. Flow cytometric analysis was conducted along the equator between 145°E and 160°W during three cruises in November–December 1999, January 2001, and January–February 2002. Those cruises were covering the La Niña (1999, 2001) and the pre-El Niño (2002) periods. According to the sea surface temperature (SST) and nitrate concentrations in the surface water, three regions were distinguished spatially, viz., the warm-water region with >28 °C SST and nitrate depletion (<0.1 μmol kg−1), the upwelling region with <28 °C SST and high nitrate (>4 μmol kg−1) water, and the in-between frontal zone with low nitrate (0.1–4 μmol kg−1). Picophytoplankton identified as the groups of Prochlorococcus, Synechococcus and picoeukaryotes showed a distinct spatial heterogeneity in abundance corresponding to the watermass distribution. Prochlorococcus was most abundant in the warm-water region, especially in the nitrate-depleted water with >150×103 cells ml−1, Synechococcus in the frontal zone with >15×103 cells ml−1, and picoeukaryotes in the upwelling region with >8×103 cells ml−1. The warm-water region extended eastward with eastward shift of the frontal zone and the upwelling region during the pre-El Niño period. On the contrary, these regions distributed westward during the La Niña period. These climatological fluctuations of the watermass significantly influenced the distribution of picophytoplankton populations. The most abundant area of Prochlorococcus and Synechococcus extended eastward and picoeukaryotes developed westward during the pre-El Niño period. The spatial heterogeneity of each picophytoplankton group is discussed here in association with spatial variations in nitrate supply, ambient ammonium concentration, and light field.  相似文献   

8.
Water column concentrations and benthic fluxes of dissolved inorganic nitrogen (DIN) and oxygen (DO) were measured in the Gulf of St. Lawrence and the Upper and Lower St. Lawrence Estuary (USLE and LSLE, respectively) to assess the nitrogen (N) budget in the St. Lawrence (SL) system, as well as to elucidate the impact of bottom water hypoxia on fixed-N removal in the LSLE. A severe nitrate deficit, with respect to ambient phosphate concentrations (N*∼−10 μmol L−1), was observed within and in the vicinity of the hypoxic bottom water of the LSLE. Given that DO concentrations in the water column have remained above 50 μmol L−1, nitrate reduction in suboxic sediments, rather than in the water column, is most likely responsible for the removal of fixed N from the SL system. Net nitrate fluxes into the sediments, derived from pore water nitrate concentration gradients, ranged from 190 μmol m−2 d−1 in the hypoxic western LSLE to 100 μmol m−2 d−1 in the Gulf. The average total benthic nitrate reduction rate for the Laurentian Channel (LC) is on the order of 690 μmol m−2 d−1, with coupled nitrification-nitrate reduction accounting for more than 70%. Using average nitrate reduction rates derived from the observed water column nitrate deficit, the annual fixed-N elimination within the three main channels of the Gulf of St. Lawrence and LSLE was estimated at 411 × 106 t N, yielding an almost balanced N budget for the SL marine system.  相似文献   

9.
This paper presents a study of changes in eutrophication over the past 100 years in a fertile estuary. The Danish estuary Mariager Fjord is a long, narrow sill-fjord with a permanently anoxic basin. In 1997 anoxia spread from the basin to the entire inner estuary, killing almost all eukaryotes and prompting debate on the causes. This paper reports a multi-proxy survey of 210Pb-dated sediment cores from the anoxic basin. Analyses of diatoms, dinoflagellates, pigments and geochemical proxies were used to determine changes in ecosystem structure over the past 100 years. The aim was to establish ‘base-line conditions’, for management purposes, of the biological structure prior to 1900, and to examine possible causes of changes observed. Geochemical proxies total nitrogen (TN), total carbon (TC) and biogenic silica (BSi) were consistently high throughout the sediment record. Increased concentrations of pigments and natural isotopes (δ13C, δ15N) suggested increasing production and nutrient loading. The main changes in the biological proxies occurred between 1915 and the 1940s, and indicated that the estuary has been somewhat eutrophic since 1900, but that the eutrophication process increased over the past 100 years. A reconstruction of TN concentration by a diatom-based transfer function supports this interpretation, with inferred TN ca. 1900 around 60 μmol l−1, and an increase in TN concentration over the past century to ca. 130 μmol l−1 by 1995. Inferred TN decreased to ca. 100 μmol l−1 by 2001, similar to present day monitoring data.  相似文献   

10.
Variations in the nutrient concentrations were studied during two cruises to the Arabian Sea. The situation towards the end of the southwest monsoon season (September/October 1994) was compared with the inter-monsoonal season during November and December 1994. Underway surface transects showed the influence of an upwelling system during the first cruise with deep, colder, nutrient-rich water being advected into the surface mixed layer. During the southwesterly monsoon there was an area of coastal Ekman upwelling, bringing colder water (24.2°C) into the surface waters of the coastal margin. Further offshore at about 350 km there was an area of Ekman upwelling, as a result of wind-stress curl, north of the Findlater Jet axis; this area also had cooler surface water (24.6°C). Further offshore (>1000 km) the average surface temperatures increased to >27°C. These waters were oligotrophic with no evidence of the upwelling effects observed further inshore. In the upwelling regions nutrient concentrations in the close inshore coastal zone were elevated (NO3=18 μmol l-1, PO4=1.48 μmol l-1); higher concentrations also were measured at the region of offshore upwelling off the shelf, with a maximum nitrate concentration of 12.5 μmol l-1 and a maximum phosphate concentration of 1.2 μmol l-1. Nitrate and phosphate concentrations decreased with increasing distance offshore to the oligotrophic waters beyond 1400 km, where typical nitrate concentrations were 35.0 nmol l-1 (0.035 μmol l-1) in the surface mixed layer. A CTD section from the coastal shelf, to 1650 km offshore to the oligotrophic waters, clearly showed that during the monsoon season, upwelling is one of the major influences upon the nutrient concentrations in the surface waters of the Arabian Sea off the coast of Oman. Productivity of the water column was enhanced to a distance of over 800 km offshore. During the intermonsoon period a stable surface mixed layer was established, with a well-defined thermocline and nitracline. Surface temperature was between 26.8 and 27.4°C for the entire transect from the coast to 1650 km offshore. Nitrate concentrations were typically between 2.0 and 0.4 μmol l-1 for the transect, to about 1200 km where the waters became oligotrophic, and nitrate concentrations were then typically 8–12 nmol l-1. Ammonia concentrations for the oligotrophic waters were typically 130 nmol l-1, and are reported for the first time in the Indian Ocean. The nitrogen/phosphorus (N/P) ratios suggest that phytoplankton production was potentially nitrogen-limited in all the surface waters of the Arabian Sea, with the greatest nitrogen limitation during the intermonsoon period.  相似文献   

11.
九龙江河口区营养盐分布特征及其影响因素分析   总被引:2,自引:0,他引:2  
根据2009、2010年"丰水期"和"枯水期"四航次九龙江河口混合区的调查资料,且结合历史资料对营养盐含量及分布特征、周日变化特征进行了统计和相关分析,研究了九龙江流域营养盐输入海洋的变化过程,探讨九龙江河口营养盐伴随潮汐变化,以及河口混合过程中的生物地球化学行为。调查期间溶解无机氮、硅和磷含量的平面分布呈现出由径流冲淡水高值向河口外海端递减的变化趋势;在涨潮时,河口区感潮段高溶解无机氮、硅、磷营养盐的陆源冲淡水与低溶解无机氮、硅、磷营养盐外海水相遇,随着外海水的侵入,外海水的作用逐渐加强,在稀释混合过程中呈现出无机营养盐逐步降低的变化趋势,退潮时则相反;营养盐在这复杂的河口过程中往往表现出在水动力的作用下稀释混合是主要过程,无机氮和活性硅酸盐在河口稀释混合过程中呈现保守性特征,活性磷酸盐在河口转移(补充)过程的行为复杂化,呈现缓冲作用为主。  相似文献   

12.
于2009年至2011年在黄河下游采集溶解及颗粒态营养盐样品,分析了黄河下游各形态营养盐的浓度变化及营养盐入海通量,结果表明各形态氮的浓度多呈丰水期低、枯水期高,溶解无机氮是溶解态氮的主要存在形式;受黄河高悬浮颗粒物含量的影响,磷以颗粒态占绝对优势,而溶解态磷以溶解无机磷为主要存在形态;生物硅的含量平均约占硅酸盐与生物硅之和的20%,硅的浓度丰水期高于枯水期.颗粒态磷与生物硅的含量与悬浮颗粒物含量呈正相关.营养盐的组成具有高氮磷比、高硅磷比、低硅氮比的特点.近年来黄河下游溶解无机氮浓度显著升高而溶解无机磷变化不大,硅酸盐的浓度有所下降.黄河下游水沙通量、营养盐入海通量有明显的季节变化,丰水期占全年总入海通量的42%~84%.调水调沙期间,各营养盐的浓度和组成均有明显变化,氮的浓度、DIN/PO4-P下降,磷与硅的浓度、SiO3-Si/DIN、SiO3-Si/PO4-P升高,颗粒态营养盐的比例明显增加.短期内大量水沙及营养盐入海通量对黄河口及渤海生态系统产生重要影响.  相似文献   

13.
Global change models predict effects of climate change on hydrological regimes at the continental scale in Europe. The aim of this study was to gain a better understanding of the possible effect of changing external forcing conditions on the functioning of estuarine ecosystems. In densely populated areas, anthropogenic nutrient enrichment and consequent alteration of nutrient biogeochemical cycles have already had a big impact on these ecosystems. The average yearly discharge of the upper Schelde estuary increased nearly threefold over the period 1996–2000, from 28 m3 s−1 in 1996 to 73 m3 s−1 in 2000. The continuously rising discharge conditions over the five-year period were used as a reference situation for possible future effects of climate on ecological functioning through increase of discharge. At high discharges, nutrient (NH4+, NO3, dissolved silica and PO43−) concentrations in the tidal fresh- and brackish water showed a decrease of up to 50% while total discharged nutrient loadings increased up to 100%. Opposite effects of increasing discharge on NH4+, NO3 and dissolved silica concentrations in summer and winter, resulted in the flattening out of seasonal cycles for these nutrients. Under high discharge conditions, silica uptake by diatom communities was lowered. Dissolved silica loadings to the coastal area increased concurrently with total silica loadings upstream. Salt intrusion to the marine parts of the estuary decreased. This resulted in a downstream shift of the salinity gradient, with lower salinity observed near the mouth. As a result, TDIN, NO3 and dissolved silica concentrations doubled at the mouth of the estuary.  相似文献   

14.
Eutrophication has often been one of the major problems encountered in estuaries and coastal waters. The oxic/anoxic status of an estuary can be effectively determined by measurement of the Sediment Oxygen Demand (SOD). The present study forms a pioneering attempt to evaluate the SOD of the Cochin Backwater System (CBS), a tropical eutrophic estuary in the south-west coast of India. The CBS exhibited significant spatio-temporal variations in SOD. The mean net SOD during the dry season (2569.73 μmol O2 m−2 h−1) was almost twice that of the wet season (1431.28 μmol O2 m−2 h−1), presumably due to higher discharge during the latter season. The observed pockets of net oxygen release indicate that the CBS still retains certain autotrophic regions in spite of heavy organic drains. The low oxygen flux in light chambers points towards the role of microphytobenthos in maintaining the oxygen reservoir of the estuarine system.  相似文献   

15.
Functional groups have become an important tool for characterizing communities of marine and estuarine environments. Their use also holds promise for a better understanding of the temporal dynamics of phytoplankton. This study aimed to evaluate the contributions of phytoplankton size fractions and functional groups characterizing short‐term variation throughout tidal cycles and between dry and rainy seasons in a tropical estuarine system. Camamu Bay is an oligotrophic estuarine system that is under strong influence from tropical shelf waters and is characterized by high salinity and low concentrations of dissolved nutrients. Surface‐water samples were collected at nine sampling sites distributed among the three hydrodynamic regions of the bay, and at a mooring, at 3‐hr intervals during tidal cycles (12 hr each) in both the rainy and the dry season. Although the abundances of the phytoplankton fractions (pico‐, nano‐, and micro‐) were higher in the rainy season and during periods of higher tide, they were not significantly higher. The phytoplankton community in the bay comprises three functional groups: GI = “colonial” (i.e., chain‐forming diatoms and filamentous cyanobacteria); GII = “GALD >40” (i.e., pennate and centric diatoms with MDL >40 µm), and GIII = “flagellates” (i.e., species with motility via flagella). Nanoflagellates were the most abundant form in the bay, while chain‐forming diatoms, in particular, contributed to the microphytoplankton fraction during both the rainy and dry seasons. Functional groups, as defined by cluster analysis, reflected ecological strategies compatible with the high hydrodynamics of Camamu Bay, which is characterized by processes of tidal‐forced intense mixing, mainly during periods of spring tides. The phytoplankton of the bay was found to possess a series of attributes (functional traits) that endow them with some resistance to sinking. Functional diversity indexes (FEve, FDiv, and FDis) indicated a stable community without significant short‐term variation due to low variability in the environmental conditions of the system during the study period.  相似文献   

16.
Porewater nutrient dynamics during emersion and immersion were investigated during different seasons in a eutrophic intertidal sandflat of Tokyo Bay, Japan, to elucidate the role of emersion and immersion in solute transport and microbial processes. The water content in the surface sediment did not change significantly following emersion, suggesting that advective solute transport caused by water table fluctuation was negligible. The rate of change in nitrate concentration in the top 10 mm of sediments ranged from −6.6 to 4.8 μmol N l−1 bulk sed. h−1 during the whole period of emersion. Steep nutrient concentration gradients in the surface sediment generated diffusive flux of nutrients directed downwards into deeper sediments, which greatly contributed to the observed rates of change in porewater nutrient concentration for several cases. Microbial nitrate reduction within the subsurface sediment appeared to be strongly supported by the downward diffusive flux of nitrate from the surface sediment. The stimulation of estimated nitrate production rate in the subsurface layer in proportion to the emersion time indicates that oxygenation due to emersion caused changes in the sediment redox environment and affected the nitrification and/or nitrate reduction rates. The nitrate and soluble reactive phosphorus pools in the top 10 mm of sediment decreased markedly during immersion (up to 68% for nitrate and up to 44% for soluble reactive phosphorus), however, this result could not be solely explained by molecular diffusion.  相似文献   

17.
Flow-through flumes were used to quantify net areal fluxes of nutrients in the fringe mangrove zone of lower Taylor River in the southern Everglades National Park. We also quantified net areal fluxes along the open water portion of the channel to determine the relative importance of either zone (vegetated vs. unvegetated) in the regulation of nutrient exchange in this system. Taylor River's hydrology is driven mainly by precipitation and wind, as there is little influence of tide. Therefore, quarterly samplings of the vegetated and unvegetated flumes were slated to include typical wet season and dry season periods, as well as between seasons, over a duration of two years. Concentrations of dissolved and total organic carbon (DOC and TOC) were highest during the wet season and similar to one another throughout the study, reflecting the low particulate loads in this creek. Dissolved inorganic nitrogen (nitrate+nitrite+ammonium) was 10–15% of the total nitrogen (TN) content, with NO−x and NH+4 showing similar concentration ranges over the 2-year study. Soluble reactive phosphorus (SRP) was usually <0·05μM, while total phosphorus (TP) was typically an order of magnitude higher. Net areal fluxes were calculated from nutrient concentration change over the length of the flumes. Most flux occurred in the vegetated zone. Dissolved inorganic nitrogen and DOC were usually taken up from the water column; however, we saw no seasonal pattern for any constituent over the course of this study. Total nutrients (TOC, TN, and TP) showed little net exchange and, like SRP, had fluxes that shifted irregularly throughout the study. Despite the lack of a clear seasonal pattern, there was a great deal of consistency between vegetated flumes, especially for NO−x and NH+4, and fluxes in the vegetated flumes were generally in the same direction (import, export, or no net flux) during a given sampling. These findings suggest that the fringe mangrove zone is of considerable importance in regulating nutrient dynamics in lower Taylor River. Furthermore, the influence of this zone may at times extend into northeast Florida Bay, as the bay is the primary recipient of water and nutrients during the wet season.  相似文献   

18.
The influences of the hydrological features and environmental conditions in the phytoplankton community found in the Campos Basin area in the Atlantic Ocean (20° to 25°S; 42° to 38°W) were studied using HPLC/CHEMTAX pigment analysis. Samples were collected at 72 stations distributed along the 25–3000 m isobaths at two depths during two seasonal periods (rainy and dry). Seven taxonomic groups of phytoplankton were detected (diatoms, dinoflagellates, prasinophytes, cryptophytes, haptophytes, pelagophytes and cyanobacteria). Redundancy analysis showed that the spatial and temporal patterns observed in the distribution of the phytoplanktonic groups were primarily related to variations in the availability of light and nutrients. Nutrient variations were caused by South Atlantic Central Water seasonal intrusions over the continental shelf region. Cyanobacteria predominated in the rainy season, while diatoms, Haptophyceae and Prasinophyceae, were associated with higher nutrient availability in the dry season. In the inner shelf region, diatoms dominated and were associated with increased conditions of turbulence and nutrient availability. Haptophytes and prasinophytes were predominant on the outer shelf and shelf-break regions associated with high nutrient concentrations and availability of light. Prochlorococcus was related to oceanic waters (in both dry and rainy periods) or to low nutrient/strongly stratified shelf waters (rainy period). In contrast, Synechococcus was widely distributed in both the shelf and oceanic regions. Variation in the quality of light between coastal and oceanic waters was probably responsible for the distributions observed. Through HPLC/CHEMTAX pigment analysis we have developed a detailed picture of the influence of hydrological regime on the dynamics of the phytoplankton community in an under-studied shelf/ocean system in the tropical southern Atlantic Ocean.  相似文献   

19.
The Santa Clara River delivers nutrient rich runoff to the eastern Santa Barbara Channel during brief (1–3 day) episodic events. Using both river and oceanographic measurements, we evaluate river loading and dispersal of dissolved macronutrients (silicate, inorganic N and P) and comment on the biological implications of these nutrient contributions. Both river and ocean observations suggest that river nutrient concentrations are inversely related to river flow rates. Land use is suggested to influence these concentrations, since runoff from a subwatershed with substantial agriculture and urban areas had much higher nitrate than runoff from a wooded subwatershed. During runoff events, river nutrients were observed to conservatively mix into the buoyant, surface plume immediately seaward of the Santa Clara River mouth. Dispersal of these river nutrients extended 10s of km into the channel. Growth of phytoplankton and nutrient uptake was low during our observations (1–3 days following runoff), presumably due to the very low light levels resulting from high turbidity. However, nutrient quality of runoff (Si:N:P = 16:5:1) was found to be significantly different than upwelling inputs (13:10:1), which may influence different algal responses once sediments settle. Evaluation of total river nitrate loads suggests that most of the annual river nutrient fluxes to the ocean occur during the brief winter flooding events. Wet winters (such as El Niño) contribute nutrients at rates approximately an order-of-magnitude greater than “average” winters. Although total river nitrate delivery is considerably less than that supplied by upwelling, the timing and location of these types of events are very different, with river discharge (upwelling) occurring predominantly in the winter (summer) and in the eastern (western) channel.  相似文献   

20.
Determinations of spatial and temporal variations in organic matter and nutrient dynamics in water and sediments are crucial for understanding changes in aquatic bodies. In this study, we (i) determine the spatial dynamics of dissolved inorganic nutrients, during the transition from the dry to the rainy season, and (ii) provide future productivity predictions for the Rufiji Delta mangroves, Tanzania, based on the input of various nutrients. Water samples were collected from six locations, three times per year between April 2012 and January 2014, and analysed for dissolved nutrients, total organic and inorganic carbon, chlorophyll a, chlorophyll b and total carotenoids. The prediction of future net primary productivity in the Rufiji mangroves was undertaken using the software STELLA. The mean nutrient concentrations were of the order: nitrate > phosphate > ammonium > silica > dissolved organic carbon. The study revealed that high nutrient concentrations occurred in the northern part of the Rufiji Delta as a result of anthropogenic influence in the watershed. Modelling of nutrient inputs into the delta indicated enhanced primary productivity, which is expected to increase the vulnerability of water quality in the near future due to eutrophication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号